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1. Introduction

Throughout this paper,N denotes the set of positive integers. Let E be a real Banach space,C a
nonempty convex subset of E. A mapping T : C → C is called asymptotically nonexpansive
if there is a sequence {kn} ⊂ [1,∞) such that

‖Tnx − Tny‖ ≤ kn‖x − y‖ ∀x, y ∈ C, ∀n ∈ N, (1.1)

where
∑∞

k=1(kn − 1) < ∞. A point x ∈ C is a fixed point of T , provided that Tx = x.
To approximate the common fixed points of two mappings, the following Ishikawa-

type two-step iterative process is widely used (see, e.g., [1–9], and references cited therein):

x1 = x ∈ C,

xn+1 = (1 − an)xn + anS
nyn,

yn = (1 − bn)xn + bnT
nxn, n ∈ N,

(1.2)

where {an} and {bn} are in [0, 1] satisfying certain conditions. Note that approximating fixed
points of two mappings has a direct link with the minimization problem (see, e.g., [10]).
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In this paper, we introduce a new one-step iterative process to compute the common
fixed points of two asymptotically nonexpansive mappings. Let S, T : C → C be two
asymptotically nonexpansive mappings. Then, our process reads as follows:

x1 = x ∈ C,

xn+1 = anS
nxn + (1 − an)Tnxn, n ∈ N,

(1.3)

where {an} is a sequence in [0, 1].
This process is computationally simpler than (1.2) to approximate common fixed

points of twomappings. It is worth noting that our process is of independent interest. Neither
(1.2) implies (1.3) nor conversely. However, both (1.2) and (1.3) reduce toMann-type iterative
process when T = I, that is, the identity mapping is as follows:

x1 = x ∈ C,

xn+1 = anS
nxn + (1 − an)xn, n ∈ N.

(1.4)

Remark 1.1. The question may arise that one needs two different sequences {sn} and {tn}
for the mappings S and T used in (1.3), but it is readily answered when one takes kn =
sup{sn, tn}. Henceforth, we will take only one sequence {kn} which works equally good for
both mappings S and T .

Let us recall the following definitions.
A Banach space E is said to satisfy Opial’s condition [11], if for any sequence {xn} in

E, xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖ ∀y ∈ E with y /=x. (1.5)

Examples of Banach spaces satisfying this condition are Hilbert spaces and all spaces
lp (1 < p < ∞). On the other hand, Lp[0, 2π] with 1 < p /= 2fails to satisfy Opial’s condition.

A mapping T : C → E is called demiclosed with respect to y ∈ E if for each sequence
{xn} in C and each x ∈ E, xn ⇀ x and Txn → y imply that x ∈ C and Tx = y.

A Banach space E is said to satisfy the Kadec Klee property if for every sequence {xn}
in E converging weakly to x together with ‖xn‖ converging strongly to ‖x‖, {xn}converges
strongly to x. Uniformly convex Banach spaces, Banach spaces of finite dimension, and
reflexive locally uniform convex Banach spaces are some of the examples which satisfy the
Kadec Klee property.

Next, we state the following useful lemmas.

Lemma 1.2 (see [12]). Let {δn}, {βn}, and {γn} be three sequences of nonnegative numbers such
that βn ≥ 1 and

δn+1 ≤ βnδn + γn ∀n ∈ N. (1.6)

If
∑∞

n=1γn < ∞ and
∑∞

n=1(βn − 1) < ∞, then limn→∞δn exists.
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Lemma 1.3 (see [13]). Suppose that E is a uniformly convex Banach space and 0 < p ≤ tn ≤
q < 1 for all positive integers n. Also, suppose that {xn} and {yn} are two sequences of E such that
lim supn→∞‖xn‖ ≤ r, lim supn→∞‖yn‖ ≤ r, and limn→∞‖tnxn + (1 − tn)yn‖ = r hold for some
r ≥ 0. Then, limn→∞‖xn − yn‖ = 0.

Lemma 1.4 (see [14, 15]). Let E be a uniformly convex Banach space and let C be a nonempty closed
convex subset of E. Let T be an asymptotically nonexpansive mapping of C into itself. Then, (I − T) is
demiclosed with respect to zero.

