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1. Introduction

LetΩ be a bounded domain in R
n, and let f be a nonnegative, nondecreasing, andC1 function

on R
+.
We study here the asymptotic boundary behaviour of solutions for the problem

Δp(x)u = g(x)f(u), x ∈ Ω, u(x) −→ ∞, as dist (x, ∂Ω) −→ 0, (1.1)

where Ω ⊆ R
n is a bounded domain with C2 boundary. In additional conditions, the

uniqueness of solutions is also discussed. For further details, see [1, 2].
Here, Δp(x)u := div(|∇u(x)|p(x)−2∇u(x)) is the p(x)-Laplacian, a function defined on

R
n with 1 < p(x) < ∞.

First, Bieberbach in [3], considered the problem

Δu = g(x)f(u), x ∈ Ω, u(x) −→ ∞, as dist (x, ∂Ω) −→ 0. (1.2)

He shows that (1.2) admits a unique solution if Ω is a smooth planar domain, f is the
exponential function, and g is constant 1. Rademacher [4] extended the results to the three-
dimensional domains; Keller [5] and Osserman [6] gave a necessary and sufficient conditions
to solve the problem (1.2) in the n-dimensional case if the domain satisfies inner and outer
sphere conditions.
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Bandle and Marcus [7] found the boundary asymptotic of solutions for (1.2), when g
is continuous and positive, and f satisfies f(mt) ≤ m1+αf(t) for all 0 < m < 1 and all t ≥ t0/m.
Cı̂rstea and Rădulescu [8–10] prove the uniqueness and asymptotic behavior of solutions for
problem (1.2), when f is regularly varying, and g ∈ C0,α(Ω) is a nonnegative function which
is allowed to vanish on the boundary.

In the study of p-Laplacian equations, the main difficulty arises from the lack of
compactness, but here the p(x)-Laplacian possesses more complicated inhomogeneous
nonlinearities, so we need some special techniques. Problems of this type arise in many
areas of applied physics including nuclear physics, field theory, solid waves, and problems of
false vacuum. Zhang in [11] gives the existence and singularity of blowup solutions for the
problem

−Δp(x)u + h(x, u) = 0, x ∈ Ω, u(x) −→ ∞, as dist (x, ∂Ω) −→ 0, (1.3)

where Ω = B(0, R) ⊂ R
N, p(x) and f(x, u) satisfy the following.

(H1) p(x) ∈ C1(Ω) is a radial symmetric function and satisfies

1 < p− ≤ p+ < N, where p− = inf
Ω

p(x), p+ = sup
Ω

p(x). (1.4)

(H2) h(x, u) is radial with respect to x, h(x, ·) is increasing, and h(x, 0) = 0 for any x ∈ Ω.

(H3) h : Ω × R → R is a continuous function and satisfies

|f(x, t)| ≤ C1 + C2|t|α(x)−1, for every (x, t) ∈ Ω × R, C1 ≥ 0, C2 ≥ 0, α ∈ C(Ω),

1 ≤ α(x) < p∗(x) :=
Np(x)

N − p(x)
.

(1.5)

2. Preliminaries

We recall in what follows some definitions and basic properties of the generalized Lebesgue-
Sobolev spaces Lp(x)(Ω),W1,p(x)(Ω), andW

1,p(x)
0 (Ω), where Ω is an open subset of R

n. In that
context, we refer to the book of Musielak [12] and the papers of Kováčik and Rákosnı́k [13]
and Fan et al. [14–16].

Set

L∞
+ (Ω) =

{
h; h ∈ L∞(Ω), ess inf

x∈Ω
h(x) > 1 ∀x ∈ Ω

}
. (2.1)

For any h ∈ L∞
+ (Ω), we define

h+ = ess sup
x∈Ω

h(x), h− = ess inf
x∈Ω

h(x). (2.2)

For any p(x) ∈ L∞
+ (Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =
{
u; u is a measurable real-valued function such that

∫

Ω
|u(x)|p(x) dx < ∞

}
.

