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1. Introduction

Inequalities involving functions of n independent variables, their partial derivatives, integrals
play a fundamental role in establishing the existence and uniqueness of initial and boundary
value problems for ordinary and partial differential equations as well as difference equations
[1–10]. Especially, in view of wider applications, inequalities due to Agarwal, Opial, Pachpatte,
Wirtinger, Poincaré and et al. have been generalized and sharpened from the very day of their
discover. As a matter of fact, these now have become research topic in their own right [11–14].
In the present paper, we will use the same method of Agarwal and Sheng [15], establish some
new estimates on these types of inequalities involving higher-order partial derivatives. We
further generalize these inequalities which lead to result sharper than those currently available.
An important characteristic of our results is that the constant in the inequalities are explicit.

2. Main results

Let R be the set of real numbers and Rn the n-dimensional Euclidean space. Let E, E′

be a bounded domain in Rn defined by E × E′ =
∏n

i=1[ai, bi] × [ci, di], i = 1, . . . , n. For
xi, yi ∈ R, i = 1, . . . , n, (x, y) = (x1, . . . , xn, y1, . . . , yn) is a variable point in E × E′ and
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dxdy = dx1 · · ·dxndy1 · · ·dyn. For any continuous real-valued function u(x, y) defined on
E × E′, we denote by

∫
E

∫
E′u(x, y)dxdy the 2n-fold integral

∫b1

a1

· · ·
∫bn

an

∫d1

c1

· · ·
∫dn

cn

u
(
x1, . . . , xn, y1, . . . , yn

)
dx1 · · ·dxn dy1 · · ·dyn, (2.1)

and for any (x, y) ∈ E × E′,
∫
E(x)

∫
E′(x)u(s, t)dsdt is the 2n-fold integral

∫x1

a1

· · ·
∫xn

an

∫y1

c1

· · ·
∫yn

cn

u
(
s1, . . . , sn, t1, . . . , tn

)
dx1 · · ·dsn dt1 · · ·dtn. (2.2)

We represent by F(E × E′) the class of continuous functions u(x, y) : E × E′ →R for which
D2nu(x, y) = D1 · · ·D2nu(x, y), where

D1 =
∂

∂x1
, . . . , Dn =

∂

∂xn
,Dn+1 =

∂

∂y1
, . . . , D2n =

∂

∂yn
(2.3)

exists and that for each i, 1 ≤ i ≤ n,

u(x, y)
∣
∣
xi=ai

= 0, u(x, y)
∣
∣
yi=ci

= 0, u(x, y)
∣
∣
xi=bi

= 0, u(x, y)
∣
∣
yi=di

= 0, (i = 1, . . . , n)

(2.4)

the class F(E × E′) is denoted as G(E × E′).

Theorem 2.1. Let μ ≥ 0, λ ≥ 1 be given real numbers, and let p(x, y) ≥ 0, (x, y) ∈ E × E′ be a
continuous function. Further, let u(x, y) ∈ G(E × E′). Then, the following inequality holds

∫

E

∫

E′
p(x, y)

∣
∣u(x, y)

∣
∣μdx dy

≤
∫

E

∫

E′
p(x, y)q(x, y, λ, μ)dx dy

(∫

E

∫

E′

∣
∣D2nu(x, y)

∣
∣λdx dy

)μ/λ

,
(2.5)

where

q(x, y, λ, μ) =

(
1

2n+1

n∏

i=1

[(
xi − ai

)(
bi − xi

)(
yi − ci

)(
di − yi

)](λ−1)/2
)μ/λ

. (2.6)

Proof. For the set {1, . . . , n}, let π = A ∪ B, π ′ = A′ ∪ B′ be partitions, where A = (j1, . . . , jk), B =
(jk+1, . . . , jn), A′ = (i1, . . . , ik), and B′ = (ik+1, . . . , in) are such that cardA = cardA′ = k and
cardB = cardB′ = n − k, 0 ≤ k ≤ n. It is clear that there are 2n+1 such partitions. The set
of all such partitions we will denote as Z and Z′, respectively. For fixed partition π, π ′ and
x ∈ E, y ∈ E′, we define

