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1. Introduction

The arithmetic-geometric mean inequality (in short, AG inequality) has been widely used in
mathematics and in its applications. A large number of its equivalent forms have also been
developed in several areas of mathematics. For probability and mathematical statistics, the
equivalent forms of the AG inequality have not been linked together in a formal way. The
purpose of this paper is to prove that the AG inequality is equivalent to some other renowned
inequalities by using probabilistic arguments. Among such inequalities are those of Jensen,
Hölder, Cauchy, Minkowski, and Lyapunov, to name just a few.

2. The equivalent forms

Let X be a random variable, we define

Er |X| :=
⎧
⎨

⎩

(
E|X|r)1/r , if r /= 0,

exp
(
E
(
ln |X|)), if r = 0,

(2.1)

where EX denotes the expected value of X.
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Throughout this paper, let n be a positive integer and we consider only the random
variables which have finite expected values.

In order to establish our main results, we need the following lemma which is due to
Infantozzi [1, 2], Marshall and Olkin [3, Page 457], and Maligranda [4, 5]. For other related
results, we refer to [6–19].

Lemma 2.1. The following inequalities are equivalent.
(E1) AG inequality: EX ≥ eE lnX , where X is a nonnegative random variable.
(E2) a

q1
1 a

q2
2 · · ·aqn

n ≤ a1q1 + a2q2 + · · · + anqn if ai ∈ (0,∞) and qi ∈ (0, 1) for i = 1, 2, . . . , n
with

∑n
i=1qi = 1. The arithmetic-geometric mean inequality is usually applied in a simple version of

(E2) with qi = 1/n for each i = 1, 2, . . . , n.
(E3) aαb1−α ≤ αa + (1 − α)b if 0 < α < 1 and a, b > 0, and the opposite inequality holds if

α > 1 or α < 0.
(E4) (y + 1)α < 1 + αy if 0 < α < 1 and y > −1, and the opposite inequality holds if α > 1 or

α < 0 and y > −1.
(E5)

∑n
i=1a

p

i b
q

i ≤ (
∑n

i=1ai)
p(
∑n

i=1bi)
q for ai, bi ∈ (0,∞), i = 1, 2, . . . , n if p > 0, q > 0 with

p + q ≥ 1, and the opposite inequality holds if pq < 0 with p + q ≤ 1.
(E6) [

∑n
i=1(ai + bi)

p]1/p ≥ (
∑n

i=1a
p

i )
1/p + (

∑n
i=1b

p

i )
1/p if p ≤ 1 and ai, bi ∈ (0,∞) for i =

1, 2, . . . , n, and the opposite inequality holds if p ≥ 1.
(E7) (

∑n
i=1aib

s
i )

t−r ≤ (
∑n

i=1aib
r
i )

t−s(
∑n

i=1aib
t
i)

s−r if ai, bi ∈ (0,∞) for i = 1, 2, . . . , n and
r < s < t.

(E8) Let (Ω,B, μ) be a measure space. If fi : Ω→[0,∞) is finitely μ-integrable, i = 1, 2, . . . , n
and let qi ≥ 0,

∑n
i=1qi = 1. Then Πn

i=1f
qi
i is finitely integrable and

∫ ∏n
i=1f

qi
i dμ ≤ ∏n

i=1(
∫
f
qi
i dμ).

(E9) If a ≥ b ≥ c and f : Ω→R is μ-integrable, where (Ω,B, μ) is a probability space, then
(
∫ |f |bdμ)a−c ≤ (

∫ |f |cdμ)a−b(∫ |f |adμ)b−c.
(E10) Artin’s theorem. LetK be an open convex subset of R and f : K × (a, b)→[0,∞) satisfy

(a) f(x, y) is Borel-measurable in y for each fixed x,

(b) log f(x, y) is convex in x for each fixed y.

If μ is a measure on the Borel subsets of (a, b) such that f(x, ·) is μ-integrable for each x ∈ K, then
g(x) := log

∫b
af(x, y)dμ(y) is a convex function on K.

(E11) Jensen’s inequality. Let Ω be a probability space and X be a random variable taking
values in the open convex setA ⊂ R with finite expectation EX. If f : A→R is convex, then Ef(X) ≥
f(EX).

Proof. The proof of the equivalent relations of (E2), (E3), (E4), . . . , (E7) can be found in [1, 2,
4, 5].

The proof of the equivalent relations of (E1), (E2), (E8), (E9), (E10), and (E11) can be
found in [3].

