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1. Introduction

Linear parameter varying (LPV) systems are formalized as a certain type of nonlinear
systems, and a control strategy has been developed for these systems based on classical gain-
scheduled adaptive methodology [1, 2]. There are many examples of dependent physical
parameters including inertia, stiffness, or viscosity coefficients in mechanical systems, aero
dynamical coefficients in flight control, resistor and capacitor values in electrical circuits and
so forth. Therefore, it is often desirable to obtain guarantees of stability and performance
against dependent parameter when analyzing these control systems. In the past decade, main
papers and special publications concerning LPV controller design problem have appeared in
[3–10].

Quadratic stability has been widely used to assess closed-loop stability and
performance. This approach allows us to describe several problems of stability analysis
and synthesis as LMI optimization problems, which can be solved in polynomial time by
interior point algorithms [3, 11–15]. It is known that the results based on quadratic stability
are frequently conservative in the context of analysis and synthesis for LPV systems when
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compared to the results from conditions based on parameter-dependent Lyapunov functions
(see, e.g., [3, 6–9, 16–18]). But quadratic stability remains attractive due to its low numerical
complexity, being largely employed as a first step in the investigation of stability performance
and control design of LPV systems.

As to quadratic stabilization studies of LPV systems, even though stability analysis
problem is NP-hard in general, a number of more or less conservative analysis methods are
presented to assess quadratic stability [3–8], where a fixed quadratic Lyapunov function
is found to prove stability of LPV systems. More recently, a kind of necessary and
sufficient LMI-based condition has been proposed to compute a quadratically stabilizing
state feedback controller for continuous-time linear systems with arbitrary time-varying
parameters belonging to a polytope [19]. These conditions are based on an extension of
Pólya’s theorem [20] and are written as a sequence of progressively less and less conservative
LMI. However, at each step, the LMI-based conditions are still sufficient, and have some
conservatism. It leads to higher computational times.

The main contribution of this paper is to provide new necessary and sufficient LMI-
based conditions to compute a quadratically stabilizing gain-scheduling state feedback
for LPV systems. The proposed conditions are based on the systematic construction of
homogeneous polynomial solution for parameter-dependent LMI too. At each step, a set of
LMIs provides sufficient conditions for the existence of such a gain-scheduling state feedback.
Necessity is asymptotically attained through a relaxation based on the philosophy of Pólya’s
theorem. More importantly, by adding an additional decision variable, at each step, these
new conditions can provide less conservative or at least the same results than the most recent
existing methods in the literature. Consequently, the feasible solutions can be obtained in
much lower steps.

2. Preliminary

Consider an LPV system P(∂(t)) described by state space equations as

ẋ(t) = A
(
∂(t)

)
x(t) + B

(
∂(t)

)
u(t). (2.1)

Here, state-space matrices have compatible dimensions of time-varying parameters ∂(t) =
[
∂1(t) ∂2(t) · · · ∂n(t)

]T ∈ Rn.
Moreover, we have the following assumptions.

(1) The state-space matrices A(∂(t)) and B(∂(t)) are continuous and bounded functions
and depend affinely on ∂(t).

(2) The real parameters ∂(t), that can be known in advance or online measurement
values, exist in LPV plant and vary in a polytope Θ as

∂(t) ∈ Θ := Co
{
ω1, ω2, . . . , ωN

}
=

{
r∑

i=1

αi(t)ωi : αi(t) ≥ 0,
r∑

i=1

αi(t) = 1, r = 2n
}

. (2.2)
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With above assumptions, the LPV plant is called polytopic, when it ranges in a matrix
polytope, LPV system P(∂(t)) can be expressed as

A(∂) =
r∑

i=1

αi(t)A
(
ωi

)
, B(∂) =

r∑

i=1

αi(t)B(ωi) with αi ≥ 0,
r∑

i=1

αi = 1. (2.3)

The aim of this paper is to establish new LMI-based conditions of a gain-scheduling state
feedback that quadratically stabilizes the class of system (2.1). The control law is given with
a state feedback as

u(t) = −K(∂)x(t), K(∂) =
r∑

j=1

αi(t)K
(
ωj

)
. (2.4)

