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1. Introduction and statement of the main results

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C. Denote by H(D) the
space of all holomorphic functions on D. For g ∈ H(D), the Riemann-Stieltjes operator Tg is
defined on H(D) by

(
Tgf

)
(z) =

∫z

0
f(ζ)dg(ζ) =

∫1

0
f(tz)zg ′(tz)dt, z ∈ D. (1.1)

The Riemann-Stieltjes operator Tg can be viewed as a generalization of the well-known
Cesàro operator defined by

(
C[f]

)
(z) =

1
z

∫z

0

f(ζ)
1 − ζ

dζ =
∞∑

n=0

(
1

n + 1

n∑

i=0

ai

)

zn, z ∈ D (1.2)

for f(z) =
∑∞

n=0 anz
n ∈ H(D).

Pommerenke [1] initiated the study of Riemann-Stieltjes operators on Hardy space
H2, where he proved that Tg is bounded on H2 if and only if g is in BMOA, the space of
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holomorphic functions on D with bounded mean oscillation. This result later was extended
to other Hardy spaces Hp, 1 < p < ∞ (see [2]). Similar questions on weighted Bergman
spaces were considered by Aleman and Siskakis in [3]: Tg is bounded on Bergman space A2

if and only if g is in Bloch space. Henceforward, many papers have been published which
discuss the action of Riemann-Stieltjes operators on distinct spaces of holomorphic functions,
including Hardy spaces, weighted Bergman spaces, Dirichlet spaces, BMOA, VMOA, Bloch
spaces, and so on; see, for example, [4–9] and the related references therein. Among the
prominent results we mention the characterization of Riemann-Stieltjes operators on Bloch
space in terms of the growth properties of the inducing symbols [8], where Yoneda proved
that Tg is bounded on the Bloch space B if and only if

sup
z∈D

(
1 − |z|2)

(
log

1

1 − |z|2
)∣
∣g ′(z)

∣
∣ < ∞; (1.3)

Tg is compact on the Bloch space B if and only if

lim
|z| → 1−

(
1 − |z|2)

(
log

1

1 − |z|2
)∣∣g ′(z)

∣∣ = 0, (1.4)

where the Bloch space B := {f ∈ H(D) : supz∈D(1 − |z|2)|f ′(z)| < ∞}. Recently, several
authors have published papers to extend this result from different angles. Some papers
discussed a higher dimensional version Riemann-Stieltjes operator of (1.1) to the unit ball
Bn of Cn replacing g ′(z) by the radial derivative Rg of g. For example, Hu [10] gave the
characterizations of bounded and compact Riemann-Stieltjes operators on the Bloch space of
Bn, Xiao [11] further studied the Riemann-Stieltjes operators onweighted Bloch and Bergman
spaces of the unit ball, Zhang [9] studied the boundedness and compactness of Riemann-
Stieltjes operators on Dirichlet-type spaces and Bloch-type spaces of Bn, on general Bloch-
type spaces, the Riemann-Stieltjes operators were studied in [5, 12]. From the main result of
[9] (see also in [12, 13]), we know that Tg : Bα → Bβ is bounded if and only if g ∈ Bβ for 0 <

α < 1; supz∈D(1 − |z|2)β|g ′(z)| log(2/(1 − |z|2)) < ∞ for α = 1; and supz∈D(1 − |z|2)β+1−α|g ′(z)| <
∞ for α > 1, where α, β > 0 and Bα := {f ∈ H(D) : supz∈D(1 − |z|2)α|f ′(z)| < ∞}. One can
further refer to [10–12, 14, 15] for more study of Riemann-Stieltjes operators on Hardy spaces,
Bergman spaces, and Bloch spaces of the unit ball Bn.

It is worth remarking that all the above spaces which Tg targets are not beyond a
spectrum of the scalar-valued holomorphic function spaces. The purpose of this paper is
to initiate the study of Riemann-Stieltjes operators on spaces of vector-valued holomorphic
functions. Let X be any complex Banach space and α > 0, the vector-valued weighted Bloch
space Bα(X) consists of all X-valued holomorphic functions f : D → X such that

sup
z∈D

(
1 − |z|2)α∥∥f ′(z)

∥∥
X < ∞. (1.5)

The little weighted Bloch space Bα
0(X) is the subspace of Bα(X) consisting of the holomorphic

functions f : D → X for which lim|z| → 1−(1 − |z|2)α‖f ′(z)‖X = 0. For f ∈ Bα(X), define

