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1. Introduction and preliminaries

Let x = (x1, . . . , xn), p = (p1, . . . , pn) denote two sequences of positive real numbers with
∑n

i=1 pi = 1. The well-known Jensen Inequality [1, page 43] gives the following, for t < 0 or
t > 1:

n∑

i=1

pix
t
i ≥

(
n∑

i=1

pixi

)t

(1.1)

and vice versa for 0 < t < 1.
Simić [2] has considered the difference of both sides of (1.1). He considers the function

defined as

λt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
i=1pix

t
i − (

∑n
i=1pixi)

t

t(t − 1)
, t /= 0, 1;

log

(
n∑

i=1

pixi

)

−
n∑

i=1

pi logxi, t = 0;

n∑

i=1

pixi logxi −
(

n∑

i=1

pixi

)

log

(
n∑

i=1

pixi

)

, t = 1;

(1.2)

and has proved the following theorem.
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Theorem 1.1. For −∞ < r < s < t < +∞, then

λt−rs ≤ (λr)
t−s(λt)

s−r . (1.3)

Anwar and Pečarić [3] have considerd further generalization of Theorem 1.1. Namely,
they introduced new means of Cauchy type in [4] and further proved comparison theorem for
these means.

In this paper, we will give some results in the case where instead of means we have
power sums.

Let x be positive n-tuples. The well-known inequality for power sums of order s and r,
for s > r > 0 (see [1, page 164]), states that

(
n∑

i=1

xs
i

)1/s

<

(
n∑

i=1

xr
i

)1/r

. (1.4)

Moreover, if p = (p1, . . . , pn) is a positive n-tuples such that pi ≥ 1 (i = 1, . . . , n), then for
s > r > 0 (see [1, page 165]), we have

(
n∑

i=1

pix
s
i

)1/s

<

(
n∑

i=1

pix
r
i

)1/r

. (1.5)

Let us note that (1.5) can also be obtained from the following theorem [1, page 152].

Theorem 1.2. Let x and p be two nonnegative n-tuples such that xi ∈ (0, a] (i = 1, . . . , n) and
n∑

i=1

pixi ≥ xj, for j = 1, . . . , n,
n∑

i=1

pixi ∈ (0, a]. (1.6)

If f(x)/x is an increasing function, then

f

(
n∑

i=1

pixi

)

≥
n∑

i=1

pif(xi). (1.7)

Remark 1.3. Let us note that if f(x)/x is a strictly increasing function, then equality in (1.7) is
valid if we have equalities in (1.6) instead of inequalities, that is, x1 = · · · = xn and

∑n
1pi = 1.

The following similar result is also valid [1, page 153].

Theorem 1.4. Let f(x)/x be an increasing function. If 0 < x1 ≤ · · · ≤ xn and if the following hold.

(i) there exists anm(≤ n) such that

P 1 ≥ P 2 ≥ · · · ≥ Pm ≥ 1, Pm+1 = · · · = Pn = 0, (1.8)

where Pk =
∑k

i=1 pi, Pk = Pn − Pk−1 (k = 2, . . . , n) and P 1 = Pn, then (1.7) holds.

(ii) If there exists anm(≤ n) such that

0 ≤ P 1 ≤ P 2 ≤ · · · ≤ Pm ≤ 1, Pm+1 = · · · = Pn = 0, (1.9)

then the reverse of inequality in (1.7) holds.

In this paper, we will give some applications of power sums. That is, we will prove
results similar to those shown in [2, 3], but for power sums.
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2. Main results

Lemma 2.1. Let

ϕt(x) =

⎧
⎪⎨

⎪⎩

xt

t − 1
, t /= 1;

x logx, t = 1.
(2.1)

Then ϕt(x)/x is a strictly increasing function for x > 0.

Proof. Since (ϕt(x)/x)
′
= xt−2 > 0, for x > 0, therefore ϕt(x)/x is a strictly increasing function

for x > 0.

Lemma 2.2 ([2]). A positive function f is log convex in Jensen’s sense on an open interval I, that is,
for each s, t ∈ I,

f(s)f(t) ≥ f2
(
s + t

2

)

, (2.2)

if and only if the relation

u2f(s) + 2uwf

(
s + t

2

)

+w2f(t) ≥ 0 (2.3)

holds for each real u,w, and s, t ∈ I.

The following lemma is equivalent to the definition of convex function (see [1, page 2]).

