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1. Introduction and preliminaries

Let  be the class of functions analytic in U and let H#[a, n] be the subclass of # consisting of
functions of the form f(z) = a + a,z" + 12" + -+ - . Let o be the subclass of H# consisting of
functions of the form f(z) = z + apz* +--- .

Denote by D* : & — o the operator defined by

D" := ﬁ*f(z), a> -1, (1.1)

where (x) refers to the Hadamard product or convolution. Then implies that

Z(Zn_lf(z))(n)

n!

D"f(z) = , mn€Ny=NU {0} (1.2)
We note that Df(z) = f(z) and D'f(z) = zf'(z). The operator D" f is called Ruscheweyh
derivative of nth order of f. Noor [1, 2] defined and studied an integral operator I, : # — #
analogous to D" f as follows.
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Let fu(z) =z/(1- z)"™, n e Ny, and let f,(l_l) be defined such that
- z
fal2)efu(2) = 7. (13)

Then

(-1)
Lf(z) = fa ) (2)xf(2) = [ﬁ] *f(2). (14)

Note that Ipf(z) = zf'(z) and I f(z) = f(z). The operator I, is called the Noor Integral of nth
order of f. Using (1.3), (1.4), and a well-known identity for D" f, we have

(n+ DL f(2) - nlyaa f(2) = 2(Tea f(2)) - (15)
Using hypergeometric functions > Fy, (1.4) becomes
I.f(z) = [z2F1(1, n+ 1, 2)|*f (2), (1.6)
where »F(a, b; ¢, z) is defined by

abz a(a+1)bb+1) 2

2Fi(a,b;c, z) :1+7ﬂ+ i) o (1.7)
For complex parameters
a]' .
ay,...,0 ™ #0,-1,-2,...;7=1,...,9 ),
ﬁ_’ (1.8)
ﬁl,...,pp<B—{ £0,-1,-2,...;j = 1,...,p>,
i
the Fox-Wright generalization ;%,[z] of the hypergeometric 4F, function by(see [3-5])
(a1, A1),..., (ag, Ay);
a%¥p z| =% [(a;, Aj)l,q; (B, Bj)l,p; z]
(Pr.B1),---, (Pp: Bp);
& (g +nAr)---T(ag+nAy) z" (1.9)

-3

n=0
~ 0 H?:lr(a]' +1’lA]') Z_n
n=0 H?:l (ﬁ] +TlB]') n!,
where A; > 0 forallj=1,...,9, Bj>0forallj=1,...,p,and 1 + Z?le]- —Z?zlAj > 0 for

suitable values |z|. For special case, when A; = 1forallj=1,...,q,and B; = 1forallj =1,...,p,
we have the following relationship:

gFplar, ... ag;P1,...,Bp;z) = Qq‘PP[(aj,l)Lq; (ﬁj’l)l,p; z],
g<p+1l;, qpeNy=NU{0}, zel,

T(By +nBy)---T(B, +nB,) n!

(1.10)
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where

o T T(B)

= ey T (1.11)

We introduce a function (z ;%¥,[(a;, Aj)l,q; Bj, Bj)1,p/' z)! given by

(2q%p[(aj, Ay i (B By) 1 21 * (2% [(a), A, i (B By) i 2])

" (1.12)
-z =2 - .

and obtain the following linear operator:

L (aj, Ap),y i (B Bi) 1, £ (2) = (2% [(a), A7)y s (B By 2]) £ (2), (1.13)
where f € 4,z € U, and

) @ IT,T(Bj+ (n-1)B))
(2% [(@j, Aj)1 7 (Bj By, 2]) = nzzzn;';:lr(“f +(n=1)4)

(A+1), 42" (1.14)

For some computation, we have

o [T7_,T(B; + (n-1)B;)
Tl A7) By By () =24 2 }@7 +(n- 1>A]'>
n= j=1 ] ]

A+1),qa,2", (1.15)

where (a),, is the Pochhammer symbol defined by

_Da+nm) {1’ =0 (1.16)

(@), I'(a) a(a+1)---(a+n-1), n={1,2,...).

From (1.15) we have the following result.

