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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. The Hyers theorem was generalized by
Aoki [3] for additive mappings and by Th. M. Rassias [4] for linear mappings by considering
an unbounded Cauchy difference. The paper of Th. M. Rassias [4] has provided a lot of
influence in the development of what we call generalized Hyers-Ulam stability of functional
equations. A generalization of the Th. M. Rassias theorem was obtained by Găvruţa [5] by
replacing the unbounded Cauchy difference by a general control function in the spirit of
the Th. M. Rassias approach. Th. M. Rassias [6] during the 27th International Symposium
on Functional Equations asked the question whether such a theorem can also be proved for
p ≥ 1. Gajda [7], following the same approach as in Th. M. Rassias [4], gave an affirmative
solution to this question for p > 1. It was shown by Gajda [7] as well as by Th. M. Rassias
and Šemrl [8] that one cannot prove a Th. M. Rassias-type theorem when p = 1. J. M. Rassias
[9] followed the innovative approach of the Th. M. Rassias theorem in which he replaced the
factor ‖x‖p + ‖y‖p by ‖x‖p·‖y‖q for p, q ∈ R with p + q /= 1. During the last three decades, a
number of papers and research monographs have been published on various generalizations
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and applications of the generalized Hyers-Ulam stability to a number of functional equations
and mappings (see [10–18]).

Gilányi [19] showed that if f satisfies the functional inequality

∥
∥2f(x) + 2f(y) − f(x − y)

∥
∥ ≤ ∥

∥f(x + y)
∥
∥, (1.1)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(x + y) + f(x − y). (1.2)

See also [20]. Fechner [21] and Gilányi [22] proved the generalized Hyers-Ulam stability of
the functional inequality (1.1).

In this paper, we investigate an A-linear mapping associated with the functional
inequality

∥
∥2f(x) + 2f(y) + 2f(z) − f(x + y) − f(y + z)

∥
∥ ≤ ∥

∥f(x + z)
∥
∥ (1.3)

and prove the generalized Hyers-Ulam stability of A-linear mappings in Banach A-modules
associated with the functional inequality (1.3). These results are applied to investigate
homomorphisms in complex Banach algebras and prove the generalized Hyers-Ulam
stability of homomorphisms in complex Banach algebras.

2. Functional inequalities in Banach modules over a C∗-algebra

Throughout this section, letA be a unital C∗-algebra with unitary groupU(A) and unit e and
B a unital C∗-algebra. Assume that X is a Banach A-module with norm ‖·‖X and that Y is a
Banach A-module with norm ‖·‖Y .

Lemma 2.1. Let f : X → Y be a mapping such that

∥
∥2uf(x) + 2f(y) + 2f(z) − f(ux + y) − f(y + z)

∥
∥
Y ≤ ∥

∥f(ux + z)
∥
∥
Y (2.1)

for all x, y, z ∈ X and all u ∈ U(A). Then f is A-linear.

Proof. Letting x = y = z = 0 and u = e ∈ U(A) in (2.1), we get

∥
∥4f(0)

∥
∥
Y ≤ ∥

∥f(0)
∥
∥
Y . (2.2)

So f(0) = 0.
Letting u = e ∈ U(A), y = 0 and z = −x in (2.1), we get

∥
∥f(x) + f(−x)∥∥Y ≤ ∥

∥f(0)
∥
∥
Y = 0 (2.3)

for all x ∈ X. Hence f(−x) = −f(x) for all x ∈ X.
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Letting z = −x and u = e ∈ U(A) in (2.1), we get

∥
∥2f(x) + 2f(y) + 2f(−x) − f(x + y) − f(y − x)

∥
∥
Y =

∥
∥2f(y) − f(y + x) − f(y − x)

∥
∥
Y

≤ ∥
∥f(0)

∥
∥
Y

= 0

(2.4)

for all x, y ∈ X. So f(y + x) + f(y − x) = 2f(y) for all x, y ∈ X. Thus

f(x + y) = f(x) + f(y) (2.5)

for all x, y ∈ X.
Letting z = −ux and y = 0 in (2.1), we get

∥
∥2uf(x) − 2f(ux)

∥
∥
Y =

∥
∥2uf(x) + 2f(−uz)∥∥Y

≤ ∥
∥f(0)