Lemma 2.3. If f is continuous and convex for all x1, x2, x3 of an open interval I for which x1 < x2 < x3,
then

(x3 − x2)f(x1) + (x1 − x3)f(x2) + (x2 − x1)f(x3) ≥ 0. (2.4)

Theorem 2.4. Let x and p be two positive n-tuples (n ≥ 2) and let

φt = φt(x;p) = ϕt

(
n∑

i=1

pixi

)

−
n∑

i=1

piϕt(xi) (2.5)

such that condition (1.6) is satisfied and all xi’s are not equal. Then φt is log-convex. Also for r < s < t
where r, s, t ∈ R

+, we have

(φs)
t−r ≤ (φr)

t−s(φt)
s−r . (2.6)

Proof. Since ϕt(x)/x is a strictly increasing function for x > 0 and all xi’s are not equal, therefore
by Theorem 1.2 with f = ϕt, we have

ϕt

(
n∑

i=1

pixi

)

>
n∑

i=1

piϕt(xi) =⇒ φt = ϕt

(
n∑

i=1

pixi

)

−
n∑

i=1

piϕt(xi) > 0, (2.7)

that is, φt is a positive-valued function.
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Let f(x) = u2ϕs(x) + 2uwϕr(x) +w2ϕt(x), where r = (s + t)/2 and u,w ∈ R:

(
f(x)
x

)′
= u2xs−2 + 2uwxr−2 +w2xt−2,

= (ux(s−2)/2 +wx(t−2)/2)
2 ≥ 0.

(2.8)

This implies that f(x)/x is monotonically increasing.
By Theorem 1.2, we have

f

(
n∑

i=1

pixi

)

−
n∑

i=1

pif(xi) ≥ 0

=⇒ u2

(

ϕs

(
n∑

i=1

pixi

)

−
n∑

i=1

piϕs(xi)

)

+ 2uw

(

ϕr

(
n∑

i=1

pixi

)

−
n∑

i=1

piϕr(xi)

)

+w2

(

ϕt

(
n∑

i=1

pixi

)

−
n∑

i=1

piϕt(xi)

)

≥ 0

=⇒ u2φs + 2uwφr +w2φt ≥ 0.

(2.9)

Now by Lemma 2.2, we have that φt is log-convex in Jensen sense.
Since limt→1 φt = φ1, it follows that φt is continuous, therefore it is a log-convex function

[1, page 6].
Since φt is log-convex, that is, logφt is convex, we have by Lemma 2.3 that, for r < s < t

with f = logφ,

(t − s) logφr + (r − t) logφs + (s − r) logφt ≥ 0, (2.10)

which is equivalent to (2.6).

Similar application of Theorem 1.4 gives the following.

Theorem 2.5. Let x and p be two positive n-tuples (n ≥ 2) such that 0 < x1 ≤ · · · ≤ xn, all xi’s are not
equal and

(i) if φt = φt(x;p) = ϕt(
∑n

i=1 pixi) −
∑n

i=1 piϕt(xi) such that condition (1.8) is satisfied, then φt

is log-convex, also for r < s < t, we have

(φs)
t−r ≤ (φr)

t−s(φt)
s−r ; (2.11)

(ii) moreover if φt = −φt and (1.9) is satisfied, then we have that φt is log-convex and

(φs)
t−r ≤ (φr)

t−s
(φt)

s−r
. (2.12)

We will also use the following lemma.
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Lemma 2.6. Let f be a log-convex function and assume that if x1 ≤ y1, x2 ≤ y2, x1 /= x2, y1 /= y2.
Then the following inequality is valid:

(
f(x2)
f(x1)

)1/(x2−x1)

≤
(
f(y2)
f(y1)

)1/(y2−y1)

. (2.13)

Proof. In [1, page 2], we have the following result for convex function f , with x1 ≤ y1, x2 ≤
y2, x1 /= x2, y1 /= y2:

f(x2) − f(x1)
x2 − x1

≤ f(y2) − f(y1)
y2 − y1

. (2.14)

Putting f = log f , we get

log
(
f(x2)
f(x1)

)1/(x2−x1)

≤ log
(
f(y2)
f(y1)

)1/(y2−y1)

, (2.15)

from which (2.13) immediately follows.

Let us introduce the following.

Definition 2.7. Let x and p be two nonnegative n-tuples (n ≥ 2) such that pi ≥ 1 (i = 1, . . . , n),
then for t, r, s ∈ R

+, we define

As
t,r(x;p) =

{
r − s

t − s

(
∑n

i=1pix
s
i )

t/s −∑n
i=1pix

t
i

(
∑n

i=1pix
s
i )

r/s −∑n
i=1pix

r
i

}1/(t−r)

, t /= r, r /= s, t /= s,

As
s,r(x;p) = As

r,s(x;p) =

{
r − s

s

(
∑n

i=1pix
s
i ) log

∑n
i=1pix

s
i − s

∑n
i=1pix

s
i logxi

(
∑n

i=1pix
s
i )

r/s −∑n
i=1pix

r
i

}1/(s−r)
, s /= r,

As
r,r(x;p) = exp

(
1

s − r
+
(
∑n

i=1pix
s
i )

r/s log
∑n

i=1pix
s
i − s

∑n
i=1pix

r
i logxi

s{(∑n
i=1pix

s
i )

r/s −∑n
i=1pix

r
i }

)

, s /= r,

As
s,s(x;p) = exp

(
(
∑n

i=1pix
s
i )(log

∑n
i=1pix

s
i )

2 − s2
∑n

i=1pix
s
i (logxi)

2

2s{(∑n
i=1pix

s
i ) log(

∑n
i=1pix

s
i ) − s

∑n
i=1pix

s
i logxi}

)

.