Lemma 1.5 (see [16]). Let C be a convex subset of a uniformly convex Banach space E. Then, there
is a strictly increasing and continuous convex function g : [0,∞) → [0,∞) with g(0) = 0 such that
for every Lipschitzian mapU : C → C with Lipschitz constant L ≥ 1, the following inequality holds:

‖U(tx + (1 − t)y) − (tUx + (1 − t)Uy‖
≤ Lg−1(‖x − y‖ − L−1‖Ux −Uy‖) ∀x, y ∈ C, t ∈ [0, 1].

(1.7)

Let ωw({xn}) denote the set of all weak subsequential limits of a bounded sequence
{xn} in E. Then, the following is actually Lemma 3.2 of Falset et al. [16].

Lemma 1.6. Let E be a uniformly convex Banach space with its dual E∗ satisfying the Kadec Klee
property. Assume that {xn} is a bounded sequence such that limn→∞‖txn + (1 − t)p1 − p2‖ exists for
all t ∈ [0, 1] and for all p1, p2 ∈ ωw({xn}). Then, ωw({xn}) is a singleton.

2. Some preparatory lemmas

In this section, we will prove the following important lemmas. In the sequel, we will write
F = F(S) ∩ F(T) for the set of all common fixed points of the mappings S and T.

Lemma 2.1. Let C be a nonempty closed convex subset of a normed space E. Let S, T : C → C be
asymptotically nonexpansive mappings. Let {xn} be the process as defined in (1.3), where {an} is a
sequence in [δ, 1 − δ] for some δ ∈ (0, 1). If F /=φ, then limn→∞‖xn − x∗‖ exists for all x∗ ∈ F.

Proof. Let x∗ ∈ F, then

‖xn+1 − x∗‖ = ‖anS
nxn + (1 − an)Tnxn − x∗‖

= ‖an(Snxn − x∗) + (1 − an)(Tnxn − x∗)‖
≤ an‖Snxn − x∗‖ + (1 − an)‖(Tnxn − x∗)‖
≤ ankn‖xn − x∗‖ + (1 − an)kn‖xn − x∗‖
= kn‖xn − x∗‖.

(2.1)

Thus, by Lemma 1.2, limn→∞‖xn − x∗‖ exists for each x∗ ∈ F.

Lemma 2.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Let
S, T : C → C be asymptotically nonexpansive mappings, and let {xn} be the process as defined in



4 Journal of Inequalities and Applications

(1.3) satisfying

‖xn − Snxn‖ ≤ ‖Snxn − Tnxn‖, n ∈ N. (2.2)

If F /=φ, then limn→∞‖Sxn − xn‖ = 0 = limn→∞‖Txn − xn‖.

Proof. By Lemma 2.1, limn→∞‖xn − x∗‖ exists. Suppose that

lim
n→∞

‖xn − x∗‖ = c (2.3)

for some c ≥ 0. Then, ‖Snxn − x∗‖ ≤ kn‖xn − x∗‖ implies that

lim sup
n→∞

‖Snxn − x∗‖ ≤ c. (2.4)

Similarly, we have

lim sup
n→∞

‖Tnxn − x∗‖ ≤ c. (2.5)

Further, limn→∞‖xn+1 − x∗‖ = cgives that

lim
n→∞

‖an(Snxn − x∗) + (1 − an)(Tnxn − x∗)‖ = c. (2.6)

Applying Lemma 1.3, we obtain that

lim
n→∞

‖Snxn − Tnxn‖ = 0. (2.7)

But then by the condition ‖xn − Snxn‖ ≤ ‖Snxn − Tnxn‖,

lim sup
n→∞

‖xn − Snxn‖ ≤ 0. (2.8)

That is,

lim
n→∞

‖xn − Snxn‖ = 0. (2.9)

Also, then ‖xn − Tnxn‖ ≤ ‖xn − Snxn‖ + ‖Snxn − Tnxn‖ implies that

lim
n→∞

‖xn − Tnxn‖ = 0. (2.10)