‖f‖Bα(X) =
∥∥f(0)

∥∥
X + sup

z∈D
(1 − |z|2)α∥∥f ′(z)

∥∥
X. (1.6)
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With this norm, both Bα(X) and Bα
0(X) are Banach spaces. These classes of vector-valued

spaces have been studied quite extensively; see, for instance, [16, 17]. For simplification, we
often write Bα and Bα

0 instead of Bα(C) and Bα
0(C), respectively. For more information on the

scalar-valued Bloch spaces, one can refer to [18, 19]. When α = 1, we often omit the α from
Bα(X). Clearly, f ∈ Bα(X) if and only if x∗ ◦f(·) = x∗(f(·)) ∈ Bα for all x∗ ∈ X∗, the dual space
of X. Moreover, ‖f‖Bα(X) ≈ sup‖x∗‖X∗ ≤1‖x∗ ◦ f‖Bα . Here and in the sequel, we write a � b or
b � a for any nonnegative quantities a and b if a is dominated by b times some inessential
positive constant, and write a ≈ b for a � b � a.

Since

x∗(Tgf
)
(z) = x∗

(∫z

0
f(ζ)dg(ζ)

)
=
∫z

0
x∗(f(ζ)

)
dg(ζ) = Tg

(
x∗f

)
(z) (1.7)

for any x∗ ∈ X∗ and f ∈ Bα(X), Tg is bounded between Bα(X) and Bβ(X) if and only if
it is bounded between the corresponding scalar-valued spaces Bα and Bβ. In addition, in
Section 3, we will see that when the Banach space X is infinite-dimensional, Tg is never
compact between Bα(X) and Bβ(X) except for the trivial case that g is a constant function.
In this paper, we will study some small property of Riemann-Stieltjes operators between
X-valued Bloch spaces. The main goal is to generalize some characterizations of compact
Riemann-Stieltjes operators on scalar-valued Bloch spaces to the vector-valued case.

Our main result is for the weak compactness of Tg .

Theorem 1.1. Let α, β > 0, X be a complex Banach space and g : D → C a nonconstant holomorphic
function. Then the following hold.

(1) For 0 < α < 1, Tg : Bα(X) → Bβ(X) (resp., Tg : Bα
0(X) → Bβ

0(X)) is weakly compact if
and only if X is reflexive and

sup
z∈D

(
1 − |z|2)β∣∣g ′(z)

∣∣ < ∞
(
resp., lim

|z| → 1−

(
1 − |z|2)β∣∣g ′(z)

∣∣ = 0
)
. (1.8)

(2) For α = 1, Tg : Bα(X) → Bβ(X) (or Tg : Bα
0(X) → Bβ

0(X)) is weakly compact if and only
if X is reflexive and

lim
|z| → 1−

(
1 − |z|2)β

(
ln

2

1 − |z|2
)∣∣g ′(z)

∣∣ = 0. (1.9)

(3) For α > 1, Tg : Bα(X) → Bβ(X) (or Tg : Bα
0(X) → Bβ

0(X)) is weakly compact if and only
if X is reflexive and

lim
|z| → 1−

(
1 − |z|2)β−α+1∣∣g ′(z)

∣∣ = 0. (1.10)

Theorem 1.1 illustrates that Tg is weakly compact between Bα(X) and Bβ(X) if and
only if X is reflexive and Tg is compact between the corresponding scalar-valued spaces. It
also illustrates that the weak compactness of Tg depends on α with α > 1, but this is not
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the case when α ∈ (0, 1), however, for the case α = 1, the condition needs an additional
logarithmic term.

The rest of the paper is organized as follows. We give some lemmas in Section 2, which
are essentially needed for our proof of the main result. The proof of Theorem 1.1 and the
reason why we do not consider the compactness of Tg are given in Section 3. Finally, we
briefly consider the weakly conditional compactness of Tg between Bα(X) and Bβ(X) and
obtain some counterpart of our main result.

In the sequel, we often use the same letter C, depending only on the allowed
parameters, to denote various positive constants which may change at each occurrence.

2. Preliminaries

First, we need the following growth estimate of Bloch functions.