∥
∥
Y

= 0

(2.6)

for all x ∈ X and all u ∈ U(A). Thus

f(uz) = uf(z) (2.7)

for all u ∈ U(A) and all z ∈ X. Now, let a ∈ A(a/= 0) andM an integer greater than 4|a|. Then
|a/M| < 1/4 < 1 − 2/3 = 1/3. By [23, Theorem 1], there exist three elements u1, u2, u3 ∈ U(A)
such that 3(a/M) = u1 + u2 + u3. So by (2.7)

f(ax) = f

(
M

3
·3 a

M
x

)

= M·f
(
1
3
·3 a

M
x

)

=
M

3
f

(

3
a

M
x

)

=
M

3
f
(

u1x + u2x + u3x
)

=
M

3
(

f
(

u1x
)

+ f
(

u2x
)

+ f
(

u3x
))

=
M

3
(

u1 + u2 + u3
)

f(x)

=
M

3
·3 a

M
f(x)

= af(x)

(2.8)

for all x ∈ X. So f : X → Y is A-linear, as desired.
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Now, we prove the generalized Hyers-Ulam stability of A-linear mappings in Banach
A-modules.

Theorem 2.2. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be an odd mapping
such that

∥
∥2uf(x) + 2f(y) + 2f(z) − f(ux + y) − f(y + z)

∥
∥
Y ≤ ∥

∥f(ux + z)
∥
∥
Y + θ

(‖x‖rX + ‖y‖rX + ‖z‖rX
)

(2.9)

for all x, y, z ∈ X and all u ∈ U(A). Then there exists a unique A-linear mapping L : X → Y such
that

∥
∥f(x) − L(x)

∥
∥
Y ≤ 3θ

2r − 2
‖x‖rX (2.10)

for all x ∈ X.

Proof. Since f is an odd mapping, f(−x) = −f(x) for all x ∈ X. So f(0) = 0.
Letting u = e ∈ U(A), y = x and z = −x in (2.9), we get

∥
∥2f(x) − f(2x)

∥
∥
Y =

∥
∥2f(x) + f(−2x)∥∥Y

≤ 3θ‖x‖rX
(2.11)

for all x ∈ X. So

∥
∥
∥
∥
f(x) − 2f

(
x

2

)∥
∥
∥
∥
Y

≤ 3
2r

θ‖x‖rX (2.12)

for all x ∈ X. Hence

∥
∥
∥
∥
2lf

(
x

2l

)

− 2mf
(

x

2m

)∥
∥
∥
∥
Y

≤
m−1∑

j=l

∥
∥
∥
∥
2jf

(
x

2j

)

− 2j+1f
(

x

2j+1

)∥
∥
∥
∥
Y

≤ 3
2r

m−1∑

j=l

2j

2rj
θ‖x‖rX

(2.13)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.13) that the
sequence {2nf(x/2n)} is Cauchy for all x ∈ X. Since Y is complete, the sequence {2nf(x/2n)}
converges. So one can define the mapping L : X → Y by

L(x) := lim
n→∞

2nf
(

x

2n

)

(2.14)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (2.13), we get (2.10).
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It follows from (2.9) that

∥
∥2uL(x) + 2L(y) + 2L(z) − L(ux + y) − L(y + z)

∥
∥
Y

= lim
n→∞

2n
∥
∥
∥
∥
2uf

(
x

2n

)

+ 2f
(

y

2n

)

+ 2f
(

z

2n

)

− f

(
ux + y

2n

)

− f

(
y + z

2n

)∥
∥
∥
∥

≤ lim
n→∞

2n
∥
∥
∥
∥
f

(
ux + z

2n

)∥
∥
∥
∥
Y

+ lim
n→∞

2nθ
2nr

(‖x‖rX + ‖y‖rX + ‖z‖rX
)

=
∥
∥L(ux + z)

∥
∥
Y

(2.15)

for all x, y, z ∈ X and all u ∈ U(A). So

∥
∥2uL(x) + 2L(y) + 2L(z) − L(ux + y) − L(y + z)

∥
∥
Y ≤ ∥

∥L(ux + z)
∥
∥
Y (2.16)

for all x, y, z ∈ X and all u ∈ U(A). By Lemma 2.1, the mapping L : X → Y is A-linear.
Now, let T : X → Y be another A-linear mapping satisfying (2.10). Then, we have

∥
∥L(x) − T(x)

∥
∥
Y = 2n

∥
∥
∥
∥
L

(
x

2n

)

− T

(
x

2n

)∥
∥
∥
∥
Y

≤ 2n
(∥
∥
∥
∥
L

(
x

2n

)

− f

(
x

2n

)∥
∥
∥
∥
Y

+
∥
∥
∥
∥
T

(
x

2n

)

− f

(
x

2n

)∥
∥
∥
∥
Y

)

≤ 6·2n
(

2r − 2
)

2nr
θ‖x‖rX,

(2.17)

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that L(x) = T(x) for all
x ∈ X. This proves the uniqueness of L. Thus the mapping L : X → Y is a unique A-linear
mapping satisfying (2.10).