Now, by definition of {xn}, ‖xn+1 − Tnxn‖ ≤ an‖Snxn − Tnxn‖ so that

lim
n→∞

‖xn+1 − Tnxn‖ = 0. (2.11)
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Then, ‖xn+1 − Snxn‖ ≤ ‖xn+1 − Tnxn‖ + ‖Snxn − Tnxn‖ implies

lim
n→∞

‖xn+1 − Snxn‖ = 0. (2.12)

Similarly, by ‖xn+1 − xn‖ ≤ ‖xn+1 − Tnxn‖ + ‖xn − Tnxn‖,we have

lim
n→∞

‖xn+1 − xn‖ = 0. (2.13)

Next,

‖xn+1 − Sxn+1‖ ≤ ‖xn+1 − Sn+1xn+1‖ + ‖Sn+1xn+1 − Sn+1xn‖ + ‖Sn+1xn − Sxn+1‖
≤ ‖xn+1 − Sn+1xn+1‖ + kn+1‖xn+1 − xn‖ + k1‖Snxn − xn+1‖

(2.14)

yields

lim
n→∞

‖xn − Sxn‖ = 0. (2.15)

Moreover,

‖Sxn+1 − Txn+1‖ ≤ ‖Sxn+1 − Sn+1xn+1‖ + ‖Sn+1xn+1 − Tn+1xn+1‖
+ ‖Tn+1xn+1 − Tn+1xn‖ + ‖Tn+1xn − Txn+1‖

≤ k1‖xn+1 − Snxn+1‖ + ‖Sn+1xn+1 − Tn+1xn+1‖
+ kn+1‖xn+1 − xn‖ + k1‖Tnxn − xn+1‖

≤ k1(‖xn+1 − Snxn‖ + ‖Snxn − Snxn+1‖)
+ ‖Sn+1xn+1 − Tn+1xn+1‖ + kn+1‖xn+1 − xn‖
+ k1‖Tnxn − xn+1‖

≤ k1(‖xn+1 − Snxn‖ + kn‖xn − xn+1‖)
+ ‖Sn+1xn+1 − Tn+1xn+1‖ + kn+1‖xn+1 − xn‖
+ k1‖Tnxn − xn+1‖

(2.16)

gives by (2.7), (2.11), (2.12), and (2.13) that

lim
n→∞

‖Sxn − Txn‖ = 0. (2.17)

In turn, by (2.15) and (2.17), we get

lim
n→∞

‖xn − Txn‖ = 0. (2.18)

This completes the proof.
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Lemma 2.3. Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Let
S, T : C → C be asymptotically nonexpansive mappings and {xn} as defined in (1.3). Then, for any
p1, p2 ∈ F, limn→∞‖txn + (1 − t)p1 − p2‖ exists for all t ∈ [0, 1].

Proof. By Lemma 2.1, limn→∞‖xn − p‖ exists for all p ∈ F and so {xn} is bounded. Thus, there
exists a real number r > 0 such that {xn} ⊆ D ≡ Br(0) ∩ C, so that D is a closed convex
bounded nonempty subset of C. Put

un(t) = ‖txn + (1 − t)p1 − p2‖. (2.19)

Notice that limn→∞un(0) = ‖p1 − p2‖ and limn→∞un(1) = ‖xn − p2‖ exist as in the proof of
Lemma 2.1.

Define Wn : D → D by

Wnx = anS
nx + (1 − an)Tnx. (2.20)

It is easy to verify thatWnxn = xn+1, Wnp = p for all p ∈ F and

‖Wnx −Wny‖ ≤ kn‖x − y‖ ∀x, y ∈ C, n ∈ N. (2.21)

Set

Rn,m = Wn+m−1Wn+m−2 · · ·Wn, m ∈ N,

vn,m = ‖Rn,m(txn + (1 − t)p1) − (tRn,mxn + (1 − t)p1)‖.
(2.22)

Then, ‖Rn,mx − Rn,my‖ ≤ ∏n+m−1
j=n kj‖x − y‖, Rn,mxn = xn+m, and Rn,mp = p for all p ∈ F.

Applying Lemma 1.5 with x = xn, y = p1, U = Rn,m, and using the facts that
∑∞

k=1(kn−
1) < ∞ and limn→∞‖xn−p‖exist for all p ∈ F,we obtain vn,m → 0 as n → ∞ and for allm ≥ 1.