∫

Eπ (x)

∫

E′
π ′ (y)

u(s, t)dsdt =
∫

A(x)

∫

B(x)

∫

A′(y)

∫

B′(y)
u(s, t)dsdt, (2.7)
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where
∫
A(x),

∫
A′(y) denote the k-fold integral,

∫
B(x),

∫
B′(y) represent the (n − k)-fold integral. Thus

from the assumptions it is clear that for each π ∈ Z, π ′ ∈ Z′

∣
∣u(x, y)

∣
∣ ≤

∫

Eπ (x)

∫

E′
π ′ (y)

∣
∣D2nu(s, t)

∣
∣dsdt. (2.8)

In view of Hölder integral inequality, we have

∣
∣u(x, y)

∣
∣ ≤

(
∏

i∈A

(
xi − ai

)∏

i∈B

(
bi − xi

)∏

i∈A′

(
yi − ci

)∏

i∈B′

(
di − yi

)
)(λ−1)/λ

×
(∫

Eπ (x)

∫

E′
π ′ (y)

∣
∣D2nu(s, t)

∣
∣λds dt

)1/λ

.

(2.9)

A multiplication of these 2n+1 inequalities and an application of the Arithmetic-Geometric
mean inequality give

∣
∣u(x, y)

∣
∣μ ≤

(
n∏

i=1

[(
xi − ai

)(
bi − xi)

(
yi − ci

)(
di − yi

)](λ−1)/2
)μ/λ

×
(

∏

π∈Z,π ′∈Z′

(∫

Eπ (x)

∫

E′
π ′ (y)

∣
∣D2nu(s, t)

∣
∣λds dt

)1/2n+1
)μ/λ

≤
(

1
2n+1

n∏

i=1

[(
xi − ai

)(
bi − xi

)(
yi − ci

)(
di − yi

)](λ−1)/2
)μ/λ

×
(

∑

π∈Z,π ′∈Z′

∫

Eπ (x)

∫

E′
π ′ (y)

∣
∣D2nu(s, t)

∣
∣λds dt

)μ/λ

= q(x, y, λ, μ)
(∫

E

∫

E′

∣
∣D2nu(s, t)

∣
∣λds dt

)μ/λ

.

(2.10)

Now, multiplying both the sides of (2.10) by p(x, y) and integrating the resulting inequality on
E × E′, we have

∫

E

∫

E′
p(x, y)

∣
∣u(x, y)

∣
∣μdx dy ≤

∫

E

∫

E′
p(x, y)q(x, y, λ, μ)dx dy

(∫

E

∫

E′

∣
∣D2nu(s, t)

∣
∣λds dt

)μ/λ

,

(2.11)

where

q(x, y, λ, μ) =

(
1

2n+1

n∏

i=1

[(
xi − ai

)(
bi − xi

)(
yi − ci

)(
di − yi

)](λ−1)/2
)μ/λ

. (2.12)

Remark 2.2. Taking for p(x, y) = 1 in (2.5), (2.5) reduces to
∫

E

∫

E′

∣
∣u(x, y)

∣
∣μdx dy ≤ K′

0

(∫

E

∫

E′

∣
∣D2nu(x, y)

∣
∣λdx dy

)μ/λ

, (2.13)

where

K′
0 =

((
1
2

)μ/λ

B2
(

1 +
μ

2
− μ

2λ
, 1 +

μ

2
− μ

2λ

))n n∏

i=1

[(
bi − ai

)(
di − ci

)]1+μ−μ/λ
, (2.14)

and B is the Beta function.
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Taking for λ = μ = 2 in (2.13) reduces to
∫

E

∫

E′

∣
∣u(x, y)

∣
∣2dx dy ≤

(
π2

8

)n

M′2
(∫

E

∫

E′

∣
∣D2nu(x, y)

∣
∣2dx dy

)

, (2.15)

where

M′ =
n∏

i=1

(
bi − ai

)(
di − ci

)

4
. (2.16)

Let u(x, y) reduce to u(x) in (2.15) and with suitable modifications, then (2.15) becomes the
following two Wirting type inequalities:

