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1. Introduction

Becker [1] proved that if 0 ≤ q < 1; and f is a holomorphic function on the unit disc U which
satisfies the condition

∣
∣
∣
∣

zf ′′(z)
f ′(z)

∣
∣
∣
∣
≤ q

1 − |z|2 , z ∈ U, (1.1)

then f is univalent on U and extends to a quasiconformal homeomorphism of R2 onto itself.
This result was generalized by Pfaltzgraff [2] (cf. [3]) to several complex variables. He

proved that if 0 ≤ q < 1 and f ∈ H(B) is a quasiregular mapping, which satisfies the condition

(

1 − ‖z‖2)∥∥[Df(z)
]−1

D2f(z)(z, ·)∥∥ ≤ q, z ∈ B, (1.2)

then f is biholomorphic on B and extends to a quasiconformal homeomorphism of R2n onto
itself.



2 Journal of Inequalities and Applications

Recently, the problem of quasiconformal extensions for quasiregular holomorphic map-
pings on the unit ball in C

n has been studied by Hamada and Kohr ([4–6]; see also [7]), Curt
([8–10]), Curt and Kohr [11].

In this paper we will generalize certain results due to Pfaltzgraff [2], Curt ([8, 9]),
Hamada and Kohr [5].

2. Notations and preliminary results

Let Cn denote the space of n-complex variables z = (z1, . . . , zn) with the usual inner product
〈z,w〉 =

∑n
i=1ziwi and Euclidean norm ‖z‖ = 〈z, z〉1/2. Let B denote the open unit ball in C

n

and let U be the unit disc in C. Also let B be the closed unit ball in C
n and let Rm = R

m ∪ {∞}
be the one point compactification of Rm.

Let H(Ω) be the set of holomorphic mappings from a domain Ω in C
n into C

n. If f ∈
H(B), let Jf(z) = detDf(z) be the complex jacobian determinant of f at z. Also let L(Cn) be
the space of continuous linear mappings from C

n into C
n with the standard operator norm

‖A‖ = sup
{∥
∥Az

∥
∥ : ‖z‖ = 1

}

, (2.1)

and let I be the identity in L(Cn). A mapping f ∈ H(B) is said to be normalized if f(0) = 0
and Df(0) = I.

If f ∈ H(B), let Df(z) be the Fréchet derivative of f at z ∈ B given by

Df(z) =
(
∂fj

∂zk
(z)

)

1≤j, k≤n
. (2.2)

Also letD2f(z) be the second Fréchet derivative of f at z ∈ B. ClearlyD2f(z)(z, ·) is the linear
operator from C

n into C
n that is obtained by restricting to {z} × C

n the symmetric bilinear
operator D2f(z). Then

D2f(z)(z, ·) =
(

n∑

m=1

∂2fj

∂zk∂zm
(z)zm

)

1≤j, k≤n
. (2.3)

We say that a mapping f ∈ H(B) is K-quasiregular, K ≥ 1, if
∥
∥Df(z)

∥
∥
n ≤ K

∣
∣Jf(z)

∣
∣, z ∈ B. (2.4)

A mapping f ∈ H(B) is called quasiregular if f is K-quasiregular for some K ≥ 1. It is
well known that quasiregular holomorphic mappings are locally biholomorphic.

Definition 2.1. Let G and G′ be domains in R
m. A homeomorphism f : G → G′ is said to be

K-quasiconformal if it is differentiable a.e., absolutely continuous on lines ( ACL ) and
∥
∥Df(x)

∥
∥
m ≤ K

∣
∣detDf(x)

∣
∣ a.e. x ∈ G, (2.5)

where Df(x) denotes the real Jacobian matrix of f ; and K is a constant.

Note that a K-quasiregular biholomorphic mapping is K2-quasiconformal.
If f, g ∈ H(B), we say that f is subordinate to g (and write f ≺ g) if there exists a

Schwarz mapping v (i.e., v ∈ H(B) and ‖v(z)‖ ≤ ‖z‖, z ∈ B) such that f(z) = g(v(z)), z ∈ B.
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Definition 2.2. A mapping L : B × [0,∞) → C
n is called a subordination chain if the following

conditions hold:

(i) L(0, t) = 0 and L(·, t) ∈ H(B) for t ≥ 0;

(ii) L(·, s) ≺ L(·, t) for 0 ≤ s ≤ t < ∞.

If L(z, t) is a subordination chain such that L(·, t) is biholomorphic on B for t ∈ [0,∞),
then we say that L(z, t) is a univalent subordination chain (or a Loewner chain). In this case
there exists a biholomorphic Schwarz mapping v = v(z, s, t) (which is called the transition
mapping associated with L(z, t)) such that

L(z, s) = L
(

v(z, s, t), t
)

, z ∈ B, 0 ≤ s ≤ t. (2.6)

If L(z, t) is a univalent subordination chain such thatDL(0, t) = etI, we say that L(z, t) is
a normalized subordination chain (or a normalized Loewner chain).