Theorem 2.3. Let r < 1 and θ be positive real numbers, and let f : X → Y be an odd mapping
satisfying (2.9). Then there exists a unique A-linear mapping L : X → Y such that

∥
∥f(x) − L(x)

∥
∥
Y ≤ 3θ

2 − 2r
‖x‖rX (2.18)

for all x ∈ X.

Proof. It follows from (2.11) that

∥
∥
∥
∥
f(x) − 1

2
f(2x)

∥
∥
∥
∥
Y

≤ 3
2
θ‖x‖rX (2.19)
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for all x ∈ X. Hence

∥
∥
∥
∥

1
2l
f
(

2lx
) − 1

2m
f
(

2mx
)
∥
∥
∥
∥
Y

∥
∥
∥
∥

1
2l
f
(

2lx
) − 1

2m
f
(

2mx
)
∥
∥
∥
∥
Y

≤ 3
2

m−1∑

j=l

2rj

2j
θ‖x‖rX (2.20)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.20) that
the sequence {(1/2n)f(2nx)} is Cauchy for all x ∈ X. Since Y is complete, the sequence
{(1/2n)f(2nx)} converges. So one can define the mapping L : X → Y by

L(x) := lim
n→∞

1
2n

f
(

2nx
)

(2.21)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (2.20), we get (2.18).
The rest of the proof is similar to the proof of Theorem 2.2.

Theorem 2.4. Let r > 1/3 and θ be nonnegative real numbers, and let f : X → Y be an odd
mapping such that

∥
∥2uf(x) + 2f(y) + 2f(z) − f(ux + y) − f(y + z)

∥
∥
Y ≤ ∥

∥f(ux + z)
∥
∥
Y + θ·‖x‖rX ·‖y‖rX ·‖z‖rX

(2.22)

for all x, y, z ∈ X and all u ∈ U(A). Then there exists a unique A-linear mapping L : X → Y such
that

∥
∥f(x) − L(x)

∥
∥
Y ≤ θ

8r − 2
‖x‖3rX (2.23)

for all x ∈ X.

Proof. Since f is an odd mapping, f(−x) = −f(x) for all x ∈ X. So f(0) = 0.
Letting u = e ∈ U(A), y = x, and z = −x in (2.22), we get

∥
∥2f(x) − f(2x)

∥
∥
Y =

∥
∥2f(x) + f(−2x)∥∥Y

≤ θ‖x‖3rX
(2.24)

for all x ∈ X. So

∥
∥
∥
∥
f(x) − 2f

(
x

2

)∥
∥
∥
∥
Y

≤ θ

8r
‖x‖3rX (2.25)
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for all x ∈ X. Hence

∥
∥
∥
∥
2lf

(
x

2l

)

− 2mf
(

x

2m

)∥
∥
∥
∥
Y

≤
m−1∑

j=l

∥
∥
∥
∥
2jf

(
x

2j

)

− 2j+1f
(

x

2j+1

)∥
∥
∥
∥
Y

≤ θ

8r

m−1∑

j=l

2j

8rj
‖x‖3rX

(2.26)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.26) that the
sequence {2nf(x/2n)} is Cauchy for all x ∈ X. Since Y is complete, the sequence {2nf(x/2n)}
converges. So one can define the mapping L : X → Y by

L(x) := lim
n→∞

2nf
(

x

2n

)

(2.27)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (2.26), we get (2.23).
The rest of the proof is similar to the proof of Theorem 2.2.

Theorem 2.5. Let r < 1/3 and θ be positive real numbers, and let f : X → Y be an odd mapping
satisfying (2.22). Then there exists a unique A-linear mapping L : X → Y such that

∥
∥f(x) − L(x)

∥
∥
Y ≤ θ

2 − 8r
‖x‖3rX (2.28)

for all x ∈ X.