Substituting (2.4) into (2.1), the closed-loop system can be written as

ẋ(t) = Acl(∂)x(t), ∂ ∈ Θ, (2.5)

where Acl(∂) = A(∂) − B(∂)K(∂).
According to quadratic stability theory [3], the closed-loop system (2.5) is said to be

quadratically stable if and only if there exists a symmetric positive definite matrix P ∈ R
n×n

such that

PAcl(∂) +AT
cl(∂)P < 0, ∂ ∈ Θ. (2.6)

The concept of quadratic stability has been widely used for stability evaluation, control, and
filter design for continuous and discrete, time-varying and time-invariant systems. The next
lemma presents convex LMI conditions of infinite dimension that are necessary and sufficient
to assure the existence of such a state-feedback gain.

Lemma 2.1. LPV system (2.1) is quadratically stabilizable if and only if there exist a symmetric
positive definite matrix Q ∈ R

n×n and a parameter-dependent matrixN(∂) ∈ R
m×n such that

A(∂)Q +QAT (∂) − B(∂)N(∂) −NT (∂)BT (∂) < 0n, ∂(t) ∈ Θ. (2.7)

In this case, the state-feedback gain is given by

K(∂) = N(∂)Q−1. (2.8)
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Proof. Using the change of variables N(∂) = K(∂)Q, (2.7) can be rewritten as

(
A(∂) − B(∂)K(∂)

)
Q +Q

(
A(∂) − B(∂)K(∂)

)T
< 0, (2.9)

which, pre- and post-multiplied by Q−1, yields (2.6) with P = Q−1. Conversely, pre- and post-
multiplying (2.6) by P−1 and making Q = P−1 give the equivalence condition

(
A(∂) − B(∂)K(∂)

)
Q +Q

(
A(∂) − B(∂)K(∂)

)T
< 0, (2.10)

which yields (2.7) by making K(∂) = N(∂)Q−1.
To simplify notation, we define

Gij = QAT
i +AiQ −NT

j B
T
i − BiNj, i, j = 1, 2, . . . , r,

Ki = NiQ
−1, i = 1, 2, . . . , r with Ai = A(ωi), Nj = N(ωj).

(2.11)

3. Main result

In this section, by adding an additional decision variable, a useful lemma is introduced
below.

Lemma 3.1. LPV system (2.1) is quadratically stabilizable if and only if there exist a symmetric
positive definite matrixW ∈ R

n×n and parameter-dependent matricesN(∂) ∈ R
m×n, Y (∂) = YT (∂) ∈

R
n×n such that one of the following equivalent conditions holds

(i) ϕ(∂) = A(∂)Q +QAT (∂) − B(∂)N(∂) −NT (∂)BT (∂) < Y (∂) ≤ 0n, (3.1)

(ii) ϕd(∂) =
(
α1 + α2 + · · · + αr

)d(
A(∂)Q +QAT (∂) − B(∂)N(∂) −NT (∂)BT (∂)

)

<
(
α1 + α2 + · · · + αr

)d
Y (∂) ≤ 0n, ∀d ∈ Z+.

(3.2)

Proof. Condition (i) is obtained directly through the use of a quadratic Lyapunov function
associated to the closed-loop system (2.5). For any fixed ∂(t) ∈ Θ and for all d ∈ Z+, the
equivalence between (i) and (ii) is immediate since ∂(t) ∈ Θ implies (

∑r
i=1αi)

d = 1 for all
d ∈ Z+.

Remark 3.2. When the parameter-dependent matrix Y (∂) is assumed to be zero, the condition
(i) is reduced to the most recent existing conditions [19]. The existing conditions are written
as a sequence of progressively less and less conservative LMI. With the increase of this
positive integer d, necessity is asymptotically attained. However, at each step, the LMI-based
conditions are still sufficient and have some conservatism. It leads to higher computational
times. Here, an additional decision variable Y (∂) is introduced to decrease the conservatism
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at each step. It provides more design freedom to get a feasible solution. In the following, we
only give the LMI-based conditions with d = 1, d = 2.