An important role in our discussion is played by the n-dimensional version of the
Carathéodory set (i.e., the class of holomorphic functions on the unit disc with positive real
part):

N =
{

h ∈ H(B) : h(0) = 0, R
〈

h(z), z
〉

> 0, z ∈ B\{0}},
M =

{

h ∈ N, Dh(0) = I
}

.
(2.7)

The authors ([12, Theorem 1.10] and [13, Theorem 2.3]) proved that normalized
univalent subordination chains satisfy the generalized Loewner differential equation.

Theorem 2.3. Let L : B × [0,∞) → C
n be a normalized univalent subordination chain. Then there

exists a mapping h = h(z, t) : B × [0,∞) → C
n such that h(·, t) ∈ M for t ≥ 0, h(z, ·) is measurable

on [0,∞) for z ∈ B, and

∂L

∂t
(z, t) = DL(z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ B. (2.8)

Using an elementary change of variable, it is not difficult to reformulate the above
result in the case of nonnormalized subordination chains L(z, t) = a(t)z + · · · , where a :
[0,∞) → C, a ∈ C1([0,∞)), a(0) = 1, and a(t) → ∞ as t → ∞ (see [10, 14]).

Theorem 2.4. Let L(z, t) : B × [0,∞) → C
n be a Loewner chain such that L(z, t) = a(t)z + · · · ,

where a ∈ C1([0,∞)), a(0) = 1, and limt→∞|a(t)| = ∞. Then there exists a mapping h = h(z, t) :
B × [0,∞) → C

n such that h(·, t) ∈ N for t ≥ 0, h(z, ·) is measurable on [0,∞) for z ∈ B, and

∂L

∂t
(z, t) = DL(z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ B. (2.9)

Definition 2.5 ([15]). Let F = F(u, v) : B × C
n → C

n be a mapping of class C1 with F(0, 0) = 0.
We say that F satisfies the conditions (P) if the following assumptions hold.

(i) F(e−tz, etz) ∈ H(B), for t ≥ 0.

(ii) DvF(u, v) is invertible, for all (u, v) ∈ B × C
n.

(iii) For each t ≥ 0, there exists a complex number a(t) /= 0, with a(0) = 1, such that

e−tDuF(0, 0) + etDvF(0, 0) = a(t)I. (2.10)
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Here DuF(u, v) (DvF(u, v)) is the n × nmatrix for which the (i, j) entry is given by

∂Fi

∂uj
(u, v)

(
∂Fi

∂vj
(u, v)

)

. (2.11)

(iv) {[e−tDuF(0, 0) + etDvF(0, 0)]
−1F(e−tz, etz)}t≥0 is a normal family on B.

Recently Hamada and Kohr [5, Theorem 3.2] (see also [11, Theorem 2.4]) proved the
following result.

Theorem 2.6. Let L = L(z, t) : B × [0,∞) → C
n be a normalized univalent subordination chain.

Assume the following conditions hold:

(i) there exists K > 0 such that L(·, t) is K-quasiregular for each t ∈ [0,∞);

(ii) there exist some constantsM > 0 and α ∈ [0, 1) such that

∥
∥DL(z, t)

∥
∥ ≤ etM

(

1 − ‖z‖)α , z ∈ B, t ∈ [0,∞); (2.12)

(iii) there exists a sequence {tm}m∈N, tm > 0, limm→∞tm = ∞, and a mapping F ∈ H(B) such
that

lim
m→∞

e−tmL
(

z, tm
)

= F(z) (2.13)

locally uniformly on B.

Moreover, assume that the mapping h(z, t) defined by Theorem 2.3 satisfies the following
conditions:

(iv) there exists a constant C > 0 such that

C‖z‖2 ≤ R
〈

h(z, t), z
〉

, z ∈ B, t ∈ [0,∞); (2.14)

(v) there exists a constant C1 > 0 such that

∥
∥h(z, t)

∥
∥ ≤ C1, z ∈ B, t ∈ [0,∞). (2.15)

Then f = L(·, 0) extends to a quasiconformal homeomorphism of R2n onto itself.

In this paper we continue the work begun in [5, 6, 8, 9, 11, 16]; and we obtain a sufficient
condition for a normalized quasiregular holomorphic mapping on B, which can be imbedded
as the first element of a nonnormalized univalent subordination chain, to be extended to a
quasiconformal homeomorphism of R2n onto itself. We also obtain certain applications of this
result, including the n-dimensional versions of the quasiconformal extension results due to
Becker and Ahlfors-Becker.
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3. Main results

We begin this section with the following result.