(2.3)
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We define a norm, the so-called Luxemburg norm, on this space by the formula

|u|p(x) = inf
{
μ > 0;

∫

Ω

∣∣∣∣
u(x)
μ

∣∣∣∣
p(x)

dx ≤ 1
}
. (2.4)

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many
respects: they are Banach spaces [13, Theorem 2.5], the Hölder inequality holds [13, Theorem
2.1], they are reflexive if and only if 1 < p− ≤ p+ < ∞ [13, Corollary 2.7], and continuous
functions are dense if p+ < ∞ [13, Theorem 2.11]. The inclusion between Lebesgue spaces
also generalizes naturally [13, Theorem 2.8]. If 0 < |Ω| < ∞ and r1, r2 are variable exponents
so that r1(x) ≤ r2(x) almost everywhere in Ω, then there exists the continuous embedding
Lr2(x)(Ω) ↪→ Lr1(x)(Ω), whose norm does not exceed |Ω| + 1.

We denote by Lp
′
(x)(Ω) the conjugate space of Lp(x)(Ω), where 1/p(x) + 1/p

′
(x) = 1.

For any u ∈ Lp(x)(Ω) and v ∈ Lp
′
(x)(Ω), the Hölder type inequality

∣∣∣∣
∫

Ω
uv dx

∣∣∣∣ ≤
(

1
p−

+
1
p′−

)
|u|p(x)|v|p′(x) (2.5)

holds true.
An important role in manipulating the generalized Lebesgue-Sobolev spaces is played

by the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω) → R defined by

ρp(x)(u) =
∫

Ω
|u|p(x) dx. (2.6)

If u ∈ Lp(x)(Ω) and p+ < ∞, then the following relations hold true:

|u|p(x) > 1 =⇒ |u|p−
p(x) ≤ ρp(x)(u) ≤ |u|p+

p(x),

|u|p(x) < 1 =⇒ |u|p+
p(x) ≤ ρp(x)(u) ≤ |u|p−

p(x),

|un − u|p(x) −→ 0 ⇐⇒ ρp(x)(un − u) −→ 0.

(2.7)

Next, we define the variable Sobolev space:

W1,p(x)(Ω) = {u ∈ Lp(x)(Ω); |∇u| ∈ Lp(x)(Ω)}. (2.8)

On W1,p(x)(Ω), we may consider one of the following equivalent norms:

‖u‖p(x) = |u|p(x) + |∇u|p(x), (2.9)

or

|‖u‖| = inf
{
μ > 0;

∫

Ω

(∣∣∣∣
∇u(x)

μ

∣∣∣∣
p(x)

+
∣∣∣∣
u(x)
μ

∣∣∣∣
p(x))

dx ≤ 1
}
. (2.10)

We also defineW1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) inW1,p(x)(Ω). Assuming p− > 1, the spaces

W1,p(x)(Ω) and W
1,p(x)
0 (Ω) are separable and reflexive Banach spaces.
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Set

Ip(x)(u) =
∫

Ω
(|∇u|p(x) + |u|p(x))dx. (2.11)

For all u ∈ W
1,p(x)
0 (Ω), the following relations hold true:

‖u‖ > 1 =⇒ ‖u‖p− ≤ Ip(x)(u) ≤ ‖u‖p+ ,

‖u‖ < 1 =⇒ ‖u‖p+ ≤ Ip(x)(u) ≤ ‖u‖p− .
(2.12)

Finally, we remember some embedding results regarding variable exponent Lebesgue-
Sobolev spaces. For the continuous embedding between variable exponent Lebesgue-Sobolev
spaces we refer to [15, Theorem 1.1]. If p : Ω → R is Lipschitz continuous and p+ < N, then
for any q ∈ L∞

+ (Ω) with p(x) ≤ q(x) ≤ Np(x)/(N − p(x)), there is a continuous embedding
W1,p(x)(Ω) ↪→ Lq(x)(Ω). In what concerns the compact embedding, we refer to [15, Theorem
1.3]. If Ω is a bounded domain in R

n, p(x) ∈ C(Ω), p+ > N, then for any q(x) ∈ L∞
+ (Ω)

with ess infx∈Ω((Np(x)/(N − p(x))) − q(x)) > 0 there is a compact embedding W1,p(x)(Ω) ↪→
Lq(x)(Ω).