Finally, from the inequality,

un+m(t) = ‖txn+m + (1 − t)p1 − p2‖
= ‖tRn,mxn + (1 − t)p1 − p2‖
≤ vn,m + ‖Rn,m(txn + (1 − t)p1) − p2‖

≤ vn,m +
n+m−1∏

j=n

kj‖txn + (1 − t)p1 − p2‖

= vn,m +
n+m−1∏

j=n

kjun(t),

(2.23)
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it follows that

lim sup
n→∞

un(t) ≤ lim inf
n→∞

un(t). (2.24)

Hence, limn→∞‖txn + (1 − t)p1 − p2‖ exists for all t ∈ [0, 1].

3. Common fixed point approximations by weak convergence

Here, we will approximate common fixed points of the mappings S and T through the weak
convergence of the process {xn} defined in (1.3). Our first result in this direction uses the
Opial’s condition and the second one the Kadec Klee property.

Theorem 3.1. Let E be a uniformly convex Banach space satisfying the Opial’s condition and
C, S, T , and let {xn} be as in Lemma 2.2. If F /=φ, then {xn} converges weakly to a common fixed
point of S and T.

Proof. Let x∗ ∈ F, then as proved in Lemma 2.1, limn→∞‖xn − x∗‖ exists. Now, we prove that
{xn} has a unique weak subsequential limit in F. To prove this, let z1 and z2 be weak limits of
the subsequences {xni} and {xnj} of {xn}, respectively. By Lemma 2.2, limn→∞‖xn − Sxn‖ = 0
and (I − S) are demiclosed with respect to zero from Lemma 1.4. Therefore, we obtain Sz1 =
z1. Similarly, Tz1 = z1. Again, in the same way, we can prove that z2 ∈ F. Next, we prove the
uniqueness. For this, suppose that z1 /= z2, then by the Opial’s condition

lim
n→∞

‖xn − z1‖ = lim
ni →∞

‖xni − z1‖ < lim
ni →∞

‖xni − z2‖ = lim
n→∞

‖xn − z2‖
= lim

nj →∞
‖xnj − z2‖ < lim

nj →∞
‖xnj − z1‖ = lim

n→∞
‖xn − z1‖.

(3.1)

This is a contradiction. Hence, {xn} converges weakly to a point in F.

Theorem 3.2. Let E be a uniformly convex Banach space with its dual E∗ satisfying the Kadec Klee
property. LetC, S, T, and {xn} be as in Lemma 2.2. If F /=φ, then {xn} converges weakly to a common
fixed point of S and T.

Proof. By the boundedness of {xn} and reflexivity of E, we have a subsequence {xni} of {xn}
that converges weakly to some p in C. By Lemma 2.2, we have limi→∞‖xni − Sxni‖ = 0 =
limi→∞‖xni − Txni‖. This gives p ∈ F. To prove that {xn} converges weakly to p, suppose that
{xnk} is another subsequence of {xn} that converges weakly to some q in C. Then, by Lemmas
2.2 and 1.4, p, q ∈ W ∩ F, where W = ωw({xn}). Since limn→∞‖txn + (1 − t)p − q‖ exists for
all t ∈ [0, 1] by Lemma 2.3, therefore, p = q from Lemma 1.6. Consequently, {xn} converges
weakly to p ∈ F and this completes the proof.

By putting T = I, the identity mapping, in Theorems 3.1 and 3.2, we have the following
corollaries. Note that the condition ‖xn − Snxn‖ ≤ ‖Snxn − Tnxn‖, n ∈ N, becomes trivially
true in this case.

Corollary 3.3. Let E be a uniformly convex Banach space satisfying the Opial’s condition and let
C, S be as in Lemma 2.1 and {xn} as in (1.4). If F(S)/=φ, then {xn} converges weakly to a fixed
point of S.
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Corollary 3.4. Let E be a uniformly convex Banach space with dual E∗ satisfying the Kadec Klee
property. Let C, S be as in Lemma 2.1 and {xn} as in (1.4). If F(S)/=φ, then {xn} converges weakly
to a fixed point of S.

4. Common fixed point approximations by strong convergence

We first prove a strong convergence theorem in general real Banach spaces as follows.