Theorem 3.1. Let L(z, t) : B × [0,∞) → C
n, L(z, t) = a(t)z + · · · be a Loewner chain such that

a(·) ∈ C1([0,∞)), a(0) = 1 and limt→∞|a(t)| = ∞. Assume that the following conditions hold:

(i) there exists K > 0 such that L(·, t) is K-quasiregular for each t ≥ 0;

(ii) there exist some constantsM > 0 and α ∈ [0, 1) such that

∥
∥DL(z, t)

∥
∥ ≤ M|a(t)|

(

1 − ‖z‖)α , z ∈ B, t ∈ [0,∞); (3.1)

(iii) there exists a sequence {tm}m∈N, tm > 0, limm→∞tm = ∞, and a mapping F ∈ H(B) such
that

lim
m→∞

L
(

z, tm
)

a(tm)
= F(z) (3.2)

locally uniformly on B.

Further, assume that the mapping h(z, t) defined by Theorem 2.4 satisfies the following condi-
tions:

(iv) there exists a constant C > 0 such that

C‖z‖2 ≤ R
〈

h(z, t), z
〉

, z ∈ B, t ∈ [0,∞); (3.3)

(v) there exists a constant C1 > 0 such that

∥
∥h(z, t)

∥
∥ ≤ C1, z ∈ B, t ∈ [0,∞). (3.4)

Then f = L(·, 0) extends to a quasiconformal homeomorphism of R2n onto itself.

Proof. Since L(z, t) is a Loewner chain, it follows that L(z, s) ≺ L(z, t) for z ∈ B and 0 ≤ s ≤ t <
∞. Hence |a(·)| is increasing by Schwarz’s lemma. Moreover, taking into account the condition
(3.3) and the fact that Dh(0, t) = (a′(t)/a(t))I for t ≥ 0, it is not difficult to deduce that

R

(
a′(t)
a(t)

)

≥ C, t ∈ [0,∞). (3.5)

Indeed, fix w ∈ ∂B and t ≥ 0. Let qt : U → C be given by

qt(ζ) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1
ζ

〈

h(ζw, t), w
〉

, 0 < |ζ| < 1,

a′(t)
a(t)

, ζ = 0.
(3.6)
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Then qt is a holomorphic function on U, and in view of the relation (3.3) we deduce that
Rqt(ζ) ≥ C for 0 < |ζ| < 1. Hence, we must have Rqt(0) ≥ C, that is, R(a′(t)/a(t)) ≥ C, as
claimed.

As in the proof of [17, Theorem 2] (see also [14]), we use the change of parameter θ(t) =
arga(t), t∗ = ln |a(t)|, in order to pass from the nonnormalized subordination chain L(z, t) to
the normalized subordination chain L∗(z, t∗) given by

L∗(z, t∗
)

= L
(

e−iθ(t)z, t
)

, z ∈ B, t ∈ [0,∞). (3.7)

Also let h∗ = h∗(z, t∗) : B × [0,∞) → C
n be given by

h∗(z, t∗) =
1

R
(

a′(t)/a(t)
)

[

h
(

ze−iθ(t), t
)

eiθ(t) − i
dθ(t)
dt

z

]

, z ∈ B, t∗ ∈ [0,∞). (3.8)

In the proof of [17, Theorem 2] (see also [14]), it was shown that L∗(z, t∗) is a normalized
subordination chain, which satisfies the Loewner differential equation

∂L∗

∂t∗
(

z, t∗
)

= DL∗(z, t∗
)

h∗(z, t∗
)

, a.e. t∗ ≥ 0, ∀z ∈ B. (3.9)

We next prove that the mapping L∗ = L∗(z, t∗) satisfies assumptions of Theorem 2.6.
Indeed, since L(·, t) is K-quasiregular for t ∈ [0,∞), we easily deduce that

∥
∥DL∗(z, t∗

)∥
∥
n =

∥
∥DL

(

e−iθ(t)z, t
)∥
∥
n ≤ K

∣
∣detDL

(

e−iθ(t)z, t
)∣
∣

= K
∣
∣detDL∗(z, t∗

)∣
∣, z ∈ B, t∗ ∈ [0,∞),

(3.10)

and hence L∗(z, t∗) is also K-quasiregular on B for t∗ ∈ [0,∞).
Taking into account condition (ii) in the hypothesis, we deduce that

∥
∥DL∗(z, t∗

)∥
∥ =

∥
∥DL

(

e−iθ(t)z, t
)∥
∥ ≤ Met

∗

(

1 − ‖z‖)α , t∗ ≥ 0, z ∈ B. (3.11)

Hence L∗ satisfies assumptions (i) and (ii) of Theorem 2.6.
On the other hand, in view of condition (iv), we deduce that

R
〈

h∗(z, t∗
)

, z
〉

=
1

R
(

a′(t)/a(t)
)R

〈

h
(

ze−iθ(t), t
)

eiθ(t) − i
dθ(t)
dt

z, z

〉

=
1

R
(

a′(t)/a(t)
)R

〈

h
(

ze−iθ(t), t
)

, e−iθ(t)z
〉

≥ C‖z‖2
R
(

a′(t)/a(t)
) ≥ C

supt∈[0,∞)R
(

a′(t)/a(t)
)‖z‖2.