Theorem 2.2. The following inequalities are equivalent.
(H0) E|XY | ≤ (Ep|X|)(Eq|Y |) if X, Y are random variables and 1/p + 1/q = 1 with p > 1

and q > 1.
(H1) E|Z||X|h|Y |k ≤ (E|Z||X|)h(E|Z||Y |)k if X, Y, Z are random variables and h + k = 1

with h > 0 and k > 0.
(H2) E|Z||X|h|Y |k ≥ (E|Z||X|)h(E|Z||Y |)k if X, Y, Z are random variables and h + k = 1

with hk < 0.
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(H∗
2) E|X|h|Y |k ≥ (E|X|)h(E|Y |)k if X, Y are random variables and h + k = 1 with hk < 0,

that is, E|XY | ≥ (Ep|X|)(Eq|Y |) if 1/p + 1/q = 1 with 0 < p < 1.

(H3) E|X|h|Y |k ≤ (E|X|)h(E|Y |)k if X, Y are random variables and h + k ≤ 1 with h > 0
and k > 0.

(H4) E|X|h|Y |k ≥ (E|X|)h(E|Y |)k if X, Y are random variables and h + k ≥ 1 with hk < 0.
(L1) (E|Z||X|s)t−r ≤ (E|Z||X|t)s−r(E|Z||X|r)t−s if X, Z are random variables and r < s < t.
(L2) (E|Z||X|s)t−r ≥ (E|Z||X|t)s−r(E|Z||X|r)t−s if X, Z are random variables and s < r < t.
(L3) (E|X|r)1/r ≤ (E|X|s)1/s if X is a random variable and r ≤ s, that is, (E|X|r)1/r is

nondecreasing on r.
(L4) (see [10, 18]) (E|X|p) ≥ (E|X|)p, where X is a random variable if p ≥ 1 or p ≤ 0, and the

opposite inequality holds if 0 ≤ p ≤ 1.
(R1) (E|X|r)p/(E|Y |r)q ≤ E(|X|p/|Y |q)r if X, Y are random variables and p ≥ q + r with

p > 0, q > 0, r > 0.
(R2) (E|X|r)p/(E|Y |r)q ≤ E(|X|p/|Y |q)r if X, Y are random variables and p ≥ q + r with

p < 0, q < 0, r > 0.
(R3) (E|X|r)p/(E|Y |r)q ≥ E(|X|p/|Y |q)r if X, Y are random variables and p ≤ q + r with

p > 0, q < 0, r > 0.
(R4) (E|X|)p/(E|Y |)p−1 ≤ E(|X|p/|Y |p−1) if X,Y are random variables and p ≥ 1.
(R5) (E|X|)p/(E|Y |)p−1 ≤ E(|X|p/|Y |p−1) if X, Y are random variables and p < 0.
(R6) (E|X|)p/(E|Y |)p−1 ≥ E(|X|p/|Y |p−1) if X, Y are random variables and 0 < p < 1.
(C1) Cauchy-Bunyakovski and Schwarz’s (CBS) inequality: (E|XY |)2 ≤ (E|X|2)(E|Y |2) if

X, Y are random variables.
(C∗

1) (E|XYZ|)2 ≤ (E|Z||X|2)(E|Z||Y |2) if X, Y, Z are random variables.
(C2) [E(Z|X|s|Y |1−s)][E(Z|X|1−s|Y |s)] ≤ (E|Z||X|)(E|Z||Y |) if X, Y, Z are random

variables and s ∈ (0, 1) (the inequality is reversed if s > 1 or s < 0).
(C3) [E(|Z||X|p+r |Y |p−r)][E(|Z||X|p−r |Y |p+r)] ≤ [E(|Z||X|p+s|Y |p−s)][E(|Z||X|p−s|Y |p+s)]

for any p ∈ R if X, Y, Z are random variables and |r| ≤ |s|.
(C4) [E(|Z||X|r |Y |s)][E(|Z||X|s|Y |r)] ≤ [E(|Z||X|u|Y |v)][E(|Z||X|v|Y |u)] if X, Y, Z are

random variables and either 0 ≤ v ≤ s ≤ r ≤ u, r + s = u + v or 0 ≤ u ≤ r ≤ s ≤ v, r + s = u + v.
(C5) [E|Z||X|r][E|Z||X|−r] ≤ [E|Z||X|s][E(|Z||X|−s] if X, Y, Z are random variables and

|r| ≤ |s|.
(C6) [E(|Z||X|p−s|Y |s)][E(|Z||X|s|Y |p−s)] ≤ [E|Z||X|p−r |Y |r][E|Z||X|r |Y |p−r] if X, Y, Z