Proof. It follows from (2.24) that

∥
∥
∥
∥
f(x) − 1

2
f(2x)

∥
∥
∥
∥
Y

≤ θ

2
‖x‖3rX (2.29)

for all x ∈ X. Hence

∥
∥
∥
∥

1
2l
f
(

2lx
) − 1

2m
f
(

2mx
)
∥
∥
∥
∥
Y

≤
m−1∑

j=l

∥
∥
∥
∥

1
2j
f
(

2jx
) − 1

2j+1
f
(

2j+1x
)
∥
∥
∥
∥
Y

≤ θ

2

m−1∑

j=l

8rj

2j
‖x‖3rX

(2.30)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.30) that
the sequence {(1/2n)f(2nx)} is Cauchy for all x ∈ X. Since Y is complete, the sequence
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{(1/2n)f(2nx)} converges. So one can define the mapping L : X → Y by

L(x) := lim
n→∞

1
2n

f
(

2nx
)

(2.31)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (2.30), we get (2.28).
The rest of the proof is similar to the proof of Theorem 2.2.

3. Generalized Hyers-Ulam stability of homomorphisms in Banach algebras

Throughout this section, let A and B be complex Banach algebras.

Proposition 3.1. Let f : A → B be a multiplicative mapping such that

∥
∥2μf(x) + 2f(y) + 2f(z) − f(μx + y) − f(y + z)

∥
∥ ≤ ∥

∥f(μx + z)
∥
∥ (3.1)

for all x, y, z ∈ A and all μ ∈ T := {λ ∈ C | |λ| = 1}. Then f is an algebra homomorphism.

Proof. Every complex Banach algebra can be considered as a Banach module over C. By
Lemma 2.1, the mapping f : A → B is a C-linear. So the multiplicative mapping f : A → B
is an algebra homomorphism.

Now, we prove the generalized Hyers-Ulam stability of homomorphisms in complex
Banach algebras.

Theorem 3.2. Let r > 1 and θ be nonnegative real numbers, and let f : A → B be an odd
multiplicative mapping such that

∥
∥2μf(x) + 2f(y) + 2f(z) − f(μx + y) − f(y + z)

∥
∥ ≤ ∥

∥f(μx + z)
∥
∥ + θ

(‖x‖r + ‖y‖r + ‖z‖r)
(3.2)

for all x, y, z ∈ A and all μ ∈ T. Then there exists a unique algebra homomorphismH : A → B such
that

∥
∥f(x) −H(x)

∥
∥ ≤ 3θ

2r − 2
‖x‖r (3.3)

for all x ∈ A.

Proof. By Theorem 2.2, there exists a unique C-linear mapping H : A → B satisfying (3.3).
The mapping H : A → B is given by

H(x) := lim
n→∞

2nf
(

x

2n

)

(3.4)

for all x ∈ A.
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Since f : A → B is multiplicative,

H(xy) = lim
n→∞

4nf
(
xy

4n

)

= lim
n→∞

2nf
(

x

2n

)

·2nf
(

y

2n

)

= H(x)H(y)

(3.5)

for all x, y ∈ A. Thus the mapping H : A → B is an algebra homomorphism satisfying
(3.3).

Theorem 3.3. Let r < 1 and θ be positive real numbers, and let f : A → B be an odd multiplicative
mapping satisfying (3.2). Then there exists a unique algebra homomorphism H : A → B such that

∥
∥f(x) −H(x)

∥
∥ ≤ 3θ

2 − 2r
‖x‖r (3.6)

for all x ∈ A.

Proof. The proof is similar to the proofs of Theorems 2.3 and 3.2.

Theorem 3.4. Let r > 1/3 and θ be nonnegative real numbers, and let f : A → B be an odd
multiplicative mapping such that

∥
∥2μf(x) + 2f(y) + 2f(z) − f(μx + y) − f(y + z)

∥
∥ ≤ ∥

∥f(μx + z)
∥
∥ + θ·‖x‖r ·‖y‖r ·‖z‖r (3.7)

for all x, y, z ∈ A and all μ ∈ T. Then there exists a unique algebra homomorphismH : A → B such
that

∥
∥f(x) −H(x)

∥
∥ ≤ θ

8r − 2
‖x‖3r (3.8)

for all x ∈ A.

Proof. The proof is similar to the proofs of Theorems 2.4 and 3.2.

Theorem 3.5. Let r < 1/3 and θ be positive real numbers, and let f : A → B be an odd
multiplicative mapping satisfying (3.7). Then there exists a unique algebra homomorphismH : A →
B such that

∥
∥f(x) −H(x)

∥
∥ ≤ θ

2 − 8r
‖x‖3r (3.9)

for all x ∈ A.

Proof. The proof is similar to the proofs of Theorems 2.5 and 3.2.
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