(3.12)

We next prove that

sup
t∈[0,∞)

R
a′(t)
a(t)

< ∞. (3.13)
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Since ‖h(z, t)‖ ≤ C1 for z ∈ B and t ∈ [0,∞), it follows by Schwarz’s lemma that

∥
∥Dh(0, t)

∥
∥ ≤ C1, t ∈ [0,∞). (3.14)

On the other hand, sinceDh(0, t) = (a′(t)/a(t))I, we deduce in view of the previous inequality
that |a′(t)/a(t)| ≤ C1 for t ≥ 0, and hence

sup
t∈[0,∞)

R
a′(t)
a(t)

≤ C1 < ∞, (3.15)

as claimed.
In view of the above relations, we obtain that

R
〈

h∗(z, t∗
)

, z
〉 ≥ C

C1
‖z‖2, z ∈ B, t∗ ≥ 0. (3.16)

Further, taking into account (3.5), we obtain

∥
∥h∗(z, t∗

)∥
∥ ≤ 1

R
(

a′(t)/a(t)
)

[
∥
∥h

(

ze−iθ(t), t
)

eiθ(t)
∥
∥ +

∥
∥
∥
∥

dθ(t)
dt

z

∥
∥
∥
∥

]

≤ 1
R
(

a′(t)/a(t)
)

[
∥
∥h

(

ze−iθ(t), t
)∥
∥ +

∣
∣
∣
∣
I
a′(t)
a(t)

∣
∣
∣
∣

]

≤ 2C1

inft≥0R
(

a′(t)/a(t)
) ≤ 2C1

C
.

(3.17)

Therefore, we have proved that the mapping h∗(z, t∗) satisfies conditions (iv) and (v) in
Theorem 2.6.

Finally, since L∗(z, 0) = L(ze−iθ(0), 0) = L(z, 0), z ∈ B, we conclude that L(·, 0) extends to
a quasiconformal homeomorphism F of R2n onto itself such that F|B = L(·, 0), as desired. This
completes the proof.

We next consider the following class of mappings which satisfy the conditions (3.3) and
(3.4). The proof of this result may be found in [16].

Remark 3.2. Let q ∈ [0, 1) and let h = h(z, t) : B × [0,∞) → C
n be given by

h(z, t) =
[

I − E(z, t)
]−1[

I + E(z, t)
]

(z), (3.18)

where the mapping E(z, t) satisfies the following conditions.

(i) E(z, t) ∈ L(Cn), z ∈ B, t ∈ [0,∞).

(ii) E(·, t) : B → L(Cn) is a holomorphic mapping.

(iii) ‖E(z, t)‖ ≤ q for z ∈ B and t ≥ 0.

Then the mapping h(z, t) satisfies the following inequalities:

‖z‖1 − q

1 + q
≤ ∥
∥h(z, t)

∥
∥ ≤ ‖z‖1 + q

1 − q
, z ∈ B, t ≥ 0;

‖z‖2 1 − q

1 + q
≤ R

〈

h
(

z, t
)

, z
〉 ≤ ‖z‖2 1 + q

1 − q
, z ∈ B, t ≥ 0.

(3.19)
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4. Applications

In this section we obtain certain applications of Theorem 3.1. The main result of this paper is
given in Theorem 4.1, which provides a general quasiconformal extension result in C

n.

Theorem 4.1. Let q ∈ (0, 1) and let F = F(u, v) : B × C
n → C

n be a mapping which satisfies the
conditions (P) in Definition 2.5. Assume that

∥
∥
[

DvF(0, 0)
]−1[

DuF(0, 0)
]∥
∥ ≤ q, (4.1)

∥
∥G(z, z)

∥
∥ ≤ q, z ∈ B\{0}, (4.2)

∥
∥
∥
∥
G

(

z,
z

‖z‖2
)∥
∥
∥
∥

≤ q, z ∈ B\{0}, (4.3)

where

G(u, v) =
〈u, v〉
‖v‖2

[

DvF(u, v)
]−1[

DuF(u, v)
]

, u ∈ B, v ∈ C
n\{0}. (4.4)

Moreover, assume that there exist some constantsM > 0, K ≥ 1 and α ∈ [0, 1) such that

∥
∥DvF(u, v)

∥
∥ ≤ M

(

1 − ‖u‖)α , u ∈ B, v ∈ C
n, (4.5)

∥
∥DvF(u, v)

∥
∥
n ≤ K

∣
∣detDvF(u, v)

∣
∣, u ∈ B, v ∈ C

n. (4.6)

Then the mapping f : B → C
n, given by f(z) = F(z, z), extends to a quasiconformal homeomorphism

of R2n onto itself.