Our aim is to find the asymptotic boundary behaviour to the problem

Δp(x)u = g(x)f(u), x ∈ Ω, u(x) −→ ∞, as dist (x, ∂Ω) −→ 0. (2.13)

Suppose p ∈ L∞
+ and limdist(x,∂Ω)→0p(x) = p#. Consider g ∈ C(Ω) nonnegative, and f

satisfies

f ∈ C1([0,∞)), f(0) = 0, f(t) > 0 , and f is nondecreasing on (0,∞), (2.14)
∫∞

1

1

(F(t))1/p
# dt < ∞, where F(t) :=

∫ t

0
f(s)ds. (2.15)

We will refer to condition (2.15) as the generalized Keller-Osserman condition. Allow
g to be unbounded on Ω or to vanish on ∂Ω.

3. Boundary asymptotic and uniqueness

Let f satisfy the Keller-Osserman condition. Consider ψ as a function defined on (0,∞) such
that

ψ(t) =
∫∞

t

1

(q#F(s))1/p
# ds, (3.1)

where q# is the Holder conjugate of p#, that is, 1/q# + 1/p# = 1. The function ψ is decreasing
so ψ has an inverse φ : (0, ψ(0+)) → (0,∞). Moreover, φ is a decreasing function with
limt→0+φ(t) = ∞, and some computations give us

φ′(t) = (ψ−1(t))′ = −(q#F(φ(t)))1/p
#

, |φ′(t)|p#−2φ′′(t) =
q#

p#
f(φ(t)). (3.2)
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Now we will see that

− φ′(t)
φ′′(t)

=
p#

q#
(q#F(φ(t)))1/q

#

f(φ(t))
. (3.3)

Definition 3.1. A positive measurable function defined on [a,∞), for some a > 0 is said to be
regularly varying (at infinity) of index q ∈ R, written f ∈ RVq, provided that

lim
z→∞

f(tz)
f(z)

= tq ∀t > 0. (3.4)

Remark 3.2. Let f ∈ RVσ+1 (σ + 2 > p) be a nondecreasing and continuous function. Then,
F ∈ RVσ+2 and therefore F−1/p ∈ RV(−σ−2)/p. Since (−σ − 2)/p < −1, the observation made
in [1] allows us to conclude that F−1/p ∈ L1([1,∞)) and hence f satisfies the generalized
Keller-Osserman condition.

Remark 3.3. Let f ∈ RVσ+1. By the change of variable s = tz, we infer that

F(z) =
∫z

0
f(s)ds =

∫1

0
zf(tz)dt. (3.5)

Because f ∈ RVσ+1 is continuous, there exists an ε > 0 such that for every z > ε we
have (f(tz)/f(z)) ≤ tσ+1 + 1. Hence, using Lebesgue’s dominated convergence theorem, the
limit shifts with the integral and so

lim
z→∞

F(z)
zf(z)

=
∫1

0
lim
z→∞

f(tz)
f(z)

dt =
∫1

0
tσ+1dt =

1
σ + 2

. (3.6)

Lemma 3.4. Consider f satisfies the Keller-Osserman condition, then one has

lim
s→∞

(F(s))1/q
#

f(s)
= 0. (3.7)

Proof. We sketch the proof only in the context of regularly varying functions. For
further details regarding general case, see [17]. Let f ∈ RVσ+1 (σ > p# − 2). From
f(z)/F(z) = (1/z)(zf(z)/F(z)) and using limz→∞(F(z)/zf(z)) = 1/(σ + 2), then there
exists a constant C > 0 such that limz→∞(F(z)/zσ+2) = C. Finally, limz→∞(f(z)/zσ+1) =
limz→∞(F(z)/zσ+2)(zf(z)/F(z)) = C(σ + 2). It remains to consider the limit

lim
z→∞

F(z)1/q
#

f(z)
= lim

z→∞
(F(z)/zσ+2)1/q

#

f(z)/zσ+1
z−(1/p

#)(σ+2)+1 = 0, (3.8)

because −(1/p#)(σ + 2) + 1 < 0.
Another way to prove the lemma is to consider the derivative

((F(s))1/p
#
)
′
=

1
p#

f(z)(F(z))−1/q
#
> 0. (3.9)

If ((F(s))1/p
#
)
′
is bounded then there exists M > 0 such that 0 < ((F(s))1/p

#
)
′
<

M, ∀t > 1. By integrating from 1 to t, it follows that 0 < (F(s))1/p
#

< Mt and also
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1/Mt < 1/(F(s))1/p
#
< ∞, ∀t > 1. If we integrate again from 1 to∞, we obtain a contradiction

with the Keller-Osserman condition.
In conclusion, the derivative of (F(s))1/q

#
is unbounded.

Using L’Hospitals rule, we should obtain much more

lim
z→∞

F(z)1/q
#

z
= ∞. (3.10)

The following lemma will be useful later; see [1].