Theorem 3.3 (d = 1). LPV system (2.1) is quadratically stabilizable via the gain-scheduling
controller (2.4) if there exist matrices Q > 0, Ni, i = 1, 2, . . . , r and Yijl = YT

lji, i, j, l = 1, 2, . . . , r,
satisfying

Gii < Yiii, i = 1, 2, . . . , r,

Gii +Gij +Gji < Yiij + Yiji + YT
iij , i = 1, 2, . . . , r, j /= i, j = 1, 2, . . . , r,

Gij +Gil +Gji +Gjl +Gli +Glj < Yijl + Yilj + Yjil + YT
ijl + YT

ilj + YT
jil,

i = 1, 2, . . . , r − 2, j = i + 1, . . . , r − 1, j = j + 1, . . . , r,

⎡

⎢⎢⎢
⎣

Y 1i1 Y1i2 · · · Y1ir

Y2i1 Y2i2 · · · Y2ir
...

...
. . .

...
Yri1 Yri2 · · · Yrir

⎤

⎥⎥⎥
⎦

≤ 0, i = 1, 2, . . . , r.

(3.3)

Moreover, in this case, local state-feedback gains are Kj = NjQ
−1, j = 1, 2, . . . , r.

Remark 3.4. The details concerning these LMI-based results above can be referred to [21,
Theorem 5] for Takagi-Sugeno fuzzy systems. New proposed LMI-based conditions are
presented according to condition (ii) of Lemma 3.1 in the case of d = 2. Meanwhile, a simple
proof is also given.

Theorem 3.5 (d = 2). LPV system (2.1) is quadratically stabilizable via the gain-scheduling
controller (2.4), if there exist matrices Q > 0; Ni, i = 1, 2, . . . , r; Yijmn = YT

njmi, i = 1, 2, . . . , r, j =
1, 2, . . . , r, m = 1, 2, . . . , r, n = 1, 2, . . . , r satisfying

Gii < Yiiii, i = 1, 2, . . . , r, i /= j, (3.4)

2Gii +Gij +Gji < Yiiij + YT
iiij + Yiiji + Yijii, i = 1, 2, . . . , r, j = 1, 2, . . . , r, i /= j, (3.5)

Gii +Gij +Gji < Yiijj + YT
iijj + Yjiij , i = 1, 2, . . . , r, j = 1, 2, . . . , r, i /= j, (3.6)

2Gii + 2Gij + 2Gim + 2Gji + 2Gjm +Gmi +Gmj

< Yiijm + Yijim + Yijmi + Ymiji + Ymjii + Ymiij

+ YT
iijm + YT

ijim + Yimji + YT
miji + YT

mjii + YT
miij ,

i = 1, 2, . . . , r − 3, j = 1, 2, . . . , r − 2, m = 1, 2, . . . , r − 1,

(3.7)
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(
Gij +Gim +Gin +Gji +Gjm +Gjn +Gmi +Gmj +Gmn +Gni +Gnj +Gnm

)

<

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Yijmn + Yijnm + Yimjn + Yimnj + Yinjm + Yinmj

+Yjinm + Yjimn + Yjmin + Yjmni + Yjnmi + Yjnim

YT
ijmn + YT

ijnm + YT
imjn + YT

imnj + YT
injm + YT

inmj

+YT
jinm + YT

jimn + YT
jmin + YT

jmni + YT
jnmi + YT

jnim

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

i = 1, 2, . . . , r − 3, j = 1, 2, . . . , r − 2, m = 1, 2, . . . , r − 1, n = 1, 2, . . . , r,

(3.8)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y1ij1 Y1ij2 · · · Y1ijr

Y2ij1 Y2ij2 · · · Y2ijr

...
...

. . .
...

Yrij1 Yrij2 · · · Yrijr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 0, i = 1, 2, . . . , r, j = 1, 2, . . . , r. (3.9)

In this case, if the conditions above are feasible, local state feedback gains are Kj = NjQ
−1, j =

1, 2, . . . , r.