Proof. We prove that the mapping L : B × [0,∞) → C
n given by

L(z, t) = F
(

e−tz, etz
)

, z ∈ B, t ≥ 0, (4.7)

satisfies the conditions of Theorem 3.1.
Indeed, it is obvious that L(·, t) ∈ H(B), L(0, t) = F(0, 0) = 0, DL(0, t) = e−tDuF(0, 0) +

etDvF(0, 0) = a(t)I, where a(·) ∈ C1([0,∞)) and a(0) = 1. Since the mapping F = F(u, v) is
of class C1 on B × C

n, it follows that L(z, ·) is locally absolutely continuous on [0,∞) locally
uniformly with respect to z ∈ B. In view of (4.7), we obtain that

DL(z, t) = e−tDuF
(

e−tz, etz
)

+ etDvF
(

e−tz, etz
)

= etDvF
(

e−tz, etz
){

I + e−2t
[

DvF
(

e−tz, etz
)]−1

DuF
(

e−tz, etz
)}

= etDvF
(

e−tz, etz
)[

I − E(z, t)
]

,

(4.8)

where for each fixed (z, t) ∈ B × [0,∞), E(z, t) is the linear operator defined by

E(z, t) = −e−2t[DvF
(

e−tz, etz
)]−1[

DuF
(

e−tz, etz
)]

. (4.9)
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It is easy to see that E(z, t) = −G(e−tz, etz) for z ∈ B\{0} and t ≥ 0. Then

∥
∥E(0, t)

∥
∥ = e−2t

∥
∥
[

DvF(0, 0)
]−1[

DuF(0, 0)
]∥
∥ ≤ q, t ≥ 0, (4.10)

by (4.1). Also
∥
∥E(z, 0)

∥
∥ =

∥
∥G(z, z)

∥
∥ ≤ q, z ∈ B\{0}, (4.11)

by (4.2). Moreover, in view of the weak maximum modulus theorem for holomorphic
mappings and relation (4.3) (see also the proof of [15, Theorem 2]), we obtain that

∥
∥E(z, t)

∥
∥ ≤ max

‖w‖=1

∥
∥E(w, t)

∥
∥ = max

‖w‖=1

∥
∥
∥
∥
G

(

e−tw,
e−tw

‖e−tw‖2
)∥
∥
∥
∥
≤ q, z ∈ B\{0}, t > 0. (4.12)

Hence, taking into account the above relations, we deduce that
∥
∥E(z, t)

∥
∥ ≤ q, z ∈ B, t ≥ 0. (4.13)

On the other hand, using elementary computations, it is not difficult to deduce that

∂L

∂t
(z, t) = DL(z, t)

[

I − E(z, t)
]−1[

I + E(z, t)
]

(z), (4.14)

and thus L(z, t) satisfies the Loewner differential equation (2.9) with

h(z, t) =
[

I − E(z, t)
]−1[

I + E(z, t)
]

(z), z ∈ B, t ≥ 0. (4.15)

Also, in view of (4.13), and (3.19), we deduce that the mapping h(z, t) satisfies relations (3.3)
and (3.4) with

C =
1 − q

1 + q
, C1 =

1 + q

1 − q
. (4.16)

We now prove that limt→∞|a(t)| = ∞. Indeed, since

a(t)I = DL(0, t) = etDvF(0, 0)
[

I − E(0, t)
]

, (4.17)

it follows that

a(t)
[

I − E(0, t)
]−1 = etDvF(0, 0). (4.18)

Further, since

∥
∥
[

I − E(0, t)
]−1∥

∥ ≤ (

1 − ∥
∥E(0, t)

∥
∥
)−1 ≤ 1

1 − q
, t ≥ 0, (4.19)

we obtain in view of the above relations that
∣
∣a(t)

∣
∣ ≥ (1 − q)

∥
∥DvF(0, 0)

∥
∥et. (4.20)

Thus limt→∞|a(t)| = ∞, as desired.
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Now, we prove that L(·, t) is K∗-quasiregular for t ≥ 0, where K∗ is a positive constant.
Indeed, in view of (4.6), we obtain that

∥
∥DL(z, t)

∥
∥
n ≤ ent

∥
∥DvF

(

e−tz, etz
)∥
∥
n∥
∥I − E(z, t)

∥
∥
n

≤ ent(1 + q)n
∥
∥DvF

(

e−tz, etz
)∥
∥
n

≤ ent(1 + q)nK
∣
∣detDvF

(

e−tz, etz
)∣
∣

= (1 + q)nK

∣
∣detDL(z, t)

∣
∣

∣
∣det

[

I − E(z, t)
]∣
∣

≤
(
1 + q

1 − q

)n

K
∣
∣detDL(z, t)

∣
∣, z ∈ B, t ∈ [0,∞).