Lemma 3.5. Let q# ∈ R be the Holder conjugate of p# > 1. If f ∈ RVσ+1 (σ > p# − 2), then
limz→∞((F(z))

1/q#/f(z)
∫∞
z (F(s))−1/p

#
ds) = ((σ + 2 − p#)/p#(2 + σ)).

Proof. By applying L’Hospitals rule, we obtain

lim
z→∞

z(F(z))−1/p
#

∫∞
z (F(s))−1/p

#
ds

= lim
z→∞

(
1
p#

zf(z)
F(z)

− 1
)

=
σ + 2 − p#

p#
. (3.11)

In conclusion,

lim
z→∞

(F(z))1/q
#

f(z)
∫∞
z (F(s))−1/p

#
ds

= lim
z→∞

z(F(z))−1/p
#

∫∞
z (F(s))−1/p

#
ds

F(z)
zf(z)

=
σ + 2 − p#

p#(2 + σ)
. (3.12)

Corollary 3.6. Let f ∈ RVσ+1 (σ > p#) be a continuous function. Then,

lim
t→0

|φ′(t)|p#−2φ′(t)
tf(φ(t))

= −q
#

p#
σ + p# − 2

σ + 2
. (3.13)

Proof. See [1, Corollary 3.2].

We say that u ∈ W
1,p(x)
loc (Ω) is a continuous local weak solution to the equationΔp(x)u =

g(x)f(u) on the domain Ω if and only if
∫

D

|∇u|p(x)−2∇u∇ϕdx = −
∫

D

g(x)f(u(x))ϕdx, ϕ ∈ W
1,p(x)
0 (D), (3.14)

for every subdomain D � Ω.

Define L : W1,p(x)(Ω) → (W1,p(x)
0 (Ω))

∗
as

〈Lu, ϕ〉 =
∫

Ω
|∇u|p(x)−2∇u∇ϕdx +

∫

Ω
g(x)f(u(x))ϕdx, (3.15)

for every u ∈ W1,p(x)(Ω), v ∈ W
1,p(x)
0 (Ω).

Lemma 3.7 (Comparison principle). Let u, v ∈ W1,p(x)(Ω) satisfy Lu − Lv ≥ 0 in (W1,p(x)
0 (Ω))

∗

and consider ϕ(x) = min{u(x) − v(x), 0}. If ϕ(x) ∈ W
1,p(x)
0 (Ω) (i.e., u ≥ v on ∂Ω), then u ≥ v a.e.

in Ω.

Proof. See [18].
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Remark 3.8. L defined below satisfy the condition from [18]. Here, we use Lu ≥ Lv in the form
∫

Ω
|∇v|p(x)−2∇v∇ϕdx +

∫

Ω
g(x)f(v(x))ϕdx ≤

∫

Ω
|∇u|p(x)−2∇u∇ϕdx +

∫

Ω
g(x)f(u(x))ϕdx.

(3.16)

Given a real number b, let Λb be the class of all positive monotonic functions k ∈
L1(0, ν) ∩ C1(0, ν) that satisfy

lim
t→0

(∫ t

0

k(s)
k(t)

ds

)′
= b. (3.17)

We will let Λ stand for the union of all Λb as b ranges over [0,∞). For k ∈ Λ, we use the
notation λ(t) =

∫ t
0 k(s)ds.

Remark 3.9. Observe that limt→0+
∫ t
0(k(s)/k(t))ds = 0 for any k ∈ Λ. Moreover, in (3.17),

0 ≤ b ≤ 1 if k is nondecreasing and b ≥ 1 if k is nonincreasing. This is true because∫ t
0(k(s)/k(t))ds = (1/k(t))

∫ t
0 k(s)ds = t(k(ξ)/k(t)), for an ξ ∈ (0, t).