Theorem 4.1. Let E be a real Banach space and C, {xn}, and let S, T be as in Lemma 2.1. If F /=φ,
then {xn} converges strongly to a common fixed point of S and T if and only if

lim inf
n→∞

D(xn, F) = 0, (4.1)

where D(x, F) = inf{‖x − p‖ : p ∈ F}.

Proof. Necessity is obvious. Conversely, suppose that

lim inf
n→∞

D(xn, F) = 0. (4.2)

As in the proof of Lemma 2.1, we have

‖xn+1 − p‖ ≤ kn‖xn − p‖. (4.3)

This gives

D(xn+1, F) ≤ knD(xn, F), (4.4)

so that limn→∞D(xn, F) exists; but by hypothesis

lim inf
n→∞

D(xn, F) = 0, (4.5)

we have limn→∞D(xn, F) = 0.
Next, we show that {xn} is a Cauchy sequence in C. Let ε > 0 be given. Since

limn→∞D(xn, F) = 0, there exists a constant n0 such that for all n ≥ n0, we have

D(xn, F) <
ε

4
. (4.6)

In particular, inf{‖xn0 − p‖ : p ∈ F} < ε/4.Hence, there exists p∗ ∈ F such that

‖xn0 − p∗‖ <
ε

2
. (4.7)

Now, for m,n ≥ n0, we have

‖xn+m − xn‖ ≤ ‖xn+m − p∗‖ + ‖xn − p∗‖ ≤ 2‖xn0 − p∗‖ < 2
(
ε

2

)

= ε. (4.8)
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Hence {xn} is a Cauchy sequence in a closed subset C of a Banach space E, therefore, it must
converge in C. Let limn→∞xn = q. Now, limn→∞D(xn, F) = 0 gives that D(q, F) = 0; but as
being well known, F is closed, therefore, q ∈ F.

Fukhar-ud-din and Khan gave the following so-called condition (A′) in [17].
Two mappings S, T : C → C, where C is a subset of E, are said to satisfy condition

(A′) if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for
all r ∈ (0,∞) such that either ‖x − Tx‖ ≥ f(D(x, F)) or ‖x − Sx‖ ≥ f(D(x, F)) for all x ∈ C
where D(x, F) = inf{‖x − x∗‖ : x∗ ∈ F}.

Our next theorem is an application of Theorem 4.1 and makes use of condition (A′).

Theorem 4.2. Let E be a uniformly convex Banach space, and let C, {xn} be as in Lemma 2.2. Let
S, T : C → C be two asymptotically nonexpansive mappings satisfying condition (A′). If F /=φ, then
{xn} converges strongly to a common fixed point of S and T.

Proof. By Lemma 2.1, limn→∞‖xn − x∗‖ exists for all x∗ ∈ F. Let it be c for some c ≥ 0. If
c = 0, there is nothing to prove. Suppose c > 0. Now, ‖xn+1 − x∗‖ ≤ kn‖xn − x∗‖ gives that
D(xn+1, F) ≤ knD(xn, F) and so limn→∞D(xn, F) exists by Lemma 1.2. By using condition
(A′), either

lim
n→∞

f(D(xn, F)) ≤ lim
n→∞

‖xn − Txn‖ = 0 (4.9)

or

lim
n→∞

f(D(xn, F)) ≤ lim
n→∞

‖xn − Sxn‖ = 0. (4.10)

In both the cases,

lim
n→∞

f(D(xn, F)) = 0. (4.11)

Since f is a nondecreasing function and f(0) = 0, limn→∞D(xn, F) = 0. Now, applying
Theorem 4.2, we get the result.

Remark 4.3. When T = I, both of the above theorems remain valid for the Mann iterative
process (1.4).

Remark 4.4. Above theorems can also be proved using our process with error terms:

x1 = x ∈ C,

xn+1 = anS
nxn + bnT

nxn + cnun, n ∈ N,
(4.12)

where an + bn + cn = 1,
∑∞

n=1cn < ∞ and {un} is a bounded sequence in C.

Remark 4.5. Non-self-asymptotically nonexpansive mappings case can also be dealt with
similarly using above iterative process even with error terms.
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