Proof. Consider a candidate of quadratic function V (x(t)) = xT (t)P−1x(t). The equilibrium of
(2.5) is quadratically stable if

V̇
(
x(t)

)
= xT (t)

{
r∑

i=1

r∑

j=1

αiαj

(
QAT

i +AiQ −NT
j B

T
i − BiNj

)
}

x(t) < 0 ∀x(t)/= 0. (3.10)

From inequality (3.10) above, the equilibrium of (2.5) is quadratically stable if

r∑

i=1

r∑

j=1

αiαj

(
QAT

i +AiQ −NT
j B

T
i − BiNj

)

=
r∑

i=1

r∑

j=1

αiαjGij =

(
r∑

i=1

αi

)2 r∑

i=1

r∑

j=1

αiαjGij =
(
α1 + α2 + · · · + αr

)2
r∑

i=1

r∑

j=1

αiαjGij

=
r∑

i=1

α4
i Gii +

r∑

i,j=1
i /= j

α3
i αj

(
2Gii +Gij +Gji

)
+

r∑

i,j=1
i /= j

α2
i α

2
j

(
Gii +Gij +Gji

)

+
r−2∑

i=1

r−1∑

j=i+1

r∑

m=j+1

α2
i αjαm

(
2Gii + 2Gij + 2Gim + 2Gji + 2Gjm +Gmi +Gmj

)

+
r−3∑

i=1

r−2∑

j=i+1

r−1∑

m=j+1

r∑

n=m+1

αiαjαmαn∗2
(

Gij +Gim +Gin +Gji +Gjm +Gjn

+Gmi +Gmj +Gmn +Gni +Gnj +Gnm

)

� Δ



Wei Xie 7

∇ <
r∑

i=1

α4
i Yiiii +

r∑

i,j=1
i /= j

α3
i αj

(
Yiiij + Yiiji + Yijii + Yjiii

)
+

r∑

i,j=1
i /= j

α2
i α

2
j

(
Yiijj + Yjiji + Yjiij

)

+
r−2∑

i=1

r−1∑

j=i+1

r∑

m=j+1

α2
i αjαm

⎛

⎝
Yiijm + Yiimj + Yimij + Yijim + Yijmi + Yimji

+Ymiji + Yjimi + Ymjii + Yjmii + Ymiij + Yjiim

⎞

⎠

+
r−3∑

i=1

r−2∑

j=i+1

r−1∑

m=j+1

r∑

n=m+1

αiαjαmαn

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Yijmn + Yijnm + Yimjn + Yimnj + Yinjm + Yinmj

+Yjinm + Yjimn + Yjmin + Yjmni + Yjnmi + Yjnim

YT
ijmn + YT

ijnm + YT
imjn + YT

imnj + YT
injm + YT

inmj

+YT
jinm + YT

jimn + YT
jmin + YT

jmni + YT
jnmi + YT

jnim

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=α1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

α1I

α2I

...

αrI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

T⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Y1111 Y1112 · · · Y111r

Y2111 Y2112 · · · Y211r

...
...

. . .
...

Yr111 Yr112 · · · Yri11r

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

α1I

α2I

...

αrI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+α2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

α1I

α2I

...

αrI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

T⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Y1121 Y1122 · · · Y112r

Y2121 Y2122 · · · Y212r

...
...

. . .
...

Yr121 Yr122 · · · Yr12r

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

α1I

α2I

...

αrI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+ · · · + αr

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

α1I

α2I

...

αrI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

T ⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Y11r1 Y11r2 · · · Y11rr

Y21r1 Y21r2 · · · Y21rr

...
...

. . .
...

Yr1r1 Yr1r2 · · · Yr1rr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

α1I

α2I

...

αrI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+α2

⎛

⎜⎜⎜⎜⎜⎜
⎝

α1

⎡

⎢⎢⎢⎢⎢⎢
⎣

α1I

α2I

...

αrI

⎤

⎥⎥⎥⎥⎥⎥
⎦

T⎡

⎢⎢⎢⎢⎢⎢
⎣

Y1211 Y1212 · · · Y121r

Y2211 Y2212 · · · Y221r

...
...

. . .
...

Yr211 Yr212 · · · Yr21r

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎣

α1I

α2I

...

αrI

⎤

⎥⎥⎥⎥⎥⎥
⎦

+∂2

⎡

⎢⎢⎢⎢⎢⎢
⎣

α1I

α2I

...