(4.21)

Hence L(·, t) is K∗-quasiregular for t ≥ 0, where K∗ = K(1 + q)n/(1 − q)n.
It remains to prove relations (3.1) and (3.2). Clearly, (3.2) is a direct consequence of

condition (iv) in Definition 2.5. On the other hand, taking into account (4.5), we obtain

∥
∥DL(z, t)

∥
∥ ≤ ∣

∣a(t)
∣
∣·∥∥[I − E(0, t)

]−1∥
∥·∥∥[DvF(0, 0)

]−1∥
∥·∥∥DvF

(

e−tz, etz
)∥
∥·∥∥I − E(z, t)

∥
∥

≤ 1 + q

1 − q

∣
∣a(t)

∣
∣

M
(

1 − ‖z‖)α
∥
∥
[

DvF(0, 0)
]−1∥

∥ =
M∗∣∣a(t)

∣
∣

(

1 − ‖z‖)α , z ∈ B, t ≥ 0.
(4.22)

Concluding the above arguments, we deduce that themapping L(z, t) satisfies the assumptions
of Theorem 3.1, and thus f(z) = L(z, 0) = F(z, z) extends to a quasiconformal homeomorphism
of R2n onto R

2n, as desired. This completes the proof.

We next obtain some particular cases of Theorem 4.1. The following result, due to
Pfaltzgraff [2], is the n-dimensional version of Becker’s quasiconformal extension result [1].

Theorem 4.2. Let q ∈ [0, 1) and let f : B → C
n be a normalized quasiregular holomorphic mapping

on B. If

(

1 − ‖z‖2)∥∥[Df(z)
]−1

D2f(z)(z, ·)∥∥ ≤ q, z ∈ B, (4.23)

then f extends to a quasiconformal homeomorphism of R2n onto itself.

Proof. Let F : B × C
n → C

n be given by F(u, v) = f(u) +Df(u)(v − u). Then F is of class C1 on
B × C

n and F(0, 0) = 0. Since f(z) = F(z, z), it suffices to prove that the mapping F satisfies
the assumptions of Theorem 4.1. First we prove that F satisfies conditions (P). Indeed, the
mapping

F
(

e−tz, etz
)

= f
(

e−tz
)

+
(

et − e−t
)

Df
(

e−tz
)

(z) (4.24)

is holomorphic on B for t ≥ 0. Also, since

DvF(u, v) = Df(u), DuF(u, v) = D2f(u)(v − u, ·), (4.25)
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we deduce that DvF(u, v) is invertible for all (u, v) ∈ B × C
n, and a(t) = et for t ≥ 0. Further

calculations yield that G(z, z) ≡ 0 and

G

(

z,
z

‖z‖2
)

=
(

1 − ‖z‖2)[Df(z)
]−1

D2f(z)(z, ·), z ∈ B\{0}. (4.26)

Hence, in view of (4.23), we deduce that relations (4.1), (4.2), and (4.3) hold.
It remains to prove relations (4.5) and (4.6). Since DvF(u, v) = Df(u), it follows by

arguments similar to those in the proof of [2, Theorem 2.4] that relations (4.5) and (4.6) are
fulfilled. This completes the proof.

The second particular case of Theorem 4.1 is the n-dimensional version of Ahlfors’ and
Becker’s quasiconformal extension result [8].

Theorem 4.3. Let f : B → C
n be a normalized quasiregular holomorphic mapping on B. If there exist

some constants q ∈ [0, 1) and c ∈ C, |c| ≤ q, such that

∥
∥c‖z‖2I + (

1 − ‖z‖2)[Df(z)
]−1

D2f(z)(z, ·)∥∥ ≤ q, z ∈ B, (4.27)

then f extends to a quasiconformal homeomorphism of R2n onto itself.

Proof. Let F : B × C
n → C

n be given by

F(u, v) = f(u) +
1

1 + c
Df(u)(v − u). (4.28)

We next apply arguments similar to those in the proof of Theorem 4.2 to deduce that the
mapping F satisfies the assumptions of Theorem 4.1. Indeed, since

DvF(u, v) =
1

1 + c
Df(u)

DuF(u, v) =
c

1 + c
Df(u) +

1
1 + c

D2f(u)(v − u, ·),
(4.29)

we obtain that DvF(u, v) is invertible for all (u, v) ∈ B × C
n, and

a(t) =
e−t + cet

1 + c
, t ≥ 0. (4.30)

On the other hand, it is not difficult to see that

G(u, v) =
〈u, v〉
‖v‖2

[

cI +
[

Df(u)
]−1

D2f(u)(v − u, ·)]. (4.31)

Hence G(z, z) = cI for z ∈ B, and

G

(

z,
z

‖z‖2
)

= c‖z‖2I + (

1 − ‖z‖2)[Df(z)
]−1

D2f(z)(z, ·), z ∈ B\{0}. (4.32)

Next, taking into account (4.27), we deduce that the relations (4.1), (4.2), and (4.3) hold.
Finally, using the fact that DvF(u, v) = Df(u)/(1 + c), we obtain the relations (4.5) and

(4.6), by using arguments similar to those in [5, 8]. The proof is now complete.
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The following result was obtained by Ren and Ma [18] (see also [6, 9]; compare with
[19]).