Lemma 1.1. Let f(z) € & forall z € U then

(1) Io[(1,1)11; (1, 1/(n=1))1,1f(2) = f(2).
(i) Li[(1, 1)1, (L 1/ (n=1))1,]f(2) = zf'(2).
(iti) z[Li[(aj, Ap)rgs (Bj, Bpl f (D] = A+ D) Dual(aj, Ay gs (Bj, Bpl f (2)=AL[(af, Aj)1 g
(Bj, B plf(2).

In the following definitions, we introduce new classes of analytic functions containing
generalized Noor integral operator (1.15).



4 Journal of Inequalities and Applications

Definition 1.2. Let f(z) € & then f(z) € Sﬁ:[(aj,Aj)Lq; (ﬂj/Bj)l,p] if and only if

o { z[L (@, Aj)y g (B By 1f ()]

, 0<p<l zel 1.17)
I)‘[(af’ Aj)llq; (ﬂ], Bj)l,p]f(z) } > H H< z (

Definition 1.3. Let f(z) € & then f(z) € CK[(aj,Aj)Lq; (ﬂlej)l,p] if and only if

9%{ (z[L[(a, A), By B))y | f(D)])

- }>‘u, 0<pu<l zel (1.18)
(i[(aj, Aj)y i (Bj Bj)y 1 f(2)

Let F and G be analytic functions in the unit disk U. The function F is subordinate to G,
written F < G, if G is univalent, F(0) = G(0) and F(U) ¢ G(U). Or given two functions F(z)
and G(z), which are analytic in U, the function F(z) is said to be subordination to G(z) in U if
there exists a function h(z), analytic in U with

h0)=0, |h(z)|<1 Vzel, (1.19)
such that
F(z) = G(h(z)) Vzel. (1.20)

Let ¢ : C>*—C and let h be univalent in U. If p is analytic in U and satisfies the
differential subordination ¢(p(z)), zp'(z)) < h(z) then p is called a solution of the differential
subordination. The univalent function g is called a dominant of the solutions of the differential
subordination, p < g. If p and ¢(p(2)), zp'(z)) are univalent in U and satisfy the differential
superordination h(z) < ¢(p(z)),zp'(z)) then p is called a solution of the differential
superordination. An analytic function g is called subordinant of the solution of the differential
superordination if g < p. Let @ be an analytic function in a domain containing f(U), ®(0) =0
and @'(0) > 0.
The function f € &4 is called ®—like if

zf'(z)
m{m} >0, zée€ u. (121)

This concept was introduced by Brickman [6] and established that a function f € & is
univalent if and only if f is ®—like for some ®.

Definition 1.4. Let @ be analytic function in a domain containing f(U), ®(0) = 0, @'(0) =1,
and @(w) # 0 for w € f(U)-0. Let g(z) be a fixed analytic function in U, g(0) = 1. The function
f € A4 is called ®—like with respect to g if

———<q(z), zel. (1.22)

zf'(2)
D(f(2))
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In the present paper, we apply a method based on the differential subordination in order
to obtain subordination results involving generalized Noor integral operator for a normalized
analytic function f(z) z € U

!

z[IL[(a, Aj), i (B By) o] £ (2)] .
O[L (a5, Ay (B, B), Jf @] 7

qi1(z) < (z). (1.23)

In order to prove our subordination and superordination results, we need to the following
lemmas in the sequel.

Definition 1.5 (see [7]). Denote by Q the set of all functions f(z) that are analytic and injective
on U — E(f), where E(f) := {{ € oU : lim,_;f(z) = oo} and are such that f'({) #0 for ¢ €
ou - E(f).

Lemma 1.6 (see [8]). Let q(z) be univalent in the unit disk U and 0 and let ¢ be analytic in a
domain D containing q(U) with ¢(w) #0, when w € q(U). Set Q(z) = zq'(z)P(q(z)), h(z) =
0(q(z)) + Q(z). Suppose that

(1) Q(z) is starlike univalent in U,
(2) R(zh'(z)/Q(z)) >0 for z € U.