Lemma 2.1. For α > 0 and any complex Banach space X, if f ∈ Bα(X), then

(1) ‖f(z)‖X � ‖f‖Bα(X) for any z ∈ D and 0 < α < 1;

(2) ‖f(z)‖X � ln(2/(1 − |z|2))‖f‖B(X) for any z ∈ D and α = 1;

(3) ‖f(z)‖X � (1/(1 − |z|2)α−1)‖f‖Bα(X) for any z ∈ D and α > 1.

Proof. Since for any x∗ ∈ X∗,

∣∣(x∗ ◦ f)′(z)∣∣ ≤
∥∥x∗ ◦ f∥∥Bα

(
1 − |z|2)α

, z ∈ D, (2.1)

so

∣∣x∗ ◦ f(z) − x∗ ◦ f(0)∣∣ ≤
∫1

0

∣∣(x∗ ◦ f)′(zt)∣∣|z|dt ≤ ∥∥x∗ ◦ f∥∥Bα

∫1

0

|z|
(
1 − t2|z|2)α

dt. (2.2)

Taking the supremum over x∗ in the unit ball of X∗ and estimating the last integral will give
the desired results.

For little Bloch spaces, we have the following improved behavior of f near the
boundary ∂D.

Lemma 2.2. Let X be a Banach space.

(1) If f ∈ B0(X), then

lim
|z| → 1−

∥∥f(z)
∥∥
X

ln
(
2/

(
1 − |z|2))

= 0. (2.3)

(2) If f ∈ Bα
0(X) with α > 1, then

lim
|z| → 1−

(
1 − |z|2)α−1∥∥f(z)∥∥X = 0. (2.4)
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Proof. Since f ∈ Bα
0(X), then lim|z| → 1−(1 − |z|2)α‖f ′(z)‖X = 0, that is,

lim
|z| → 1−

(
1 − |z|2)α sup

‖x∗‖X∗ ≤1

∣
∣x∗ ◦ f ′(z)

∣
∣ = 0. (2.5)

So for any ε > 0, there is r0 ∈ (0, 1) such that

(
1 − |z|2)α∣∣x∗ ◦ f ′(z)

∣
∣ < ε for any r0 < |z| < 1,

∥
∥x∗∥∥

X∗ ≤ 1. (2.6)

Then for any r0 < |z| < 1, x∗ ∈ X∗ with ‖x∗‖X∗ ≤ 1, we have

∣∣x∗ ◦ f(z) − x∗ ◦ f(0)∣∣ ≤
∫ r0/|z|

0

∣∣(x∗ ◦ f)′(zt)∣∣|z|dt +
∫1

r0/|z|

∣∣(x∗ ◦ f)′(zt)∣∣ |z|dt

� ‖f‖Bα(X)

∫ r0/|z|

0

|z|dt
(
1 − |zt|2)α

+ ε

∫1

r0/|z|

|z|dt
(
1 − |zt|2)α

� ‖f‖Bα(X) + ε

∫1

r0/|z|

|z|dt
(
1 − |zt|2)α

,

(2.7)

the fact (x∗ ◦ f)′(z) = x∗ ◦ f ′(z) is used in the second inequality above. Since

∫1

r0/|z|

|z|dt
(
1 − |zt|2)α

�

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ln
2

1 − |z|2
, α = 1,

1
(
1 − |z|2)α−1

, α > 1,
(2.8)

taking the supremum over all x∗ with ‖x∗‖X∗ ≤ 1 and a variance of (2.7) will complete the
proof.

The following lemma is based on thewell-known properties of the de la Vallée-Poussin
summability kernel, which is used to approximate Tg in the operator norm by suitable weakly
compact operators sequence.

Lemma 2.3. For α > 0 and any complex Banach space X, there are linear operators {Vn} on Bα(X)
satisfying the following properties.

(1) ‖Vn‖ ≤ 3 for any n ≥ 1. In addition, Vn(Bα
0(X)) ⊂ Bα

0(X).

(2) For every r ∈ (0, 1), limn → ∞ sup||f ||Bα(X)≤1 sup|z|≤r ‖(f − Vnf)(z)‖X = 0.