∫

E

∣
∣u(x)

∣
∣2dx ≤

(
π

4

)n

M2
(∫

E

∣
∣Dnu(x)

∣
∣2dx

)

, (2.17)

where

M =
n∏

i=1

(
bi − ai

)

2
. (2.18)

Similarly
∫

E

∣
∣u(x)

∣
∣4dx ≤

(
3π
16

)n

M4
(∫

E

∣
∣Dnu(x)

∣
∣4dx

)

, (2.19)

whereM is as in (2.17).
For n = 2, the inequalities (2.17) and (2.19) have been obtained by Smith and

Stredulinsky [16], however, with the right-hand sides, respectively, multiplies (4/π)2 and
(16/3π)4. Hence, it is clear that inequalities (2.17) and (2.19) are more strengthed.

Remark 2.3. Let u(x, y) reduce to u(x) in (2.5) and with suitable modifications, then (2.5)
becomes the following result:

∫

E

p(x)
∣
∣u(x)

∣
∣μdx ≤

∫

E

p(x)q(x, λ, μ)dx
(∫

E

∣
∣Dnu(x)

∣
∣λdx

)μ/λ

, (2.20)

where

q(x, λ, μ) =

(
1
2n

n∏

i=1

[(
x − ai

)(
bi − xi

)](λ−1)/2
)μ/λ

. (2.21)

This is just a new result which was given by Agarwal and Sheng [15].

Theorem 2.4. Let p(x, y) ≥ 0, (x, y) ∈ E × E′ be a continuous function. Further, let for k =
1, . . . , r, μk ≥ 0, λk ≥ 1, be given real numbers such that

∑r
k=1(μk/λk) = 1, and uk(x, y) ∈ G(E×E′).

Then the following inequality holds
∫

E

∫

E′
p(x, y)

r∏

k=1

∣
∣uk(x, y)

∣
∣μkdx dy

≤
∫

E

∫

E′
p(x, y)

r∏

k=1

q
(
x, y, λk, μk

)
dx dy

r∑

k=1

μk

λk

∫

E

∫

E′

∣
∣D2nuk(x, y)

∣
∣λkdx dy.

(2.22)
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Proof. Setting μ = μk, λ = λk and u(x, y) = uk(x, y), 1 ≤ k ≤ r in (2.10), multiplying the r
inequalities, and applying the extended Arithmetic-Geometric means inequality,

r∏

k=1

a
μk/λk
k

≤
r∑

k=1

μk

λk
ak, ak ≥ 0, (2.23)

to obtain

r∏

k=1

∣
∣uk(x, y)

∣
∣μk ≤

r∏

k=1

q
(
x, y, λk, μk

)
(∫

E

∫

E′

∣
∣D2nuk(s, t)

∣
∣λkds dt

)μk/λk

≤
r∏

k=1

q
(
x, y, λk, μk

) r∑

k=1

μk

λk

∫

E

∫

E′

∣
∣D2nuk(s, t)

∣
∣λkds dt.

(2.24)

Now multiplying both sides of (2.24) by p(x, y) and then integrating over E × E′, we obtain
(2.22).

Corollary 2.5. Let the conditions of Theorem 2.4 be satisfied. Then the following inequality holds

∫

E

∫

E′
p(x, y)

r∏

k=1

∣
∣uk(x, y)

∣
∣μkdx dy < K′

1

∫

E

∫

E′
p(x, y)dx dy

r∑

k=1

μk

λk

∫

E

∫

E′

∣
∣D2nuk(x, y)

∣
∣λkdx dy,

(2.25)

where

K′
1 =

(
1

2n+1

)∑r
k=1μk n∏

i=1

[(
bi − ai

)(
bi − ai

)]−1+∑r
k=1μk . (2.26)

This is just a general form of the following inequality which was established by Agarwal
and Sheng [15]:

∫

E

p(x)
r∏

k=1

∣
∣uk(x)

∣
∣μkdx < K1

∫

E

p(x)dx
r∑

k=1

μk

λk

∫

E

∣
∣Dnuk(x)