If
0(p(2)) +zp'(2)9(p(2)) < 0(q(2)) + 24 (2)¢(q(2)), (1.24)
then
p(z) <q(z), (1.25)

and q(z) is the best dominant.

Lemma 1.7 ([9]). Let q(z) be convex univalent in the unit disk U and let & and ¢ be analytic in a
domain D containing q(U). Suppose that

(1) zq'(2)p(q(z)) is starlike univalent in U,
(2) R(B'(9(2))/p(q(2))} > 0 for z € UL
Ifp(z) € #[q(0),1] N Q, with p(U) C D and 3(p(z)) + zp'(z)¢p(z) being univalent in U and
8(q(2)) +zq'(2)p(q(z)) < 3(p(2)) + zp'(2)p(p(2)), (1.26)
then

qg(z) <p(2), (1.27)

and q(z) is the best subordinant.
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2. Characterization properties and distortion theorems

In this section, we investigate the characterization properties for the function f(z) €
to belong to the classes S’;[(zx]-,A]-)Lq; (Bj,Bj)1,] and Cf[(zxj,Aj)Lq; (Bj, Bj)1,] by obtaining
the coefficient bounds. Further, we prove the distortion theorems when f(z) € Sﬁl[(a]»,
Aj)l,q; (ﬁ]l Bj)l,p] and f(Z) € Ci[(“;r Aj)l,q; (ﬁ]! Bj)l,p]'

Theorem 2.1. Let f(z) € 4. Then f(z) € S’Z[(a]-,A]-)Lq; (Bj, Bj)1pl if and only if
ZHn—1|an| |.I’l()L + 1)11—1 - (('/\ + 1)n - (A)n)l S 1 _nu’ 0 S ‘M < 1’ (21)
n=2

where

LB+ (n-1)B))
LT (aj+ (n - DA))

(2.2)

n-1 =

Proof. Suppose that (2.1) holds. Then by using Lemma 1.1 and for z € U, we have
z[L[(aj, Aj)y 5 (Bj Bj)y 1 f ()]
L[(aj, Aj)y (Bj By 1 f(2)

< 1+ fo:an_l |an| (()L +1), - ()L)n)
B 1+ 3%, Hyt|an|(A+1),,,

{ z[L[(aj, Aj)y 5 (Bj By)y ) f (D] } 3
L[(aj, Aj)y . (B Bj), ) f(2) )~

(2.3)

This last expression is greater than p, if (2.1) holds this implies that f(z) € Sﬁl[(a]-,
A]')l,q? (ﬁj/Bj)l,p]- On the other hand, assume that f(z) € S’;[(zx]-,Aj)Lq; (ﬁj:Bj)l,p] then

o { z[L[(j, Aj)y g (Bi By, ) f (2] } . 04
L[(aj, Aj)1 i (Bj Bj)1 ] f(2)
but R{z} <|z| then
=[0G, 4), <ﬁj,B,->1,,,1f<z>J" » s
L[(aj, Aj), i (Bj Bj)1 ] f(2)

By a computation, we obtain (2.1). O

Corollary 2.2. Let the function f(z) belong to the class S’Z[(aj,Aj)l,q; (Bj, Bj)1,]- Then
|| < Sl , 0<p<t, 2.6)

Hya[p(A+ 1), = (A + 1), = (D))

where H,,_, is defined in (2.2).
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Theorem 2.3. Let f(z) € A4. Then f(z) € Cﬁ:[(a]»,Aj)Lq; (ﬁj/Bj)Lp] if and only if

ian_1|an| lpX+1), = (A +1), - (V)| <1-p 0<pu<l, (2.7)

n=2
where H,,_, is defined in (2.2).

Corollary 2.4. Let the function f(z) belong to the class Cﬁ[(aj,Aj)Lq; (Bj, Bj)1,pl- Then

(1-p)

ol S O D, — (@ D=y CSEh (28)
where H,,_1 is defined in (2.2).
Theorem 2.5. Let f(z) € Sﬁf[(aj,Aj)Lq; (ﬁj,Bj)Lp], then
(1-p) 2
> - s
N2 = i Dy = (o D= ] o
- .
f@) <2l Sl

|z[?,
Hi|p( +1); = (A +1); = (4),)|
for z € U where H,,_; is defined in (2.2).