(3) If X is reflexive (resp., does not contain a copy of l1), then Vn is weakly compact (resp.,
weakly conditionally compact) on Bα(X) for all n ≥ 1.
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Proof. We first define the operators Ṽn by setting

Ṽnf(z) =
n∑

k=0

akz
k +

2n−1∑

k=n+1

2n − k

n
akz

k (2.9)

for any holomorphic function f : D → X with the Taylor expansion f(z) =
∑∞

k=0 akz
k. Note

that

Ṽnf(z) =
(
2K2n−1 −Kn−1

)∗f(z) = 1
2π

∫2π

0

[
2K2n−1(θ) −Kn−1(θ)

]
f
(
ze−iθ

)
dθ, (2.10)

where Kn(θ) =
∑n

k=−n(1 − |k|/(n + 1))eikθ denotes the Fejér kernel, which is a summability
kernel, that is, (1/2π)

∫2π
0 Kn(θ)dθ = 1 (refer to [20]). Then we have

∥∥Ṽnf
∥∥
H∞(X) ≤ 3‖f‖H∞(X), (2.11)

where ‖·‖H∞(X) denotes the norm on the X-valued Hardy space H∞(X) given by ‖f‖H∞(X) =
supz∈D‖f(z)‖X . For any ε > 0 and r ∈ (0, 1), there exists n0 > 0 such that rn ≤ ε/4 for n > n0.
Given f ∈ H∞(X), we write f − Ṽnf = zng, then

‖g‖H∞(X) = sup
z∈D

∥∥g(z)
∥∥
X

= sup
z∈∂D

∥∥g(z)
∥∥
X

= sup
z∈∂D

∥∥zng(z)
∥∥
X

= sup
z∈D

∥∥zng(z)
∥∥
X

= sup
z∈D

∥∥f(z) − Ṽnf(z)
∥∥
X

=
∥∥f − Ṽnf

∥∥
H∞(X),

(2.12)

the second equality above is due to the subharmonicity of ‖g(z)‖X . So

∥∥f(z) − Ṽnf(z)
∥∥
X = |z|n∥∥g(z)∥∥X ≤ rn‖g‖H∞(X) ≤

ε

4
∥∥f − Ṽnf

∥∥
H∞(X) ≤ ε‖f‖H∞(X) (2.13)
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for n > n0 and all |z| < r, the last inequality comes from (2.11). Now we define the desired
operators {Vn} via Ṽn as follows:

Vnf(z) = f(0) +
∫z

0
Ṽnf

′(ζ)dζ (2.14)

for any holomorphic function f : D → X. Clear Vnf is holomorphic and actually

Vnf(z) =
n+1∑

k=0

akz
k +

2n∑

k=n+2

2n + 1 − k

n
akz

k (2.15)

for any holomorphic function f(z) =
∑∞

k=0 akz
k. Since

sup
|z|=r

∥∥(Vnf
)′(z)

∥∥
X = sup

|z|=r

∥∥Ṽnf
′(z)

∥∥
X

= sup
|z|=1

∥∥Ṽnf
′(rz)

∥∥
X

=
∥∥Ṽnf

′
r

∥∥
H∞(X)

≤ 3
∥∥f ′

r

∥∥
H∞(X)

= 3 sup
|z|=r

∥∥f ′(z)
∥∥
X,

(2.16)

where fr(·) = f(r·) for any 0 < r < 1. Hence

∥∥Vnf
∥∥
Bα(X) ≤ 3‖f‖Bα(X), f ∈ Bα(X), (2.17)

by the definition of the norm ‖·‖Bα(X) and Vnf(0) = f(0). In addition, it is clear that
Vn(Bα

0(X)) ⊂ Bα
0(X), since Vnf is always a polynomial by (2.15). This completes the proof

of part (1).
Since

f(z) = f(0) +
∫z

0
f ′(ζ)dζ, Vnf(z) = f(0) +

∫z

0
Ṽnf

′(ζ)dζ, (2.18)

so

∥∥f(z) − Vnf(z)
∥∥
X =

∥∥∥∥

∫1

0

(
f ′(zt) − Ṽnf

′(zt)
)
zdt

∥∥∥∥
X

. (2.19)
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Hence for any |z| ≤ r < 1,

∥
∥f(z) − Vnf(z)

∥
∥
X ≤

∫1

0
sup
|z|≤r

∥
∥(f ′(zt) − Ṽnf

′(zt)
)∥∥

Xdt

=
∫1

0
sup
|z|≤√r

∥
∥(f ′√

r
(zt) − Ṽnf

′√
r
(zt))

∥
∥
X
dt

≤
∫1

0
ε(1 − r)α

∥
∥f ′√

r

∥
∥
H∞(X)

dt

= ε(1 − r)α
∥
∥f ′√

r

∥
∥
H∞(X)

≤ ε‖f‖Bα(X)

(2.20)

for large enough n, the third inequality to the last is followed by applying (2.13) to the
function f ′√

r
and the constant ε(1 − r)α. This completes the proof of part (2).