Let z be a C2 function on a domain Ω in R
n, f satisfies the Keller-Osserman condition

and v = φ(z).
A direct computation show that

Δp(x)v = (p(x) − 1)|φ′(z)|p(x)−2φ′′(z)|∇z|p(x) + |φ′(z)|p(x)−2φ′(z)Δp(x)z

+ |φ′(z)|p(x)−1 ln(|φ′(z)|)|∇z|p(x)−2∇p(x)∇z(x).
(3.18)

Theorem 3.10. Suppose f ∈ RVσ+1, (σ ≥ p# − 2) satisfies (2.14). Let Ω ⊆ R
n be a bounded C2

domain and let g ∈ C(Ω) be a nonnegative function such that

lim
d(x)→0

g(x)

[k(d(x))]p(x)
= A (3.19)

for some positive constant A and some k ∈ Λb. Then, any local weak solution u of (2.13) satisfies

lim
d(x)→0

u(x)
φ(λ(d(x)))

=
[
p# + b(2 + σ − p#)

A(2 + σ)

]1/(2+σ−p#)
. (3.20)

Proof. Consider ρ > 0 and

Ωρ := {x ∈ Ω : 0 < d(x) < ρ}. (3.21)

We know that Ω is a C2 bounded domain, so there exists positive constant μ,
depending only on Ω, such that

d ∈ C2(Ωμ), |∇d| ≡ 1 on Ωμ, (3.22)

where d(x) = dist(x, ∂Ω). The existence of such a constant is given by the smoothness of the
domain Ω. For ρ ∈ Γ := (0, μ/2), let

Ω−
ρ := Ωμ \Ωρ, Ω+

ρ := Ωμ−ρ. (3.23)
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The proof concerns two cases which discuss the monotonicity of the function k.
In the first case, we take k ∈ Λb for some b and k nonincreasing on (0, ν) for some

ν > 0. Without loss of generality, we can consider ν > μ.
Let

z±(x) := λ(d(x)) ± λ(ρ), for x ∈ Ω±
ρ . (3.24)

Some computations give us

|∇z±|p(x) = kp(x)(d)|∇d|p(x),

Δp(x)z
± = (p(x) − 1)kp(x)−2(d)k′(d)|∇d|p(x) + kp(x)−1(d)Δp(x)d

+ kp(x)−1(d) ln(k(d))|∇d|p(x)−2∇p(x)∇d(x).

(3.25)

Using these computations in (3.18)with v± = φ(z±), we find that

Δp(x)v
± = (p(x) − 1)|φ′(z±)|p(x)−2φ′′(z±)|∇z±|p(x) + |φ′(z±)|p(x)−2φ′(z±)Δp(x)z

±

+ |φ′(z±)|p(x)−1 ln(|φ′(z±)|)|∇z±|p(x)−2∇p(x)∇z±(x)

= (p(x) − 1)kp(x)(d)|φ′(z±)|p(x)−2φ′′(z±)|∇d|p(x)

+ (p(x) − 1)kp(x)−2(d)k′(d)|φ′(z±)|p(x)−2φ′(z±)|∇d|p(x)

+ kp(x)−1(d)|φ′(z±)|p(x)−2φ′(z±)Δp(x)d

+ kp(x)−1(d) ln(k(d))|∇d|p(x)−2∇p(x)∇d(x)|φ′(z±)|p(x)−2φ′(z±)

+ kp(x)−1(d)|∇d|p(x)−2∇p(x)∇d(x)|φ′(z±)|p(x)−1 ln(|φ′(z±)|).

(3.26)

Given 0 < ε < A/2, we define two numbers ϑ± by

ϑ± :=
[
p# + b(2 + σ − p#)
(A ± 2ε)(2 + σ)

]1/(2+σ−p#)
, (3.27)

where A is the limit in (3.19).
Let w±(x) = ϑ±φ(z±(x)), x ∈ Ω±

ρ . For simplicity, let Lz := −Δp(x)z + g(x)f(z).
In order to apply the comparison principle, we have to prove that for ρ ∈ Γ and μ ≥ 0

sufficiently small, we have

Lw− ≥ 0 on Ω−
ρ , Lw+ ≤ 0 on Ω+

ρ . (3.28)