Proof. If f(z) € SK [(aj, Aj)l,q? Bj, Bj)l,p] then in view of Theorem 2.1, we have

Hy i+ 1)1 = (A D3 = )] S an] € S ot | [+ 1),y — (A + 1), = (1))
n=2 n=2

(2.10)
<1-p.
This yields

n| < : 2.11
nZ:,'Z'a |<Hll#(')‘+1)1_((}‘+1)2_(}L)2)| -

Now

|f(@)] > |z - 12> | an]
"2 (2.12)
> |z - - Iz
Hifp(A+1); = (A + 1), = (4),)]

Also,

d-p) 2. (2.13)

|f@)| <zl + Hi|p(A+ 1) = (L + 1), = (1)) -

Hence the proof is complete. O
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Corollary 2.6. Under the hypothesis of Theorem 2.5, f(z) is included in a disk with its center at the

origin and radius r given by

1. (1-p)
Hi|p(A+1); = (A+1), - (W),)]

In the same way, we can prove the following result.

Theorem 2.7. Let f(Z) S CK[((X]‘, Aj)l,q; (ﬁ]‘, Bj)l,P] then

. (1-p) 2
2 S Dy (O D o)
£ (2)] <zl + @ .

|z
2Hq|p(A + 1)1 = (A + 1), = (1),) |

for z € U where Hy,_1 is defined in (2.2).

(2.14)

(2.15)

Corollary 2.8. Under the hypothesis of Theorem 2.7, f(z) is included in a disk with its center at the

origin and radius r given by

(1-p)
+ .
2H [p(A +1); = (A +1); = (1))

r=1

(2.16)

We next study some properties of the classes Sf[(a]-, Aj)1,qg (Bj, Bj)1pl and C’;[(a]-, Aj)rg

(ﬁ]/ Bj)l,p]'
Theorem 2.9. Let A > -1 and 0 < py < pp < 1. Then

Sﬁz [(“j' Aj) 14’ (ﬂj' Bj)l,p] C Sill [(“J" Aj)l,q; (ﬁ]’f Bj)l,p] .

Proof. By using Theorem 2.1.

Theorem 2.10. Let -1 < Ay <Xy and 0 < p < 1. Then

St (@i Ay g (Bir Bi) oyl 2 S, [, A)y s (B B)y -

Proof. By using Theorem 2.1.

Theorem 2.11. Let A > =1 and 0 < p1 < pp < 1. Then

CV (@i, Ay g (B Bi) ol € CY (g, Ap)y i (B B)y -

Proof. By using Theorem 2.3.

Theorem 2.12. Let -1 < Ay < Ay and 0 < pu < 1. Then

CL (e, Aj), g (B Bi)y ) 2 C (e, A)y i (B By -

Proof. By using Theorem 2.3.

(2.17)

(2.18)

(2.19)

(2.20)
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3. Sandwich results

By making use of Lemmas 1.6 and 1.7, we prove the following subordination and
superordination results.

Theorem 3.1. Let q(z) # 0 be univalent in U such that zq'(z) / q(z) is starlike univalent in U and

zq"(z) zq'(2)
qg(z)  q(z)

%{1+%q(z)+ }>0, a,y€C,y#0. (3.1)

If f € o satisfies the subordination

a{ z[L[(aj, A)), 5 (B By)y ) f (D] }
DO[L[(aj, Aj)y i (B Bi)y ] f(2)]
{ L Pl A, g By By f @]" 20, A), 5 (B By, | f(2)] } (3.2)
[L[(@j, Ay (B By ) f D] @I (@ Ap)y g (B Bi)y ] £(2)]

Yz4q'(2)
q(z) ’

<aq(z)+

then

z[L[(j, Aj)y o (Bi By)y ) f (2] .
O [(a5, A7),y B B f @]

(2), (3.3)

and q(z) is the best dominant.

