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1. Introduction and definitions

Let U = {z : z ∈ C and |z| < 1}, and let H(U) be the set of all functions analytic in U, and let

Ap =
{
f ∈ H(U) : f(z) = zp + ap+1z

p+1 + · · ·
}

(1.1)

for all z ∈ U and p ∈ N = {1, 2, 3, . . .} with A1 = A.
For p ∈ N, let

Hp =
{
f ∈ H(U) : f(z) = p + bpz

p + · · ·
}

(1.2)

with H1 = H.
A function f(z) in Ap is said to be p-valently starlike of order α (0 ≤ α < p) in U, that is,

f ∈ S∗(α), if and only if

f(z)
z

/= 0, Re

{
zf ′(z)
f(z)

}
> α (1.3)

for z ∈ U, 0 ≤ α < p, p ∈ N.
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Similarly, a function f(z) in Ap is said to be p-valently convex of order α (0 ≤ α < p) in U,
that is, f ∈ K(α), if and only if

f ′(z)/= 0, Re

{
1 +

zf ′′(z)
f ′(z)

}
> α (1.4)

for z ∈ U , 0 ≤ α < p , p ∈ N.
We denote by C(α) to be the family of functions f(z) inAp such that

Re

{
f ′(z)
zp−1

}
> α (1.5)

for z ∈ U \ {0}, 0 ≤ α < p , p ∈ N.
Similarly, we denote by CS∗(α) to be the family of functions f(z) in Ap such that

Re

{
f(z)
zp

}
> α (1.6)

for z ∈ U \ {0}, 0 ≤ α < p , p ∈ N.
We note that the classes C(α) and CS∗(α) are special classes of the class of p-valently close-

to-convex of order α (0 ≤ α < p), the class of p-valently close-to-starlike of order α (0 ≤ α < p) in U,
respectively.

In particular, the classes S, S∗(0) = S∗, K(0) = K, C(0) = C, CS∗(0) = CS∗ are the
familiar classes of univalent, starlike, convex, close-to-convex, and close-to-starlike functions
in U, respectively. Also, we note that

(i) f ∈ K(α) ⇔ zf ′ ∈ S∗(α);

(ii) K(α) ⊂ S∗(α) ⊂ C(α) ⊂ S.

Let

J(λ, f ; z) ≡ (1 − λ)
zf ′(z)
f(z)

+ λ

(
1 +

zf ′′(z)
f ′(z)

)
, (z ∈ U) (1.7)

for λ real number and f ∈ Ap.
The class of λ-convex functions are defined by

Mλ =
{
f ∈ Ap : Re J(λ, f ; z) > 0

}
. (1.8)

We note thatMλ ⊂ Mβ ⊂ M0 = S∗ for 0 ≤ λ/β ≤ 1 andMλ ⊂ M1 ⊂ K for λ ≥ 1.
Let

Ip(μ, f ; z) = (1 − μ)
f(z)
zp

+ μ
f ′(z)
zp−1

,
(
z ∈ U \ {0}

)
(1.9)

for μ real number and f ∈ Ap. We note that I1(μ, f ; z) = I(μ, f ; z).
The class of functions is defined by Ip(μ, f ; z) as above:

Tμ :=
{
f ∈ Ap : Re Ip(μ, f ; z) > 0

}
. (1.10)
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A class defined by J(λ, f ; z) was studied by Dinggong [1], and also, for f ∈ A, the
general case of Tμ was studied by Özkan and Altıntaş [2]. Given two functions f and g, which
are analytic in U, the function f is said to be subordinate to g, written as

f ≺ g, f(z) ≺ g(z), (z ∈ U) (1.11)

if there exists a Schwarz function ω analytic in U, with

ω(0) = 0,
∣∣ω(z)

∣∣ < 1, (z ∈ U) (1.12)

and such that

f(z) = g
(
ω(z)

)
, (z ∈ U). (1.13)

In particular, if g is univalent in U, then

f ≺ g iff f(0) = g(0), f(U) ⊂ g(U). (1.14)

2. The main results

In proving our main results, we need the following lemma due to Miller and Mocanu.