Theorem 4.4. Let f, g : B → C
n be normalized holomorphic mappings such that g is quasiregular on

B. Assume that there exists q ∈ [0, 1) such that

∥
∥
[

Dg(z)
]−1

Df(z) − I
∥
∥ ≤ q, z ∈ B,

∥
∥‖z‖2∥∥{[Dg(z)

]−1
Df(z) − I

}

+
(

1 − ‖z‖2)[Dg(z)
]−1

D2g(z)(z, ·)∥∥ ≤ q,
(4.33)

for all z ∈ B. Then f extends to a quasiconformal homeomorphism of R2n onto itself.

Proof. Let F : B × C
n → C

n be given by

F(u, v) = f(u) +Dg(u)(v − u). (4.34)

Since

DvF(u, v) = Dg(u),

DuF(u, v) = Df(u) −Dg(u) +D2g(u)(v − u, ·),
(4.35)

it follows that DvF(u, v) is invertible for (u, v) ∈ B × C
n, and a(t) = et for t ≥ 0.

On the other hand, straightforward computations yield that

G(u, v) =
〈u, v〉
‖v‖2

[[

Dg(u)]−1Df(u) − I +
[

Dg(u)
]−1

D2g(u)(v − u, ·)]. (4.36)

The previous equality implies that

G(z, z) =
[

Dg(z)
]−1

Df(z) − I, z ∈ B,

G

(

z,
z

‖z‖2
)

= ‖z‖2[Dg(z)
]−1

Df(z) − I
]

+
(

1 − ‖z‖2)[Dg(z)
]−1

D2g(z)(z, ·),
(4.37)

for z ∈ B\{0}. Next, taking into account (4.33), we deduce that the relations (4.1), (4.2), and
(4.3) are fulfilled. Finally, since DuF(u, v) = Dg(u), we obtain the relations (4.5) and (4.6), by
using arguments similar to those in [5, 9, 19]. This completes the proof.

5. The asymptotical case of Theorem 4.1

Let F = F(u, v) be the mapping which satisfies the assumptions of Definition 2.5. In this section
we prove that under certain assumptions the mapping f(z) = F(z, z) can be extended to a
quasiconformal homeomorphism of R2n onto itself. To this end, we need the following result
due to the authors [14, Theorem 2.2] (cf. [6, Theorem 3.1]).

Lemma 5.1. Let a : [0, η] → C be a function of class C1 such that a(0) = 1, a(t) /= 0, and
R[a′(t)/a(t)] > 0 for t ∈ [0, η]. Let h = h(z, t) : B × [0, η] → C

n be such that h(·, t) ∈
N, Dh(0, t) = (a′(t)/a(t))I for t ∈ [0, η], and h(z, ·) is measurable on [0, η] for z ∈ B. Also let
L(z, t) = a(t)z+ · · · be a mapping such that L(·, t) ∈ H(B), L(0, t) = 0, DL(0, t) = a(t)I, and L(z, ·)
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is absolutely continuous on [0, η] locally uniformly with respect to z ∈ B. Suppose that L(z, t) satisfies
the differential equation

∂L

∂t
(z, t) = DL(z, t)h(z, t), a.e. t ∈ [0, η], ∀z ∈ B. (5.1)

Moreover, assume that L(·, 0) is continuous and injective on B. Also assume that the following
conditions hold.

(i) There exist some constantsM > 0 and k ∈ [0, 1) such that

∥
∥DL(z, t)

∥
∥ ≤ M

∣
∣a(t)

∣
∣

(

1 − ‖z‖)k
, z ∈ B, t ∈ [0, η]. (5.2)

(ii) There exists a constant c1 > 0 such that

R
〈

h(z, t), z
〉 ≥ c1‖z‖2, z ∈ B, t ∈ [0, η]. (5.3)

(iii) There exists a constant c2 > 0 such that

∥
∥h(z, t)

∥
∥ ≤ c2, z ∈ B, t ∈ [0, η]. (5.4)

(vi) There exists a constant K > 0 such that f(·, t) is K-quasiregular for each t ∈ [0, η].

Then there exists a quasiconformal homeomorphism F of R2n onto itself such that F|B = L(·, 0).