Proof. Our aim is to apply Lemma 1.6. Setting

z[L[(j Aj)y g (Bj By, ) f (2]

= . 3.4
P Ol A By B, 72 oY
Computation shows that
2p(2) _ 2[L[(aj, A7), (B B | DT 2@ (I (@, A7) g3 (B, By 1 £ (2)] (3.5)
p(z) (L@, Ap)y i (Bi By f (2] @Iy Ay g (B Byl f(2] T
which yields the following subordination:
ap(z) + rzp'(2) <aq(z)+ &,(Z) a,y €C. (3.6)
p(2) aiz) "~



10 Journal of Inequalities and Applications
By setting
O(w) = aw,  P(w):= % y#0, 3.7)

it can be easily observed that 8(w) is analytic in C and ¢(w) is analytic in C \ {0} and that
¢(w) # 0 when w € C\ {0}. Also, by letting

Q) = 2¢(2)9(a(2) = =12,
q(z) (3.8)
1) = 0(4(2)) + Q) = aq(z) + 212,
we find that Q(z) is starlike univalent in U and that
zh'(z) | _ a zq"(z) ~ zq'(z)
i el R RS CA e S )
Then the relation (3.3) follows by an application of Lemma 1.6. O

Corollary 3.2. Let the assumptions of Theorem 2.1 hold. Then the subordination

) {z[h[(zx],A)l,, (Bi, Byl f(2)] } {“z[IA[(aj,Aj)Lq; (ﬁj,B»l,p]f(z)]”}
’ [ [(aj, A )1q (Bi, Bj), p]f(z)] [I).[(“j/Aj)Lq; (,ﬁj/Bj)Lp]f(z)]l

rzq'(2)
<aq(z)+ W,
(3.10)
implies
z[Li[(aj, A; >1q (B, Bj )1,, f(Z)]
3.11
[0l Ay GBI @] 1 .
and q(z) is the best dominant.
Proof. By letting ®(w) := w. O
Corollary 3.3. If f € &4 and assume that (3.1) holds then
[I)‘[(tx],A >1q (Bj,Bj), p]f(z)]” 1+ Az (A-B)z
< (3.12)
[IA[(“JIA)M (ﬁ]’B)lp]f(Z ] 1+ Bz (1+Az)(1+Bz)
implies
Z[IA[(“JIA>1q (ﬁ]’B)lp]f(z)] 1+Az 1<B<A<l, (3.13)

[Lx[(aj, A )1q (B, Bj )1p]f(z)] “1+Bz’

and (1 + Az)/(1 + Bz) is the best dominant.
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Proof. By setting ®(w) :=w, a =y =1,and q(z) := (1+Az)/(1+Bz),where-1<B<A<1. [

Corollary 3.4. If f € &4 and assume that (3.1) holds then

z[I[(a;, A; )1q (Bj. Bj >lp]f(z)] 1 +z 2z

+ 1 + 5 (3.14)
[y, Ap), i (B Byl f2] 1-2 1=z
implies
z[L (@, Ay), 5 (B B, 1 f (2] (L2 315
L[(aj, Aj)y i (B By f2)  1-2
and (1 + z) /(1 — z) is the best dominant.
Proof. By setting ®(w) :=w, a =y =1,and q(z) := (1 +2z2)/(1 -z2). O
Corollary 3.5. If f € o# and assume that (3.1) holds then
L[(a;, A}), . (Bi,Bj) ] f(2)]"
alnlw 40, 6B @] -
" Tl 4, )14 (BB f(2)]
implies
z[L[(aj, Ap), o (Bi B, I f D]
< e’ (3.17)
Li[(aj, Ap)1q; (B Bj) oyl f(2)
and e is the best dominant.
Proof. By setting ®(w) := w, a =y =1, and q(z) := e*?, |A| < . Ol
Theorem 3.6. Let q(z) # 0 be convex univalent in the unit disk U. Suppose that
m{%q(z)} >0, a,yeCforzel, (3.18)

and that zq'(z)/q(z) is starlike univalent in U. If z[I,[(«;, A; )1q, (Bj, B; )1p f(z)]'/(D[IA[(cxj,
AP (BB, f(2)] € #[g(0),1] N Q where f € oA,