Finally, for any n, define

Snf =
(
a0, a1, . . . , a2n

)
(2.21)

for any holomorphic function f : D → X with Taylor expansion f(z) =
∑∞

k=0 akz
k, and define

(
Tnχ

)
(z) =

n+1∑

k=0

akz
k +

2n∑

k=n+2

2n + 1 − k

n
akz

k (2.22)

for any χ = (a0, a1, . . . , a2n) ∈ (
⊕2n

0 X)l2 . It is clear that Sn : Bα(X) → (
⊕2n

0 X)l2 and
Tn : (

⊕2n
0 X)l2 → Bα(X) are well defined and bounded. Moreover, Vn = TnSn by (2.15),

that is, Vn has a factorization through (
⊕2n

0 X)l2 . It follows from Alaoglu’s theorem [21] and
Rosenthal’s l1-criterion [22] that Vn is weakly compact (resp., weakly conditionally compact)
if X is reflexive (resp., does not contain a copy of l1). The proof is complete.

3. Proof of the main results

Before proving Theorem 1.1, we first recall that a bounded linear operator T : E → F from the
Banach space E to the Banach space F is compact (resp., weakly compact) if every bounded
sequence {fn} ⊂ E has a subsequence {fnk} such that {Tfnk} is norm convergent (resp.,
weakly convergent). A useful characterization for a bounded linear operators to be weakly
compact is the Gantmacher’s theorem [21]: T is weakly compact if and only if T ∗∗(E∗∗) ⊂ F,
where T ∗∗ is the second adjoint of T , and E∗∗ is the second dual of E.

Notice that if g is a nonconstant holomorphic function such that Tg : Bα(X) → Bβ(X)

(or Tg : Bα
0(X) → Bβ

0(X)) is compact, then for any bounded sequence {xn} in X and
fn(z) ≡ xn, {fn} is a bounded sequence of Bα

0(X) since ‖fn‖Bα(X) = ‖xn‖X , and then there
exists a subsequence {fnk} by the definition of compact operators such that {Tgfnk} is norm
convergent in Bβ(X). On the other hand,

Fn(z) := Tgfn(z) =
∫z

0
xng

′(ζ)dζ = xn

(
g(z) − g(0)

)
. (3.1)
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So {Fnk} is norm convergent in Bβ(X). It follows from Lemma 2.1 that Fnk converges
uniformly on any compact subset of D, especially it is pointwise convergent. That is, for any
bounded sequence {xn} ⊂ X, there is a subsequence {xnk} such that it is norm convergence
in X since g is nonconstant, so X must be finite-dimensional Banach space by Bolzano-
Weierstrass theorem [21]. Namely, for any infinite-dimensional Banach space X, Tg is never
compact between X-valued weighted Bloch spaces except for the trivial case that gwhich is a
constant function.

From here on, we always assume that X is an infinite-dimensional Banach space,
similar analysis as above shows that if the Riemann-Stieltjes operator Tg is weakly compact

from Bα(X) to Bβ(X) (or from Bα
0(X) to Bβ

0(X)), then for fn(z) ≡ xn, a bounded sequence in
X, there exists a subsequence {fnk} such that {Tgfnk} is weakly convergent. Without loss of
generality, we may assume that {Tgfnk} converges weakly to 0. Fix any z ∈ D, let δz be the
point evaluation function at z, that is, δz(f) = f(z), f ∈ Bβ(X). Then for any x∗ ∈ X∗, the
functional

x∗ ◦ δz(f) = x∗(f(z)
)
, f ∈ Bβ(X) (3.2)

satisfies

∣∣x∗ ◦ δz(f)
∣∣ ≤ ∥∥x∗∥∥

X∗
∥∥f(z)

∥∥
X � Cz

∥∥x∗∥∥
X∗‖f‖Bβ(X), f ∈ Bβ(X) (3.3)

for some constant Cz > 0 by Lemma 2.1. That is, x∗ ◦ δz ∈ (Bβ(X))∗, so x∗ ◦ δz(Tgfnk) → 0 as
k → ∞, that is,

x∗(xnk

)(
g(z) − g(0)

) −→ 0, as k −→ ∞, (3.4)

for any x∗ ∈ X∗ and z ∈ D. Since g is nonconstant, so x∗(xnk) → 0 as k → ∞ for any x∗ ∈ X∗.
That is, for any bounded sequence {xn} ⊂ X, there is a subsequence {xnk} such that it is
weakly convergent, then X must be reflexive (refer to [23]). Namely, the reflexivity of X is a
necessary condition for the weak compactness of Tg between X-valued Bloch spaces. Under

this assumption, Theorem 1.1 states that Tg : Bα(X) → Bβ(X) (or Tg : Bα
0(X) → Bβ

0(X)) is
weakly compact if and only if the corresponding scalar-valued operator Tg is compact by the
main result in [9].