∣
∣λkdx, (2.27)

where

K1 =
(

1
2n

)∑r
k=1μk n∏

i=1

(
bi − ai

)−1+∑r
k=1μk . (2.28)

Remark 2.6. For p(x, y) = 1, the inequality (2.22) becomes

∫

E

∫

E′

r∏

k=1

∣
∣uk(x, y)

∣
∣μkdx dy ≤ K′

2

r∑

k=1

μk

λk

∫

E

∫

E′

∣
∣D2nuk(x, y)

∣
∣λkdx dy, (2.29)

where

K′
2 =

(
1
2
B2

(1 +
∑r

k=1μk

2
,
1 +

∑r
k=1μk

2

))n n∏

i=1

[(
bi − ai

)(
di − ci

)]∑r
k=1μk . (2.30)

For u(x, y) = u(x), the inequality (2.29) has been obtained by Agarwal and Sheng [15].
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Theorem 2.7. Let λ and u(x, y) be as in Theorem 2.1, μ ≥ 1 be a given real number. Then the following
inequality holds

∫

E

∫

E′

∣
∣u(x, y)

∣
∣λdx dy ≤ K′

3(λ, μ)
∫

E

∫

E′

∥
∥gradu(x, y)

∥
∥λ

μdx dy, (2.31)

where

K′
3(λ, μ) =

1
2n

B2
(
λ + 1
2

,
λ + 1
2

)

K

(
λ

μ

) n∏

i=1

[(
bi − ai

)(
di − ci

)]λ/n
,

∥
∥gradu(x, y)

∥
∥
μ =

(
n∑

i=1

∣
∣
∣
∣

∂2

∂xi∂yi
u(x, y)

∣
∣
∣
∣

μ
)1/μ

,

(2.32)

and where K(λ/μ) = 1 if λ ≥ μ, and K(λ/μ) = n1−λ/μ if 0 ≤ λ/μ ≤ 1.

Proof. For each fixed i, 1 ≤ i ≤ n, in view of

u(x, y)
∣
∣
xi=ai

= 0, u(x, y)
∣
∣
yi=ci

= 0, u(x, y)
∣
∣
xi=bi

= 0, u(x, y)
∣
∣
yi=di

= 0, (i = 1, . . . , n),

(2.33)

we have

u(x, y) =
∫xi

ai

∫yi

ci

∂2

∂si∂ti
u
(
x, y; si, ti

)
dsi dti,

u(x, y) =
∫bi

xi

∫di

yi

∂2

∂si∂ti
u
(
x, y; si, ti

)
dsi dti,

(2.34)

where

u
(
x, y; si, ti

)
= u

(
x1, . . . , xi−1, si, xi+1, . . . , xn, y1, . . . , yi−1, ti, yi+1, . . . , yn

)
. (2.35)

Hence from Hölder inequality with indices λ and λ/(1 − λ), it follows that

∣
∣u(x, y)

∣
∣λ ≤ [(

xi − ai

)(
yi − di

)]λ−1
∫xi

ai

∫yi

ci

∣
∣
∣
∣

∂2

∂si∂ti
u
(
x, y; si, ti

)
∣
∣
∣
∣

λ

dsi dti,

∣
∣u(x, y)

∣
∣λ ≤ [(

bi − xi

)(
di − yi

)]λ−1
∫bi

xi

∫di

yi

∣
∣
∣
∣

∂2

∂si∂ti
u
(
x, y; si, ti

)
∣
∣
∣
∣

λ

dsi dti.

(2.36)

Multiplying (2.36), and then applying the Arithmetic-Geometric means inequality, to obtain

∣
∣u(x, y)

∣
∣λ ≤ 1

2
[(
xi − ai

)(
yi − ci

)(
bi − xi

)(
di − yi

)](λ−1)/2 ×
∫bi

ai

∫di

ci

∣
∣
∣
∣

∂2

∂si∂ti
u
(
x, y; si, ti

)
∣
∣
∣
∣

λ

dsi dti,

(2.37)

and now integrating (2.37) on E × E′, we arrive at
∫

E

∫

E′

∣
∣u(x, y)

∣
∣λdx dy ≤

∫bi

ai

∫di

ci

1
2
[(
xi − ai

)(
yi − ci

)(
bi − xi

)(
di − yi

)](λ−1)/2
dxi dyi

×
∫

E

∫

E′

∣
∣
∣
∣

∂2

∂xi∂yi
u(x, y)

∣
∣
∣
∣

λ

dx dy.