From (3.26), recalling that p(x) − 1 = p(x)/q(x) and |∇d| = 1 on Ωμ, we find

Lw± = g(x)f(w±) −Δp(x)(w±)

Lw± = (ϑ±)p(x)−1kp(x)(d)f(φ(z±))

×
(

g(x)f(ϑ±φ(z±)

(ϑ±)p(x)−1kp(x)(d)f(φ(z±))
+D±

1 (x) +D±
2 (x) +D±

3 (x) +D±
4 (x)

)
,

(3.29)
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where

D±
1 (x) = −|φ

′(z±)|p(x)−2φ′(z±)
k(d)f(φ(z±))

Δp(x)d,

D±
2 (x) = −p(x)

q(x)
k′(d)
k2(d)

|φ′(z±)|p(x)−2φ′(z±)|∇d|p(x)
f(φ(z±))

,

D±
3 (x) = −p(x)

q(x)
|φ′(z±)|p(x)−2φ′′(z±)

f(φ(z±))
,

D±
4 (x) = −|φ

′(z±)|p(x)−2(φ′(z±) ln (k(d)ϑ±) + ∣∣φ′(z±)∣∣ ln (∣∣φ′(z±)∣∣))

k(d)f
(
φ
(
z±

)) |∇d|p(x)−2∇p(x)∇d(x).

(3.30)

Recalling that φ′ < 0 and z±(x) ≤ 2λ(d(x)), we infer

|D±
1 (x)| = −|φ

′(z±)|p(x)−2φ′(z±)
k(d)f(φ(z±))

|Δp(x)d|

≤ −2λ(d(x))
k(d(x))

|φ′(z±)|p(x)−2φ′(z±)
z±(x))f(φ(z±))

|Δp(x)d|.
(3.31)

Since d ∈ C2(Ωμ), limdist(x,∂Ω)→0p(x) = p#, by Lemma 3.5 and Remark 3.9 from below,
we obtain

lim
Ω±

ρ×Γ�(d(x),ρ)→(0+,0+)
D±

1 (x) = 0. (3.32)

Using limdist(x,∂Ω)→0p(x) = p# and Corollary 3.2, we have

lim
Ω±

ρ×Γ�(d(x),ρ)→(0+,0+)

|φ′(z±)|p(x)−2φ′(z±)
z±(x))f(φ(z±))

= −q
#

p#
σ + 2 − p#

σ + 2
. (3.33)

With the same argument, we obtain

|D±
4 (x)| ≤ 2

λ(d(x))
k(d(x))

ln
k(d)ϑ±

φ′(z±)
|φ′(z±)|p(x)−2φ′(z±)
z±(x))f(φ(z±))

. (3.34)

Next, we prove

lim
Ω±

ρ×Γ�(d(x),ρ)→(0+,0+)

λ(d(x))
k(d(x))

ln
k(d)ϑ±

|φ′(z±)| = 0. (3.35)

Recall that

φ′(z) = −(q#F(φ(z)))1/p
#

= −(q#)1/p
#

A(z)φ(z)(σ+2)/p
#
, (3.36)

where A(z) = (F(φ(z))/φ(z)σ+2)1/p
#
.
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If we integrate from 0 to t, we obtain

φ(t)−α+1

−α + 1
= −(q#)1/p

#
∫ t

0
A(s)ds, (3.37)

where α = (σ + 2)/p# > 1. Here, when x → 0, we have d(x) → ρ and z±(x) → 0.
Dividing by t and taking to the limit, we have

lim
t→0

φ(t)−α+1

t
= C, (3.38)

where C is a suitable positive constant.
From (3.36), it follows that limt→0(φ(t)/tβ) = −C1, where β = (1/(−α+1))((σ+2)/p#) <

0, and C1 is a positive suitable constant.
Now, it will be easy to infer that

lim
Ω±

ρ×Γ�(d(x),ρ)→(0+,0+)

λ(d(x))
k(d(x))

ln
k(d)ϑ±

|φ′(z±)| = lim
Ω±

ρ×Γ�(d(x),ρ)→(0+,0+)

λ(d(x))
k(d(x))

ln
k(d)ϑ±

|λβ(z±)|

= lim
t→0

ln(k(t)/λβ(t))
k(t)/λ(t)

= 0.