We are now going to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We first assume that X is reflexive and define the operator Vn as in
Lemma 2.3, that is,

Vnf(z) =
n+1∑

k=0

akz
k +

2n∑

k=n+2

2n + 1 − k

n
akz

k (3.5)

for any holomorphic function f(z) =
∑∞

k=0 akz
k. From Lemma 2.3, we know that the

operators {Vn} are all weakly compact on Bα(X) and uniform bounded. So it suffices to
prove that the norm ‖Tg − TgVn‖ → 0 as n → ∞ under the conditions (1.8), (1.9), and (1.10),
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respectively, because the weakly compact operators form a closed operator ideal. For any
f ∈ Bα(X), we know f − Vnf ∈ Bα(X) and

(
1 − |z|2)β∥∥[(Tg − TgVn

)
f
]′(z)

∥
∥
X
=
(
1 − |z|2)β∣∣g ′(z)

∣
∣
∥
∥f(z) − Vnf(z)

∥
∥
X =: A(z). (3.6)

For α = 1, if lim|z| → 1−(1 − |z|2)β ln(2/(1− |z|2))|g ′(z)| = 0, then for arbitrary ε > 0, there

is r ∈ (0, 1) such that (1 − |z|2)β ln(2/(1 − |z|2))|g ′(z)| < ε for |z| > r. So

A(z) =
(
1 − |z|2)β∣∣g ′(z)

∣
∣
∥
∥(I − Vn

)
f(z)

∥
∥
X

=
(
1 − |z|2)β

(
ln

2

1 − |z|2
)∣
∣g ′(z)

∣
∣
∥
∥(I − Vn

)
f(z)

∥
∥
X

ln
(
2/

(
1 − |z|2))

� ε‖f‖Bα(X)

(3.7)

for |z| > r by Lemmas 2.1(2) and 2.3(1). And for |z| ≤ r,

A(z) =
(
1 − |z|2)β∣∣g ′(z)

∣∣∥∥(I − Vn

)
f(z)

∥∥
X �

∥∥(I − Vn

)
f(z)

∥∥
X � ε‖f‖B(X) (3.8)

for large enough n by Lemma 2.3(2). Hence ‖Tg − TgVn‖ < ε for nsufficiently large. This
completes the sufficiency for the case α = 1 since at this time we again have Tg(B0(X)) ⊂
Bβ

0(X).

Similarly, for α > 1, if lim|z| → 1−(1 − |z|2)β−α+1|g ′(z)| = 0, then for arbitrary ε > 0, there

is r ∈ (0, 1) such that (1 − |z|2)β−α+1|g ′(z)| < ε for |z| > r. So

A(z) =
(
1−|z|2)β∣∣g ′(z)

∣∣∥∥(I−Vn

)
f(z)

∥∥
X �

(
1 − |z|2)β−α+1∣∣g ′(z)

∣∣∥∥(I − Vn

)
f
∥∥
Bα(X)�ε‖f‖Bα(X)

(3.9)

for |z| > r by Lemmas 2.1(3) and 2.3(1). Hence ‖Tg −TgVn‖ < ε for n sufficiently large by (3.8).