(2.16)

Remark 2.8. Let us note that As
s,r(x;p) = As

r,s(x;p) = limt→s A
s
t,r(x;p) = limt→s A

s
r,t(x;p),

As
r,r(x;p) = limt→r A

s
t,r(x;p) and As

s,s(x;p) = limr→s A
s
r,r(x;p).

Theorem 2.9. Let r, t, u, v ∈ R
+ such that r < u, t < v, r /= t, u /= v. Then we have

As
t,r(x;p) ≤ As

v,u(x;p). (2.17)

Proof. Let

φt = φt(x;p) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
t − 1

((
n∑

i=1

pixi

)t

−
n∑

i=1

pix
t
i

)

, t /= 1;

n∑

i=1

pixi log
n∑

i=1

pixi −
n∑

i=1

pixi logxi, t = 1.

(2.18)
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Now taking x1 = r, x2 = t, y1 = u, y2 = v, where r, t, u, v /= 1, and f(t) = φt in Lemma 2.6, we
have

(
r − 1
t − 1

(
∑n

i=1pixi)
t −∑n

i=1pix
t
i

(
∑n

i=1pixi)
r −∑n

i=1pix
r
i

)1/(t−r)

≤
(

u − 1
v − 1

(
∑n

i=1pix)
v −∑n

i=1pix
v
i

(
∑n

i=1pix
s
i )

u −∑n
i=1pix

u
i

)1/(v−u)
. (2.19)

Since s > 0 by substituting xi = xs
i , t = t/s, r = r/s, u = u/s and v = v/s, where r, t, u, v /= s,

in above inequality, we get
(

r − s

t − s

(
∑n

i=1pix
s
i )

t/s −∑n
i=1pix

t
i

(
∑n

i=1pix
s
i )

r/s −∑n
i=1pix

r
i

)s/(t−r)

≤
(

u − s

v − s

(
∑n

i=1pix
s
i )

v/s −∑n
i=1pix

v
i

(
∑n

i=1pix
s
i )

u/s −∑n
i=1pix

u
i

)s/(v−u)

. (2.20)

By raising power 1/s, we get (2.17) for r, t, u, v /= s.
From Remark 2.8, we get (2.17) is also valid for r = s or t = s or r = t or t = r = s.

Corollary 2.10. Let

Φs
t =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
t − s

{(
n∑

i=1

pix
s
i

)t/s

−
n∑

i=1

pix
t
i

}

, t /= s;

1
s

{(
n∑

i=1

pix
s
i

)

log

(
n∑

i=1

pix
s
i

)

− s
n∑

i=1

pix
s
i logxi

}

, t = s.

(2.21)

Then for t, r, u ∈ R
+ and t < r < u, we have

(Φs
r)

u−t ≤ (Φs
t )

u−r(Φs
u)

r−t. (2.22)

Proof. Taking v = r in (2.17), we get (2.22).

3. Mean value theorems

Lemma 3.1. Let f ∈ C1(I), where I = (0, a] such that

m ≤ xf ′(x) − f(x)
x2

≤ M. (3.1)

Consider the functions φ1 and φ2 defined as

φ1(x) = Mx2 − f(x),

φ2(x) = f(x) −mx2.
(3.2)

Then φi(x)/x for i = 1, 2 are monotonically increasing functions.

Proof. We have that

φ1(x)
x

= Mx − f(x)
x

=⇒
(
φ1(x)
x

)′
= M − xf ′(x) − f(x)

x2
≥ 0,

φ2(x)
x

=
f(x)
x

−mx =⇒
(
φ2(x)
x

)′
=
xf ′(x) − f(x)

x2
−m ≥ 0,

(3.3)

that is, φi(x)/x for i = 1, 2 are monotonically increasing functions.
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Theorem 3.2. Let x and p be two positive n-tuples (n ≥ 2) satisfy condition (1.6), all xi’s are not equal
and let f ∈ C1(I), where I = (0, a]. Then there exists ξ ∈ (0, a] such that

f

(
n∑

i=1

pixi

)

−
n∑

i=1

pif(xi) =
ξf ′(ξ) − f(ξ)

ξ2

{(
n∑

i=1

pixi

)2

−
n∑

i=1

pix
2
i

}

. (3.4)

Proof. In Theorem 1.2, setting f = φ1 and f = φ2, respectively, as defined in Lemma 3.1, we get
the following inequalities:

f

(
n∑

i=1

pixi

)

−
n∑

i=1

pif(xi) ≤ M

{(
n∑

i=1

pixi

)2

−
n∑

i=1

pix
2
i

}

,

f

(
n∑

i=1

pixi

)

−
n∑

i=1

pif(xi) ≥ m

{(
n∑

i=1

pixi

)2

−
n∑

i=1

pix
2
i

}

.