are random variables and either p/2 ≤ s ≤ r ≤ p or 0 ≤ r ≤ s ≤ p/2.
(C7) [E(|Z||X|2−s|Y |s)][E(|Z||X|s|Y |2−s)] ≤ [E|Z||X|2−r |Y |r][E|Z||X|r |Y |2−r] if X, Y, Z

are random variables and either 0 ≤ r ≤ s ≤ 1 or 1 ≤ s ≤ r ≤ 2.
(C8) [E|Z||X|k+s|Y |l−t][E|Z||X|k−s|Y |l+t] increases with |s| if X, Y, Z are random variables

and k/l = s/t.
(M)Minkowski’s inequality: Ep|X +Y | ≤ Ep|X|+Ep|Y | if X, Y are random variables, p ≥ 1,

and the opposite inequality holds if p ≤ 1.
(T) Triangle inequality: Ep|X − Y | ≤ Ep|X −Z| +Ep|Z − Y | if X, Y, Z are random variables,

p ≥ 1, and the opposite inequality holds if p ≤ 1.
(J1) G2G

−1
1 (EY ) ≤ EG2G

−1
1 (Y ) if Y is a random variable, G1 and G2 are two continuous and

strictly increasing functions such that G2G
−1
1 is convex.

(J2) EetX ≥ etEX for any t ∈ R if X is a random variable.
The above listed inequalities are also equivalent to the inequalities in Lemma 2.1.
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Proof. The sketch of the proof of this theorem is illustrated by the following maps of
equivalent circles:

(1) (E3) ⇒ (H0) ⇔ (H1) ⇔ (H2) ⇔ (H∗
2);

(2) (H1) ⇒ (L1) ⇒ (H0) ⇒ (L3) ⇒ (H3);

(3) (H2) ⇒ (L2) ⇒ (H∗
2) ⇒ (H4);

(4) (L1) ⇒ (L3) ⇔ (L4), (L2) ⇒ (L3) ⇒ (E1);

(5) (H3) ⇒ (R1) ⇒ (R4) ⇒ (H∗
2), (H4) ⇒ (R2) ⇒ (R5) ⇒ (H2), (H4) ⇒ (R3) ⇒

(R6) ⇒ (H2);

(6) (H0) ⇔ (M) ⇔ (T);

(7) (C1) ⇒ (H0) ⇒ (H1) ⇒ (C2) ⇒ (C3) ⇒ (C4) ⇒ (C6) ⇒ (C7) ⇒ (C1) ⇔ (C∗
1);

(8) (C4) ⇒ (C5) ⇒ (C3) ⇔ (C8);

(9) (E11) ⇒ (J1) ⇒ (L3), (E11) ⇒ (J2) ⇒ (E1).

Now, we are in a position to give the proof of this theorem as follows.
(E3) ⇒ (H0), see Casella and Berger [7, page 187].
(H0) ⇔ (H1) is clear.
(H1) ⇒ (H2): If h < 0 and k > 0, then −k/h > 0 and −h/k + 1/k = 1. This and (H1)

imply

E|Z||X|−h/k|Y |1/k ≤ (
E|Z||X|)−h/k(E|Z||Y |)1/k . (2.2)

Replacing |Y | by |X|h|Y |k in the above inequality, we obtain (H2).
Similarly, we can prove the case that h > 0 and k < 0.
(H2) ⇒ (H1) is proved similarly.
(H2) ⇔ (H∗

2) is clear.
(H1) ⇒ (L1). Letting |X|, |Y |, h, and k be replaced by |X|t, |X|r , (s − r)/(t − r) and

(t − s)/(t − r) in (H1), respectively, we obtain (L1).
(H2) ⇒ (L2) is similarly proved.
(L1) ⇒ (H0): Let h = (t − s)/(t − r), k = (s − r)/(t − r). Then h + k = 1, h > 0, k > 0. It

follows from (L1) that

E
(|X||Y |) = E

(|X|t/(t−s)|Y |−r/(s−r)(|X|−1/(t−s)|Y |1/(s−r))s)

≤ [
E|X|t/(t−s)|Y |−r/(s−r)(|X|−1/(t−s)|Y |1/(s−r))r](t−s)/(t−r)

× [
E|X|t/(t−s)|Y |−r/(s−r)(|X|−1/(t−s)|Y |1/(s−r))t](s−r)/(t−r)

= E1/h|X|E1/k|Y |.