Lemma 2.1 (see [3, page 132]). Let q be univalent in U and let θ and φ be analytic in a domain D
containing q(U), with φ(w)/= 0, when w ∈ q(U). Set

Q(z) = zq′(z) ·φ
[
q(z)

]
, h(z) = θ

[
q(z)

]
+Q(z), (2.1)

and suppose that either

(i) Q is starlike, or

(ii) h is convex.

In addition, assume that

(iii) Re(zh′(z)/Q(z)) = Re[θ′[q(z)]/φ[q(z)] + zQ′(z)/Q(z)] > 0.

If P is analytic in U, with P(0) = q(0), P(U) ⊂ D and

θ
[
P(z)

]
+ zP ′(z) ·φ

[
P(z)

]
≺ θ

[
q(z)

]
+ zq′(z)·φ

[
q(z)

]
= h(z), (2.2)

then P ≺ q, and q is the best dominant.

Lemma 2.2. Let q ∈ Hp be univalent, q(z)/= 0 and satisfies the following conditions:

(i)
zq′(z)
q(z)

is starlike;

(ii) Re

{
q(z)
λ

+ 1 +
zq′′(z)
q′(z)

−
z′q(z)
q(z)

}
> 0

(2.3)

for λ/= 0 and for all z ∈ U. For P ∈ Hp with P(z)/= 0 in U if

P(z) + λ
zP ′(z)
P(z)

≺ q(z) + λ
zq′(z)
q(z)

, (2.4)

then P ≺ q, and q is the best dominant.
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Proof. Define the functions θ and φ by

θ(w) := w, φ(w) :=
λ

w
, D = {w : w/= 0} (2.5)

in Lemma 2.1. Then, the functions

Q(z) = zq′(z)·φ
[
q(z)

]
= λ

zq′(z)
q(z)

,

h(z) = θ
[
q(z)

]
+Q(z) = q(z) + λ

zq′(z)
q(z)

.

(2.6)

Using (2.3), we obtain thatQ is starlike inU andRe{zh′(z)/Q(z)} > 0 for all z ∈ U. Since
it satisfies preconditions of Lemma 2.1 and using (2.4), it follows from Lemma 2.1 that P ≺ q,
and q is the best dominant.

Theorem 2.3. Let q ∈ Hp be univalent, q(z)/= 0 and satisfies the conditions (2.3) in Lemma 2.2. For
f ∈ Ap if

J(λ, f ; z) ≺ q(z) + λ
zq′(z)
q(z)

, (2.7)

then

zf ′(z)
f(z)

≺ q(z), (2.8)

and q is the best dominant.

Proof. Let us put

P(z) :=
zf ′(z)
f(z)

, (z ∈ U), (2.9)

where P(0) = p. Then, we obtain easily the following result:

P(z) + λ
zP ′(z)
P(z)

= J(λ, f ; z). (2.10)

Thus, using Lemma 2.1 and (2.7), we can obtain the result (2.8).

Lemma 2.4. Let q ∈ H1 be univalent and satisfies the following conditions:

(i) q(z) is convex;

(ii) Re

{(
1
μ
+ p

)
+
zq′′(z)
q′(z)

}
> 0,

(
p ∈ N = {1, 2, 3, . . .}

) (2.11)

for μ/= 0 and for all z ∈ U. For P ∈ H1 in U if

(1 − μ + μp)P(z) + μzP ′(z) ≺ (1 − μ + μp)q(z) + μzq′(z), (2.12)

then P ≺ q, and q is the best dominant.
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Proof. For μ/= 0 real number, we define the functions θ and φ by

θ(w) := (1 − μ + μp)w, φ(w) := μ, D = {w : w/= 0} (2.13)

in Lemma 2.1. Then, the functions

Q(z) = zq′(z) ·φ
[
q(z)

]
= μzq′(z),

h(z) = θ
[
q(z)

]
+Q(z) = (1 − μ + μp)q(z) + μzq′(z).

(2.14)

Using (2.11), we obtain that Q is starlike in U and Re{zh′(z)/Q(z)} > 0 for all z ∈ U.
Since it satisfies preconditions of Lemma 2.1 and using (2.12), it follows from Lemma 2.1 that
P ≺ q, and q is the best dominant.