(3.5)

Now by combining both inequalities, we get,

m ≤ f(
∑n

i=1pixi) −
∑n

i=1pif(xi)

(
∑n

i=1pixi)
2 −∑n

i=1pix
2
i

≤ M. (3.6)

(
∑n

i=1pixi)
2 − ∑n

i=1pix
2
i is nonzero, it is zero if equalities are given in conditions (1.6), that is,

x1 = · · · = xn and
∑n

i=1pi = 1.
Now by condition (3.1), there exist ξ ∈ I, such that

f(
∑n

i=1pixi) −
∑n

i=1pif(xi)

(
∑n

i=1pixi)
2 −∑n

i=1pix
2
i

=
ξf ′(ξ) − f(ξ)

ξ2
; (3.7)

and (3.7) implies (3.4).

Theorem 3.3. Let x and p be two positive n-tuples (n ≥ 2) satisfy condition (1.6), all xi’s are not equal
and let f, g ∈ C1(I), where I = (0, a]. Then there exists ξ ∈ I such that the following equality is true:

f(
∑n

i=1pixi) −
∑n

i=1pif(xi)
g(

∑n
i=1pixi) −

∑n
i=1pig(xi)

=
ξf ′(ξ) − f(ξ)
ξg ′(ξ) − g(ξ)

, (3.8)

provided that the denominators are nonzero.

Proof. Let a function k ∈ C1(I) be defined as

k = c1f − c2g, (3.9)

where c1 and c2 are defined as

c1 = g

(
n∑

i=1

pixi

)

−
n∑

i=1

pig(xi),

c2 = f

(
n∑

i=1

pixi

)

−
n∑

i=1

pif(xi).

(3.10)
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Then, using Theorem 3.2 with f = k, we have

0 =
(

c1
ξf ′(ξ) − f(ξ)

ξ2
− c2

ξg ′(ξ) − g(ξ)
ξ2

){(
n∑

i=1

pixi

)2

−
n∑

i=1

pix
2
i

}

. (3.11)

Since
(

n∑

i=1

pixi

)2

−
n∑

i=1

pix
2
i /= 0, (3.12)

therefore, (3.11) gives

c2
c1

=
ξf ′(ξ) − f(ξ)
ξg ′(ξ) − g(ξ)

. (3.13)

After putting values, we get (3.8).

Let α be a strictly monotone continuous function then quasiarithmetic sum is defined as
follows:

Sα(x;p) = α−1
(

n∑

i=1

piα(xi)

)

. (3.14)

Theorem 3.4. Let x and p be two positive n-tuples (n ≥ 2), all xi’s are not equal and let α, β,∈ C1(I) be
strictly monotonic continuous functions, γ ∈ C1(I) be positive strictly increasing continuous function,
where I = (0, a] and

n∑

i=1

piγ(xi) ≥ γ(xj), for j = 1, . . . , n,
n∑

i=1

piγ(xi) ∈ (0, γ(a)]. (3.15)

Then there exists η from (0, γ(a)] such that

α(Sγ (x;p)) − α(Sα(x;p))
β(Sγ (x;p)) − β(Sβ(x;p))

=
γ(η)α′(η) − γ ′(η)α(η)
γ(η)β′(η) − γ ′(η)β(η)

(3.16)

is valid, provided that all denominators are not zero.

Proof. If we choose the functions f and g so that f = α ◦ γ−1, g = β ◦ γ−1, and xi → γ(xi).
Substituting these in (3.8),

α(Sγ(x;p)) − α(Sα(x;p))
β(Sγ(x;p)) − β(Sβ(x;p))

=
ξ(α ◦ γ−1)′(ξ) − γ ′ ◦ γ−1(ξ)α ◦ γ−1(ξ)
ξ(β ◦ γ−1)′(ξ) − γ ′ ◦ γ−1(ξ)β ◦ γ−1(ξ)

. (3.17)

Then by setting γ−1(η) = ξ, we get (3.16).

Corollary 3.5. Let x and p be two nonnegative n-tuples and let t, r, s ∈ R
+. Then

As
t,r(x;p) = η. (3.18)

Proof. If t, r, and s are pairwise distinct, then we put α(x) = xt, β(x) = xr, and γ(x) = xs in
(3.16) to get (3.18).

For other cases, we can consider limit as in Remark (2.8).
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