(2.38)
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Next, multiplying the inequality (2.38) for 1 ≤ i ≤ n, and using the Arithmetic-Geometric
means inequality, and in view of the following inequality:

n∑

i=1

aα
i ≤ K(α)

(
n∑

i=1

ai

)α

, ai > 0, (2.39)

where K(α) = 1 if α ≥ 1, and K(α) = n1−α if 0 ≤ α ≤ 1, we get

∫

E

∫

E′

∣
∣u(x, y)

∣
∣λdx dy ≤

n∏

i=1

(∫bi

ai

∫di

ci

1
2
[(
xi − ai

)(
yi − ci

)(
bi − xi

)(
di − yi

)](λ−1)/2
dxi dyi

)1/n

×
n∏

i=1

(∫

E

∫

E′

∣
∣
∣
∣

∂2

∂xi∂yi
u(x, y)

∣
∣
∣
∣

λ

dx dy

)1/n

≤ 1
2n

n∏

i=1

(∫bi

ai

∫di

ci

1
2
[(
xi − ai

)(
yi − ci

)(
bi − xi

)(
di − yi

)](λ−1)/2
dxi dyi

)1/n

×
n∑

i=1

∫

E

∫

E′

∣
∣
∣
∣

∂2

∂xi∂yi
u(x, y)

∣
∣
∣
∣

λ

dx dy

≤ 1
2n

B2
(
λ + 1
2

,
λ + 1
2

) n∏

i=1

[(
bi − ai

)(
di − ci

)]λ/n

×
∫

E

∫

E′

∥
∥gradu(x, y)

∥
∥λ

λdx dy,

≤ K′
3(λ, μ)

∫

E

∫

E′

∥
∥gradu(x, y)

∥
∥λ

μdx dy,

(2.40)

where

K′
3(λ, μ) =

1
2n

B2
(
λ + 1
2

,
λ + 1
2

)

K

(
λ

μ

) n∏

i=1

[(
bi − ai

)(
di − ci

)]λ/n
,

∥
∥gradu(x, y)

∥
∥
μ =

(
n∑

i=1

∣
∣
∣
∣

∂2

∂xi∂yi
u(x, y)

∣
∣
∣
∣

μ
)1/μ

,

(2.41)

and where K(λ/μ) = 1 if λ ≥ μ, and K(λ/μ) = n1−λ/μ if 0 ≤ λ/μ ≤ 1.

Remark 2.8. Let u(x, y) reduce to u(x) in (2.31) and with suitable modifications, and let λ ≥ 2,
μ = 2, then (2.31) becomes

∫

E

∣
∣u(x)

∣
∣λdx ≤ K′

3(λ, 2)
∫

E

∥
∥gradu(x)

∥
∥λ

μ dx. (2.42)

This is just a better inequality than the following inequality which was given by Pachpatte [17]

∫

E

∣
∣u(x)

∣
∣λdx ≤ 1

n

(
β

2

)λ∫

E

∥
∥gradu(x)

∥
∥λ

μ dx. (2.43)

Because for λ ≥ 2, it is clear that K′
3(λ, 2) < (1/n)(β/2)λ, where β = max1≤i≤n(bi − ai).
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On the other hand, taking for μ = 2, λ = 2 or μ = 2, λ = 4 in (2.31) and let u(x, y) reduce
to u(x) with suitable modifications, it follows the following Poincaré-type inequalities:

∫

E

∣
∣u(x)

∣
∣2 dx ≤ π

16n
β2
∫

E

∥
∥gradu(x)

∥
∥2
2 dx,

∫

E

∣
∣u(x)

∣
∣4 dx ≤ 3π

256n
β4
∫

E

∥
∥gradu(x)

∥
∥4
2 dx.