Theorem 2.5. Let q ∈ H1 be univalent and satisfies the conditions (2.11) in Lemma 2.4. For f ∈ Ap if

Ip(μ, f ; z) ≺ (1 − μ + μp)q(z) + μzq′(z). (2.15)

Then,

f(z)
zp

≺ q(z), (2.16)

and q is the best dominant.

Proof. Let us put

P(z) :=
f(z)
zp

, (2.17)

where P(0) = 1. Then, we have

(1 − μ + μp)P(z) + μzP ′(z) = Ip(μ, f ; z). (2.18)

Thus, using (2.15) and Lemma 2.4, we can obtain the result (2.16).

Corollary 2.6. Let q ∈ H1 be univalent and satisfies the following conditions:

(i) q(z) is convex;

(ii) Re

{(
1
μ
+ 1

)
+
zq′′(z)
q′(z)

}
> 0,

(
p ∈ N = {1, 2, 3, . . .}

) (2.19)

for μ/= 0 and for all z ∈ U. For P ∈ H1 in U if

P(z) + μzP ′(z) ≺ q(z) + μzq′(z), (2.20)

then P ≺ q, and q is the best dominant.
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Proof. By putting p = 1 in Lemma 2.4, we obtain Corollary 2.6.

Corollary 2.7. Suppose q ∈ S satisfies the conditions (2.19) in Corollary 2.6. For f ∈ A if

I(μ, f ; z) ≺ q(z) + μzq′(z). (2.21)

Then,

f(z)
z

≺ q(z), (2.22)

and q is the best dominant.

Proof. By putting p = 1 in Theorem 2.5, we obtain Corollary 2.7.

Corollary 2.8. Let q ∈ H1 be univalent; q(z) is convex for all z ∈ U. For P ∈ H1 in U if

P(z) + zP ′(z) ≺ q(z) + zq′(z), (2.23)

then P ≺ q, and q is the best dominant.

Proof. In Corollary 2.6, we take μ = 1.

Corollary 2.9. Let q ∈ S be convex. For f ∈ A if

f ′(z) ≺ q(z) + zq′(z). (2.24)

Then,

f(z)
z

≺ q(z), (2.25)

and q is the best dominant.

Proof. In Corollary 2.7, we take μ = 1.

Corollary 2.10. Let q ∈ H1 be univalent, q(z) is convex for all z ∈ U. For P ∈ H1 in U if

pP(z) + zP ′(z) ≺ pq(z) + zq′(z), (2.26)

then P ≺ q, and q is the best dominant.

Proof. In Lemma 2.4, we take μ = 1.

Corollary 2.11. Let q ∈ H1 be univalent, q(z) is convex, for all z ∈ U. If f ∈ Ap, and

f ′(z)
zp−1

≺ pq(z) + zq′(z), (2.27)

then

f(z)
z

≺ q(z), (2.28)

and q is the best dominant.
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Proof. In Theorem 2.3, we take μ = 1.

Corollary 2.12. Let q ∈ S satisfies

Ip(μ, f ; z) ≺
(1 − μ + μp) + 2[μ − α − αμp]z − (1 − 2α)(1 − μ + μp)z2

(1 − z)2
, (2.29)

where f ∈ Ap, then

f(z)
zp

∈ CS∗(α), (2.30)

and q is the best dominant.

Proof. In Theorem 2.5, we take

q(z) =
1 + (1 − 2α)z

1 − z
. (2.31)

Corollary 2.13. Let q ∈ S satisfies

f ′(z)
zp−1

≺
p + 2[1 − α − αp]z − (1 − 2α)pz2

(1 − z)2
, (2.32)

where f ∈ Ap, then

f(z)
zp

∈ CS∗(α), (2.33)

and q is the best dominant.

Proof. In Corollary 2.12, we take μ = 1.

Corollary 2.14. Let q ∈ S satisfies

f ′(z)
zp−1

≺
p + 2z − pz2

(1 − z)2
, (2.34)

where f ∈ Ap, then

f ∈ CS∗, (2.35)

and q is the best dominant.

Proof. In Corollary 2.13, we take α = 0.

Corollary 2.15. Let q ∈ S satisfies

f ′(z) ≺ 1 + 2z − z2

(1 − z)2
, (2.36)

where f ∈ Ap, then

f ∈ CS∗, (2.37)

and q is the best dominant.

Proof. In Corollary 2.14, we take p = 1.
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