(2.3)

That is, (H0) holds.
(L2) ⇒ (H∗

2) is similarly proved.
(H0) ⇒ (L3) ⇒ (H3). Taking Y = 1 in (H0), we see that

E|X| ≤ (
E|X|p)1/p, p > 1, (2.4)
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which implies

(
E|X|)r/s ≤ E|X|r/s, p =

r

s
. (2.5)

Replacing |X| by |X|s,

(
E|X|s)r/s ≤ E|X|r . (2.6)

Thus

(
E|X|s)1/s ≤ (

E|X|r)1/r if r > s > 0,
(
E|X|s)1/s ≥ (

E|X|r)1/r if r < s < 0.
(2.7)

This proves (L3).
Next, let p = h + k. Then h/p + k/p = 1 and 0 < p ≤ 1. This and (H0) imply

E|X|h/p|Y |k/p ≤ (
E|X|)h/p(E|Y |)k/p. (2.8)

Replacing |X| and |Y | by |X|p and |Y |p in the above inequality, respectively, and using (L3),
we obtain

E|X|h|Y |k ≤ (
Ep|X|)h(Ep|Y |

)k ≤ (
E|X|)h(E|Y |)k . (2.9)

This proves (H3) holds.
(H∗

2) ⇒ (H4) is proved similarly.
(L1) ⇒ (L3). (a) Taking Z = 1 and t = 0 in (L1),

E
(|X|s)−r ≤ E

(|X|r)−s if r < s < 0, (2.10)

which implies

(
E|X|r)1/r ≤ (

E|X|s)1/s if r < s < 0. (2.11)

(b) Taking Z = 1 and r = 0 in (L1),

(
E|X|s)t ≤ (

E|X|t)s if 0 < s < t, (2.12)

which implies

(
E|X|s)1/s ≤ (

E|X|t)1/t if 0 < s < t. (2.13)
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(c) Taking Z = 1 and s = 0 in (L1),

1 ≤ (
E|X|t)−r(E|X|r)t if r < 0 < t, (2.14)

which implies

(
E|X|r)1/r ≤ (

E|X|t)1/t if r < 0 < t. (2.15)

(d) It follows from (a), (b), and (c) that (L3) holds.
Thus, we complete the proof.
(L2) ⇒ (L3) is similarly proved.
(L3) ⇒ (L4) is clear.
(L4) ⇒ (L3) by using the technique of (H0) ⇒ (L3).
(L3) ⇒ (E1). Letting r→ 0 and s = 1 in (L3), we obtain (E1).
(H3) ⇒ (R1). It follows from p ≥ q + r and p, q, r ∈ (0,∞) that q/p + r/p ≤ 1. This and

(H3) imply

E|X|q/p|Y |r/p ≤ (
E|X|)q/p(E|Y |)r/p. (2.16)

Replacing |X| and |Y | by |Y |r and |X|p|Y |−q in the above inequality, respectively, we obtain
(R1).

(H4) ⇒ (R2) and (H4) ⇒ (R3) are similarly proved.
(R1) ⇒ (R4), (R2) ⇒ (R5) and (R3) ⇒ (R6) follow by taking q = p − 1 and r = 1.
(R4) ⇒ (H∗

2), (R5) ⇒ (H2) and (R6) ⇒ (H0) follow by taking p = h, k = 1 − p in
(R4), (R5) and (R6), respectively.

(H0) ⇒ (M) Casella and Berger [7, page 188].
(M) ⇒ (H0) (see [5]): Let 1/p+1/q = 1 with p > 1 and q > 1. It follows from Benoulli’s

inequality (E4) that

pt|X||Y | ≤ (|Y |1/(p−1) + t|X|)p − |Y |p/(p−1), for t > 0. (2.17)

This and (M) imply

ptE|X||Y | ≤ [(
E|Y |p/(p−1))1/p + t

(
E|X|p)1/p]p − E|Y |p/(p−1), for t > 0. (2.18)

Hence

pE|X||Y | ≤ lim
t→0+

inf
1
t

{[(
E|Y |p/(p−1))1/p + t

(
E|X|p)1/p]p − E|Y |p/(p−1)}

= pEp|X|Eq|Y |.
(2.19)

This proves (H0) holds.
(M) ⇒ (T) follows by replacing X and Y by X − Z and Z − Y in (M), respectively.
(T) ⇒ (M) follows by replacing Y and Z in (T)with Y and 0, respectively.
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(C1) ⇒ (H0). Let F(x) = E|Y |q(|X|p|Y |−q)x for x ∈ (0, 1). Then, it follows from (C1) that

F

(
x1

2
+
x2

2

)

= E
{[|Y |q(|X|p|Y |−q)x1

]1/2[|Y |q(|X|p|Y |−q)x2
]1/2}

≤ (
E|Y |q(|X|p|Y |−q)x1

)1/2(
E|Y |q(|X|p|Y |−q)x2

)1/2

= F
(
x1
)1/2 + F

(
x2
)1/2

.