(3.39)

Finally, limΩ±
ρ×Γ�(d(x),ρ)→(0+,0+)D

±
4 (x) = 0.

Since k is nonincreasing, we have k′(d)z− ≥ k′(d)λ(d) and k′(d)z+ ≤ k′(d)λ(d).
Therefore,

D−
2 +D−

3 = −p(x)
q(x)

k′(d)
k2(d)

|φ′(z±)|p(x)−2φ′(z±)
f(φ(z±))

− p(x)
q(x)

|φ′(z−)|p(x)−2φ′′(z−)
f(φ(z−))

≥ −p(x)
q(x)

k′(d)λ(d)
k2(d)

|φ′(z±)|p(x)−2φ′(z±)
z−f(φ(z±))

− p(x)
q(x)

|φ′(z−)|p(x)−2φ′′(z−)
f(φ(z−))

= D̃−
2 +D−

3 ,

(3.40)

and similarly D+
2 +D+

3 ≤ D̃+
2 +D+

3 .
From (3.19), we see that corresponding to ε, there is 0 < δε < A/2 such that

(A − ε)kp(x)(d(x)) ≤ g(x) ≤ (A + ε)kp(d(x)), 0 < d(x) < δε. (3.41)

Suppose that the constant μ in (3.22) is chosen such that μ < δε. Using (3.40) in the left
side of the inequality (3.29), we get

Lw− ≥ (ϑ−)p(x)−1kp(x)(d)f(φ(z−))
(
(A − ε)f(ϑ−φ(z−)

(ϑ−)p(x)−1f(φ(z−))
+D−

1 (x) + D̃−
2 (x) +D−

3 (x) +D−
4 (x)

)
.

(3.42)

Using the same method, we obtain

Lw+ ≤ (ϑ+)p(x)−1kp(x)(d)f(φ(z+))
(
(A + ε)f(ϑ+φ(z+)

(ϑ+)p(x)−1f(φ(z+))
+D+

1 (x) + D̃+
2 (x) +D+

3 (x) +D+
4 (x)

)
.

(3.43)
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From (3.2), we infer

lim
Ω±

ρ×Γ�(d(x),ρ)→(0+,0+)
− p(x)
q(x)

|φ′(z±)|p(x)−2φ′′(z±)
f(φ(z±))

= −1. (3.44)

By Lemma 3.5, we have

lim
Ω±

ρ×Γ�(d(x),ρ)→(0+,0+)
D̃±

2 (x) +D±
3 (x) = −p

# + b(2 + σ − p#)
2 + σ

. (3.45)

Thus, asΩ±
ρ ×Γ � (d(x), ρ) → (0+, 0+), the expression in the bracket of (3.42) converges

to

(A − ε)(ϑ−)2+σ−p
# − p# + b(2 + σ − p#)

2 + σ
=
[
A − ε

A − 2ε
− 1

]
p# + b(2 + σ − p#)

2 + σ
> 0, (3.46)

and the expression in the bracket of (3.43) converges to

(A + ε)(ϑ+)2+σ−p
# − p# + b(2 + σ − p#)

2 + σ
=
[
A + ε

A + 2ε
− 1

]
p# + b(2 + σ − p#)

2 + σ
< 0. (3.47)

Therefore, for ρ ∈ Γ and μ ≥ 0 sufficiently small, we conclude that

Lw− ≥ 0 on Ω−
ρ , Lw+ ≤ 0 on Ω+

ρ . (3.48)

Thus,

−Δpw
− ≥ −g(x)f(w−) on Ω−

ρ ,

−Δpw
+ ≤ −g(x)f(w+) on Ω+

ρ .
(3.49)

Suppose now that k is nondecreasing. Given 0 < ε < A/2, from (3.19) we deduce

(A − ε)kp(x)(d(x) − ρ) ≤ (A − ε)kp(x)(d(x)) ≤ g(x) ≤ (A + ε)kp(x)(d(x))

≤ (A + ε)kp(x)(d(x) + ρ).
(3.50)

Consider

w±(x) = ϑ±φ(λ(d(x) ± ρ)) = ϑ±φ(y±) for x ∈ Ω±
ρ . (3.51)