Taking into account Lemma 5.1, we may prove the following asymptotical case of
Theorem 4.1:

Theorem 5.2. Let q ∈ (0, 1) and let F = F(u, v) be a mapping which satisfies conditions (P) in
Definition 2.5. Assume that F(z, z) is continuous and injective on B. Also, assume that

∥
∥
[

DvF(0, 0)
]−1[

DuF(0, 0)
]∥
∥ ≤ q,

∥
∥G(z, z)

∥
∥ ≤ q, z ∈ B\{0},

(5.5)

and there exists r ∈ (0, 1) such that

∥
∥
∥
∥
G

(

z,
z

‖z‖2
)∥
∥
∥
∥
≤ q, r ≤ ‖z‖ < 1, (5.6)

where G(u, v) is the mapping given by (4.4). Moreover, assume that there exist some constantsM > 0,
K ≥ 1 and α ∈ [0, 1) such that conditions (4.5) and (4.6) hold. Then the mapping f(z) = F(z, z)
extends to a quasiconformal homeomorphism of R2n onto itself.
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Proof. Let η = − ln r and let L : B × [0, η] → C
n be given by

L(z, t) = F
(

e−tz, etz
)

, z ∈ B, t ∈ [0, η]. (5.7)

We prove that L(z, t) satisfies the assumptions of Lemma 5.1.
Indeed, the differentiability and the local absolute continuity properties of L(z, t) are

clear. As in the proof of Theorem 4.1, let E(z, t) be the linear operator

E(z, t) = −e−2t[DvF
(

e−tz, etz
)]−1

DuF
(

e−tz, etz
)

, z ∈ B, t ≥ 0. (5.8)

Then E(z, t) = −G(e−tz, etz) for z ∈ B\{0} and t ≥ 0. Hence

∥
∥E(z, 0)

∥
∥ ≤ q, z ∈ B, (5.9)

by (5.5). Moreover, using the weak maximum modulus theorem for holomorphic mappings
and condition (5.6), we obtain that

∥
∥E(z, t)

∥
∥ ≤ max

‖w‖=1

∥
∥E(w, t)

∥
∥ ≤ q, z ∈ B, t ∈ (0, η]. (5.10)

Therefore

∥
∥E(z, t)

∥
∥ ≤ q, z ∈ B, t ∈ [0, η]. (5.11)

On the other hand, if

h(z, t) =
[

I − E(z, t)
]−1[

I + E(z, t)
]

(z), z ∈ B, t ∈ [0, η], (5.12)

then

∂L

∂t
(z, t) = DL(z, t)h(z, t), a.e. t ∈ [0, η], ∀z ∈ B. (5.13)

Finally, it suffices to apply similar arguments as in the proof of Theorem 4.1 to deduce that the
assumptions of Lemma 5.1 hold.

We next obtain the following particular cases of Theorem 5.2. The first result is the
asymptotical case of Theorem 4.2. This result was obtained by Hamada and Kohr [6]. In the
case of one complex variable, see [20, Satz 4 ].

Corollary 5.3. Let f : B → C
n be a normalized quasiregular holomorphic mapping on B and con-

tinuous and injective on B. If

lim sup
‖z‖→1−0

(

1 − ‖z‖2)∥∥[Df(z)
]−1

D2f(z)(z, ·)∥∥ < 1, (5.14)

then f extends to a quasiconformal homeomorphism of R2n onto itself.

Proof. It suffices to apply arguments similar to those in the proof of Theorem 4.2 to show that
the mapping F(u, v) = f(u) +Df(u)(v − u) satisfies the assumptions of Theorem 5.2.
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Remark 5.4. In view of condition (5.14), we have (compare [3, Theorem 2.4])

(

1 − ‖z‖2)∥∥[Df(z)
]−1

D2f(z)(z, ·)∥∥ ≤ q, r ≤ ‖z‖ < 1, (5.15)

for some r ∈ (0, 1) and q ∈ [0, 1).

The second result due to the authors [14]may be considered the asymptotical case of the
n-dimensional version of Ahlfors’ and Becker’s quasiconformal extension result [20].

Corollary 5.5. Let f : B → C
n be a normalized quasiregular holomorphic mapping on B and con-

tinuous and injective on B. If there exist some constants q ∈ [0, 1), c ∈ C, |c| ≤ q, and r ∈ (0, 1) such
that

∥
∥c‖z‖2I + (

1 − ‖z‖2)[Df(z)
]−1

D2f(z)(z, ·)∥∥ ≤ q, r ≤ ‖z‖ < 1, (5.16)

then f extends to a quasiconformal homeomorphism of R2n onto itself.

Proof. It suffices to apply arguments similar to those in the proof of Theorem 4.3 to show that
the mapping F(u, v) = f(u)+ (1/(1+c))Df(u)(v−u) satisfies the assumptions of Theorem 5.2.
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