(2.20)

Thus, lnF is midconvex on (0, 1), and hence lnF is convex on (0, 1). Hence

lnF
(
r

p
+
1 − r

q

)

≤ 1
p
lnF(r) +

1
q
lnF(1 − r). (2.21)

Therefore,

F

(
r

p
+
1 − r

q

)

≤ F1/p(r)F1/q(1 − r) . (2.22)

Letting r→ 1− in the both sides of the above inequality,

E|XY | = F

(
1
p

)

≤ F1/p(1)F1/q(0) =
(
Ep|X|)(Eq|Y |

)
. (2.23)

This shows (H0) (see [13]).
(H1) ⇒ (C2). First note that, as shown above, (H1) and (H2) are equivalent. It follows

from (H1) that, for s ∈ (0, 1),

E|Z||X|s|Y |1−s ≤ (
E|Z||X|)s(E|Z||Y |)1−s,

E|Z||X|1−s|Y |s ≤ (
E|Z||X|)1−s(E|Z||Y |)s.

(2.24)

These imply (C2) for the case s ∈ (0, 1).
Similarly, we can prove the case for s > 1 or s < 0 by using (H2).
(C2) ⇒ (C3) follows by replacing s, |X|, |Y | in (C2) by (1/2)(1 + r/s) if rs > 0 or

(1/2)(1 − r/s) if rs < 0, |X|p+s|Y |p−s, |X|p−s|Y |p+s, respectively.
(C3) ⇒ (C4) follows by replacing p + r, p − r, p + s, p − s in (C3) by r, s, u, v,

respectively.
(C4) ⇒ (C6) follows by replacing r, s, u, v by p − s, s, p − r, r or s, p − s, r, p − r in

(C4), respectively.
(C6) ⇒ (C7) follows by taking p = 2 with r ≥ 0 in (C6).
(C7) ⇒ (C1) follows by taking s = 1 and r = 0 in (C7).
(C1) ⇔ (C∗

1) is clear.
(C4) ⇒ (C5) follows by letting r + s = u + v = 0, u = r, v = s and Y = 1 in (C4).
(C5) ⇒ (C3) follows by replacing |Z| and |X| in (C5) by |Z|(|X||Y |)p and |X||Y |−1,

respectively.
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(C3) ⇒ (C8). Replacing |X| by |X|u and |Y | by |Y |v in (C3) and changing appropriately
the notation for the exponents, we obtain (C8).

(C8) ⇒ (C3) is clear.
To complete our proof of equivalence of all inequalities in this theorem and in

Lemma 2.1, it suffices to show further the following implications.
(E11) ⇒ (J1) follows by taking f = G2G

−1
1 in (E11).

(J1) ⇒ (L3): Let G1(Y ) = |Y |r1 , G2(Y ) = |Y |r2 , where r2/r1 > 1 (hence r2 > r1 > 0 or
r2 < r1 < 0). Then it follows from (J1) that |EY |r2/r1 ≤ E|Y |r2/r1 . Setting Y = |X|r1 , we obtain
(L3), see [14, page 162].

(E11) ⇒ (J2) follows by taking f(x) = etx in (E11).
(J2) ⇒ (E1) follows by taking t = 1 and replacing X by lnX in (J2).

Remark 2.3. Letting r = p, s = p − 1 + h, u = p + h, v = p − 1 and Y = Z = 1 with h ≥ 0 and
p ∈ R in (C4), we obtain the inequality (5) of [18]:

E
(|X|p−1+h)E(|X|p) ≤ E

(|X|p+h)E(|X|p−1) . (2.25)

That is,

r(p) :=
E
(|X|p−1)

E
(|X|p) (2.26)

is a decreasing function of Sclove et al. [18] proved this property by means of the convexity
of f(t) = lnE(|X|t), see [14]. Clearly, our method is simpler than theirs.

Remark 2.4. Each Hi (or H∗
i ) is called Hölder’s inequality, each (Ci) (or (C∗

i )) is called CBS
inequality, each Li is called Lyapunov’s inequality, each Ri is called Radon’s inequality, each
(Ji) is related to Jensen’s inequality.
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