Here, y±(x) := λ(d(x) ± ρ). For simplicity, we will use d± for d(x) ± ρ. Similarly, we
obtain

Lw± = (ϑ±)p(x)−1kp(x)(d±)f(φ(y±))

×
(

g(x)f(ϑ±φ(y±))

(ϑ±)p(x)−1kp(x)(d±)f(φ(y±))
+ T±

1 (x) + T±
2 (x) + T±

3 (x) + T±
4 (x)

)
,

(3.52)
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where

T±
1 (x) = −|φ

′(y±)|p(x)−2φ′(y±)
k(d±)f(φ(y±))

Δp(x)d,

T±
2 (x) = −p(x)

q(x)
k′(d±)
k2(d±)

|φ′(y±)|p(x)−2φ′(y±)|∇d|p(x)
f(φ(y±))

,

T±
3 (x) = −p(x)

q(x)
|φ′(y±)|p(x)−2φ′′(y±)

f(φ(y±))
,

T±
4 (x) = −|φ

′(y±)|p(x)−2(φ′(y±) ln(k(d±)ϑ±) + |φ′(y±)| ln(|φ′(y±)|))
k(d±)f(φ(y±))

|∇d|p(x)−2∇p(x)∇d(x).

(3.53)

By Lemma 3.5 and Remark 3.9, we obtain a similar inequality by replacing z± with y±:

lim
Ω±

ρ×Γ�(d(x),ρ)→(0+,0+)
T±
1 (x) = 0,

lim
Ω±

ρ×Γ�(d(x),ρ)→(0+,0+)
T±
4 (x) = 0,

lim
Ω±

ρ×Γ�(d(x),ρ)→(0+,0+)
T±
2 (x) + T±

3 (x) = −p
# + b(2 + σ − p#)

2 + σ
.

(3.54)

Now, suppose u is a nonnegative solution of (2.13). We note that

u ≤ w− + Cu(μ) on ∂Ω−
ρ , (3.55)

where Cu(μ) := max{u(x) | d(x) ≥ μ}. Since φ and k are nonincreasing follows w+(x) ≤
ϑ+φ(λ(μ)) for d(x) = μ − ρ. Therefore,

w+ ≤ u + Cw(μ) on ∂Ω+
ρ , (3.56)

where Cw(μ) := ϑ+φ(λ(μ)). Furthermore, u and w+ satisfy the hypothesis from comparison
principle on Ω+

ρ for G(x, t) = −g(x)f(t). Moreover, since f is nondecreasing, w− + Cu(μ) and
u + Cw(μ) satisfy the hypothesis from comparison principle on Ω−

ρ and Ω+
ρ , respectively, for

G(x, t) = −g(x)f(t). Therefore by comparison principle, we infer

u(x) ≤ w−(x) + Cu(μ)x ∈ ∂Ω−
ρ , w+(x) ≤ u + Cw(x)(μ)x ∈ ∂Ω+

ρ . (3.57)

Hence for x ∈ Ω+
ρ ∩Ω−

ρ , we have

ϑ+ − Cw(μ)
φ(λ(d(x)) ± λ(ρ))

≤ u(x)
φ(λ(d(x)) ± λ(ρ))

≤ ϑ− +
Cu(μ)

φ(λ(d(x)) ± λ(ρ))
,

ϑ+ − Cw(μ)
φ(λ(d(x) ± ρ))

≤ u(x)
φ(λ(d(x) ± ρ))

≤ ϑ− +
Cu(μ)

φ(λ(d(x) ± ρ))
.

(3.58)
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Letting ρ → 0, we see that

ϑ+ − Cw(μ)
φ(λ(d(x))

≤ u(x)
φ(λ(d(x)))

≤ ϑ− +
Cu(μ)

φ(λ(d(x)))
, (3.59)

for all x ∈ Ωμ. On recalling that φ(t) → ∞ as t → 0, we obtain

ϑ+ ≤ lim inf
d(x)→0

u(x)
φ(λ(d(x)))

≤ lim sup
d(x)→0

u(x)
φ(λ(d(x)))

≤ ϑ−. (3.60)

The claimed result follows if we take ε → 0+. If we want to prove the uniqueness of
solutions for (2.13), we need additional condition on f ; see [1]. The proof is similar to the
proof from [1].
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