αrI

⎤

⎥⎥⎥⎥⎥⎥
⎦

T⎡

⎢⎢⎢⎢⎢⎢
⎣

Y1221 Y1222 · · · Y122r

Y2221 Y2222 · · · Y222r

...
...

. . .
...

Yr221 Yr222 · · · Yr22r

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎣

α1I

α2I

...

αrI

⎤

⎥⎥⎥⎥⎥⎥
⎦

+ · · · + αr

⎡

⎢⎢⎢⎢⎢⎢
⎣

α1I

α2I

...

αrI

⎤

⎥⎥⎥⎥⎥⎥
⎦

T ⎡

⎢⎢⎢⎢⎢⎢
⎣

Y12r1 Y12r2 · · · Y12rr

Y22r1 Y22r2 · · · Y22rr

...
...

. . .
...

Yr2r1 Yr2r2 · · · Yr2rr

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎣

α1I

α2I

...

αrI

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎞

⎟⎟⎟⎟⎟⎟
⎠
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+· · · +αr

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

α1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1I

α2I

...

αrI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y1r11 Y1r12 · · · Y1r1r

Y2r11 Y2r12 · · · Y2r1r

...
...

. . .
...

Yrr11 Yrr12 · · · Yrr1r

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1I

α2I

...

αrI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+α2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1I

α2I

...

αrI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y1r21 Y1r22 · · · Y1r2r

Y2r21 Y2r22 · · · Y2r2r

...
...

. . .
...

Yrr21 Yrr22 · · · Yrr2r

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1I

α2I

...

αrI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ · · · + αr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1I

α2I

...

αrI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y1rr1 Y1rr2 · · · Y1rrr

Y2rr1 Y2rr2 · · · Y2rrr

...
...

. . .
...

Yrrr1 Yrrr2 · · · Yrrrr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1I

α2I

...

αrI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
r∑

i=1

r∑

j=1

αiαj

⎛

⎜⎜⎜⎜⎜⎜
⎝

⎡

⎢⎢⎢⎢⎢⎢
⎣

α1I

α2I

...

αrI

⎤

⎥⎥⎥⎥⎥⎥
⎦

T ⎡

⎢⎢⎢⎢⎢⎢
⎣

Y1ij1 Y1ij2 · · · Y1ijr

Y2ij1 Y2ij2 · · · Y2ijr

...
...

. . .
...

Yrij1 Yrij2 · · · Yrijr

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎣

α1I

α2I

...

αFrI

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

(3.11)

Thus, if (3.9) holds ∇ < 0. In other words, the LPV system (2.1) is quadratically stabilizable
via the gain-scheduled controller (2.4).

Remark 3.6. The relationship between Theorems 3.3 and 3.5 is discussed here. One can
find that in the case of j = i, the conditions suggested herein reduce to the conditions
of Theorem 3.3. That is, Theorem 3.3 is a special case of Theorem 3.5 here. Consequently,
with the increase of this positive integer d, the LMI-based conditions will provide more
additional slack matrix variables which bring us more design freedom. Although the
numerical complexity is increased much, a sequence of LMI-based conditions which are
less and less conservative can be obtained. In Section 4, two simple numerical examples will
be illustrated to compare the proposed conditions with the most recent existing conditions,
where the additional decision variable is not added.

4. Numerical example

To illustrate the effectiveness of the proposals, two simple numerical examples are given here.
All of LMIs-based conditions are solved by Matlab LMI toolbox [22].

Example 4.1. Consider state-space expressions of two vertexes of an LPV plant as follows:

A1 =
[

1.59 −7.29
0.01 0

]
, B1 =

[
1
0

]
,

A2 =
[

0.02 −4.64
0.35 0.21

]
, B2 =

[
8
0

]
,

A3 =
[
−9 −4.33
0 0.05

]
, B3 =

[
3
−1

]
.

(4.1)
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The problem is considered to seek an LPV state feedback controller as (2.4) such that closed-
loop system is quadratically stable. The case of d = 2 is considered with and without the
additional decision variable, respectively.

(i) Without the additional decision variable [19], after 21 iterations, these LMI-based
conditions are not feasible. Therefore, an LPV state feedback controller cannot be
found. Since the existing methods [19] provide necessary and sufficient conditions
for such a state-feedback, there could exist a feasible solution in the case of d > 2.