{ [ [(a, A,y (Bj Bi) o p) f (2] }

D[L[(aj, Aj)y 4 (Bir Bl f(2)]

) {1 [y Ay (51 B),, 1G] =0 [, A, (B B, L2 }
! [IA[(“VA )1q (ﬁ],B )lp]f(z)] q)[I)»[(“JrAJ>1,qr (ﬁ]’B]>1,p]f(Z)]

(3.19)
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is univalent in U and the subordination

Yqu(z) < a{ Z[I)‘ [(aj’ Aj)l,q; (ﬁ]’ Bj)l,p]f(z)]l }
9(z) DL [(a, Aj)ygi (Bj: B ] f(2)]

aq(z) +

. Y{l . z[L[(aj, Aj)y 4 (ﬂjrBj)Lp]f(Z)]l" (320)
(L [(aj, Aj)1 i (Bj Bj)q ) f(2)]
2O [L(aj, Apig; (B By)y ) f (2)] }
DL [(aj, Ap1gi (Bj By) ol f(2)]
holds, then
z[L[(aj, Aj)y i (B By)y ) f ()]
- - 3.21
" O,y 515, ) .
and q is the best subordinant.
Proof. Our aim is to apply Lemma 1.7. Setting
z[L[(aj, Aj)y i (B By)y ) f ()]
= . - . 3.22
P DO[L[(a;, Aj), i (B Bi)y ] f(2)] (322
Computation shows that
zp'(z) z[I, [(aj/Aj)Lq/' (ﬁj/Bj)Lp]f(Z)]" z®'[I [(af’Af>1,q; (pj’Bj)l,p]f(z)]
P14 — - , (3.23)
p(2) [L[(aj, Ap)y g (B By ) f 2] @IL(aj Af)y g (B By ] £ (2)]
which yields the following subordination
rzq'(2) rzp'(z)
aq(z) + ) <ap(z)+ @) a,yeC. (3.24)
By setting
dw) =aw,  pw) = % ¥ #0, (3.25)

Q.

it can be easily observed that 0(w) is analytic in C an
$(w) #0when w € C\ {0}. Also, we obtain

¢(w) is analytic in C \ {0}, and that

19'/
m{M} - m{fq(z)} > 0. (3.26)
¢(9(2)) Y
Then (3.21) follows by an application of Lemma 1.7. O

Combining Theorems 3.1 and 3.6 in order to get the following sandwich theorems
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Theorem 3.7. Let q1(z) #0, g2(z) # 0 be convex univalent in the unit disk U satisfying (3.18) and
(3.1), respectively. Suppose that zq;(z)/qi(z), i = 1,2, is starlike univalent in U. If
z[L[(aj, Aj)y  (BirBy)y ) f (2]
(L [(a;, Aj)y i (B Bi)y | f(2)]

€ £[9(0),1] nQ, (3.27)

where f € A,

z[L[(aj, Aj), o (Bjs B ) f(2)]
a{ DL [(aj, Aj)y i (B Bj)y ) £ (2)] }
N { - z[L[(aj, A4 (B Bl f R 2@ (I, A7)y g3 (B, By f (2)] }
"V @A), BB @ O [@yA)y (B By, I )

(3.28)

is univalent in U, and the subordination

v (2) + 20 a{ z[[(aj, Aj), (ﬁszj)l,p]f(Z)]'}
TETT0@ TN Oy, Ay (B By, I 2]
{ z[L[(aj, Aj), o (Bi By f (2]
+yy1+ -
[L\ [((X]', Aj)l,q; (ﬂ]’ B])l,p]f(z)] (329)
2O [L[(#5,4)1,5 (B Bj)y ) f (2)] }
DL [(aj, Aj)y i (B Bj)y 1 f(2)]
Yz4,(2)
<ag)(z) + qz(zz)
holds, then
L[(a:, A}, ;(B:,B; '
0(2) < z[ A[(“J ])1,q (Bj ])1,p]f(z)] <a(2), (330)

DL [(aj, Aj)y i (B Bj)y 1 f (2]

and q1(z) is the best subordinant and q,(z) is the best dominant.
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