(2.44)

The inequalities (2.44) have been discussed in [18] with the right-hand sides, respectively,
multiplied by 4/π and 16/3π . Hence inequalities (2.44) are more strong results on these types
of inequalities.

If μ ≥ λ, in the right sides of (2.31)we can apply Hölder inequality with indices μ/λ and
μ/(μ − λ), to obtain the following corollary.

Corollary 2.9. Let the conditions of Theorem 2.7 be satisfied and μ ≥ λ. Then

∫

E

∫

E′

∣
∣u(x, y)

∣
∣λdx dy ≤ K′

4(λ, μ)
(∫

E

∫

E′

∥
∥gradu(x, y)

∥
∥μ

μdx dy

)λ/μ

, (2.45)

where

K′
4(λ, μ) = K′

3(λ, μ)
n∏

i=1

[(
bi − ai

)(
di − ci

)](μ−λ)/μ
. (2.46)

Remark 2.10. Taking u(x, y) = u(x) and with suitable modifications, the inequality (2.45)
reduces to the following result which was given by Agarwal and Sheng [15]:

∫

E

∣
∣u(x)

∣
∣λdx ≤ K6(λ, μ)

(∫

E

∥
∥gradu(x)

∥
∥μ

μ dx

)λ/μ

, (2.47)

where

K6(λ, μ) = K5(λ, μ)
n∏

i=1

(
bi − ai

)(μ−λ)/μ
,

K5(λ, μ) =
1
2n

B

(
1 + λ

2
,
1 + λ

2

)

K

(
λ

μ

) n∏

i=1

(
bi − ai

)λ/n
,

(2.48)

and K(λ/μ) is as in Theorem 2.7.
Taking λ = 1, μ = 2 the inequality (2.45), (2.45) reduces to

(∫

E

∫

E′

∣
∣u(x, y)

∣
∣dx dy

)2

≤ K′
4(1, 2)

∫

E

∫

E′

∥
∥gradu(x, y)

∥
∥2
2dx dy. (2.49)

This is just a general form of the following inequality which was given by Agarwal and Sheng
[15].

(∫

E

∣
∣u(x)

∣
∣dx

)2

≤ [
K6(1, 2)

]2
∫

E

∥
∥gradu(x)

∥
∥2
2dx dy. (2.50)

Similar to the proof of Theorem 2.7, we have the following theorem.
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Theorem 2.11. For uk(x, y) ∈ G(E × E′), μk ≥ 1, 1 ≤ k ≤ r. Then the following inequality holds

∫

E

∫

E′

(
n∏

i=1

∣
∣uk(x, y)

∣
∣μk

)1/r

dx dy ≤ K′
5

∫

E

∫

E′

r∑

k=1

∥
∥graduk(x, y)

∥
∥μk

μk
dx dy, (2.51)

where

K′
5 =

1
2nr

B2
(1 + (1/r)

∑r
k=1μk

2
,
1 + (1/r)

∑r
k=1μk

2

) n∏

i=1

[(
bi − ai

)(
di − ci

)]∑r
k=1μk/nr . (2.52)

Remark 2.12. Taking u(x, y) = u(x) and with suitable modifications, the inequality (2.51)
reduces to the following result:

∫

E

(
n∏

i=1

∣
∣uk(x)

∣
∣μk

)1/r

dx ≤ K9

∫

E

r∑

k=1

∥
∥gradu(x)

∥
∥μk

μk
dx, (2.53)

where

K9 =
1

2nr
B

(1 + (1/r)
∑r

k=1μk

2
,
1 + (1/r)

∑r
k=1μk

2

) n∏

i=1

(
bi − ai

)∑r
k=1μk/nr . (2.54)

In [19], Pachpatte proved the inequality (2.53) for μk ≥ 2, 1 ≤ k ≤ r with K9 replaced by
(1/nr)(β/2)

∑r
k=1μk/r , where β is as in Remark 2.8. It is clear that K9 < (1/nr)(β/2)

∑r
k=1μk/r , and

hence (2.53) is a better inequality than a result of Pachpatte.
Similarly, all other results in [15] also can be generalized by the same way. Here, we omit

the details.
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