(ii) With the additional decision variable, according to (3.4)–(3.9), after 19 iterations,
these LMI-based conditions can be solvable with

Q =

[
1.037 −0.122
−0.122 0.029

]

,

N1 =
[
−3.466 0.351

]
, N2 =

[
−1.285 −0.1333

]
, N3 =

[
0.8826 0.2923

]
.

(4.2)

Therefore, the vertex matrices of state feedback are given as

K1 = N−1
1 Q =

[
−3.789 −3.788

]
,

K2 = N−1
2 Q =

[
−3.451 −18.758

]
,

K3 = N−1
3 Q =

[
3.929 26.099

]
.

(4.3)

Example 4.2. To illustrate the proposed approach, consider the problem of balancing an
inverted pendulum on a cart. The equations of motion for the pendulum are as follows [23]:

ẋ1 = x2,

ẋ2 =
g sin

(
x1
)
− am/x2

2 sin
(
2x1

)
/2 − a cos

(
x1
)
u

4l/3 − aml cos2
(
x1
) ,

(4.4)

where x1 denotes the angle (in radians) of the pendulum from the vertical, and x2 is the
angular velocity. g = 9.8 m/s2 is the gravity constant, m is the mass of the pendulum, M
is the mass of the cart, 2l is the length of the pendulum, and u is the force applied to the
cart (in Newtons): a = 1/(m + M). We choose m = 2.0 kg, M = 8.0 kg, and 2l = 1.0 m. We
first represent the nonlinear system above by LPV model. Notice that when x1 = ±π/2, the
system is uncontrollable. Hence, we approximate the system with state-space expressions of
the vertex as follows:

A1 =

⎡

⎣
0 1
g

4l/3 − aml
0

⎤

⎦ , B1 =

⎡

⎣
0

− a

4l/3 − aml

⎤

⎦ ,

A2 =

⎡

⎢
⎣

0 1
2g

π
(
4l/3 − amlβ2

) 0

⎤

⎥
⎦ , B2 =

⎡

⎢
⎣

0

−
aβ

4l/3 − amlβ2

⎤

⎥
⎦ ,

(4.5)

where β = cos(88◦).
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Figure 1: Trajectory of the states of this plant with initial values x(0) = [−0.25 0.15]T .

According to the approach proposed here, several cases will be considered with the
increasing of the scalar d.

In the case of d = 0, after 39 iterations, due to the conservatism of the conditions, we
cannot find a feasible solution to this state feedback.

In the case of d ≥ 1, we can find feasible solutions to this state feedback.
When d = 1, after 5 iterations, we can obtain

W =

[
0.0302 −0.185

−0.185 1.569

]

,

Z1 =
[
−1.833 39.95

]
, Z2 =

[
17.776 −80.410

]
.

(4.6)

Then, the state feedback is obtained as

K(∂) =
r∑

j=1

αjKj with K1 = Z1W
−1 =

[
346.9 66.42

]
, K2 = Z2W

−1 =
[
996.13 66.40

]
.

(4.7)

Here, we choose α1(t) = δ, α2(t) = (1 − δ), in which δ =: (1.5701 − x1(t))/3.141. It is easy to
check that the αi(t) are convex coordinates, since they satisfy 0 ≤ αi(t) ≤ 1,

∑2
i=1 αi(t) = 1.

The trajectory of the states of this plant can be drawn for the initial values x(0) =
[
−0.25 0.15

]T
as shown in Figure 1.

From these numerical examples above, one can see that by adding an additional
decision variable, at each step, these new conditions can provide less conservative or at least
the same results than the most recent existing methods in the literature. Consequently, the
feasible solutions can be obtained in much lower steps.



Wei Xie 11

5. Conclusion

A sequence of new LMI-based conditions has been proposed for quadratic stabilization of
LPV systems. One can find that with the increase of this positive integer d, a sequence of
LMI-based conditions which are less and less conservative will be obtained. Here, we only
present the conditions in the case of d = 2. By adding an additional decision variable, at
each step, these new conditions relaxed the conservatism of the previous existing works. As
a result, the feasible solutions can be obtained in much lower steps.
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