This completes the sufficiency for the case α > 1 since again Tg(Bα
0(X)) ⊂ Bβ

0(X).
For α ∈ (0, 1), the method above does not work. We complete the proof by the

definition of weak compactness of Tg . Since g satisfies (1.8), it is obvious that Tg :

Bα(X) → Bβ(X) (resp., Tg : Bα
0(X) → Bβ

0(X)) is bounded. For any bounded sequence {fn} ⊂
Bα(X), we have

∥∥fn(z)
∥∥
X �

∥∥fn
∥∥
Bα(X) � 1, z ∈ D, (3.10)

by Lemma 2.1. From Montel’s theorem, since X is reflexive, there are a subsequence {fnk}
and a holomorphic function h : D → X such that {fnk} converges uniformly to h on compact
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subsets of D. It is clear that h ∈ Bα(X). We now claim that {fnk} actually converges uniformly
to h on D. In fact, for any ε > 0, there is r ∈ (0, 1) such that (1 − r)1−α < ε. So for any r < |z| < 1,

∥
∥
∥
∥
(
fnk(z) − h(z)

) −
(
fnk

(
r

|z|z
)
− h

(
r

|z|z
))∥

∥
∥
∥
X

=
∥
∥
∥
∥

∫1

r/|z|

(
f ′
nk
(tz) − h′(tz)

)
zdt

∥
∥
∥
∥
X

�
∫1

r/|z|

|z|
(
1 − |tz|2)α

dt

� (1 − r)1−α < ε,

(3.11)

then

∥
∥fnk(z) − h(z)

∥
∥
X � ε +

∥
∥
∥
∥fnk

(
r

|z|z
)
− h

(
r

|z|z
)∥
∥
∥
∥
X

. (3.12)

Since {fnk} converges uniformly to h on any compact subset of D, so it follows from (3.12)
that {fnk} actually converges uniformly to h on D, that is,

sup
z∈D

∥∥fnk(z) − h(z)
∥∥
X −→ 0 (as k −→ ∞). (3.13)

So for any x∗ ∈ X∗ and z ∈ D,

∣∣x∗ ◦ δz
(
fnk − h

)∣∣ =
∣∣x∗(fnk(z) − h(z)

)∣∣ −→ 0 (as k −→ ∞), (3.14)

that is,

x∗ ◦ δz
(
fnk − h

) −→ 0 (as k −→ ∞). (3.15)

Since supz∈D(1 − |z|2)β|g ′(z)| < ∞ by our hypothesis,

∣∣x∗ ◦ δz
(
Tg

(
fnk − h

))∣∣ =
∣∣∣∣x

∗ ◦
∫1

0

(
fnk − h

)
(zt)g ′(zt)zdt

∣∣∣∣

�
∫1

0

∣∣x∗(fnk − h
)
(zt)

∣∣ 1
(
1 − |zt|2)β

dt

−→ 0 (as k −→ ∞),

(3.16)

the last limit follows from (3.15) and the Lebesgue’s dominated convergence theorem. Now,
we claim that Span{x∗ ◦ δz : x∗ ∈ X∗, z ∈ D} is ω∗-dense in (Bβ(X))∗. In fact, if Span{x∗ ◦ δz :
x∗ ∈ X∗, z ∈ D} is not ω∗-dense in (Bβ(X))∗, then by Hahn-Banach theorem [23] there are
f ∈ Bβ(X) and δ ∈ (Bβ(X))∗ such that x∗ ◦ δz(f) = 0, for all x∗ ∈ X∗, z ∈ D and δ(f)/= 0. That
is, f /= 0 and x∗ ◦ f(z) = 0, for all x∗ ∈ X∗, z ∈ D, then applying Hahn-Banach theorem
again we have f(z) = 0, for all z ∈ D, so f ≡ 0. This contradiction proves our claim.
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Therefore, {Tgfnk} converges weakly to Tgh, so Tg is weakly compact from Bα(X) to Bβ(X).

If, in addition, lim|z| → 1−(1 − |z|2)β|g ′(z)| = 0, then it is easy to see that Tg(Bα
0(X)) ⊂ Bβ

0(X), so

Tg : Bα
0(X) → Bβ

0(X) is also weakly compact.
Towards the converse direction, if Tg : Bα(X) → Bβ(X) is weakly compact, we

have shown that X is reflexive by the remarks before the proof. Now fix x0 ∈ X with
‖x0‖X = 1 and consider the closed subspace Mα := {x0f : f ∈ Bα} ⊂ Bα(X). Clearly
Tgx0f(z) =

∫z
0 x0f(ζ)g ′(ζ)dζ = x0

∫z
0f(ζ)g

′(ζ)dζ = x0T̃gf(z), f ∈ Bα, where we denote by T̃g the
corresponding scalar-valued Riemann-Stieltjes operator from Bα to Bβ. So Tg(Mα) ⊂ Mβ and
Tg : Mα → Mβ is “isomorphic” to the scalar-valued operator T̃g : Bα → Bβ. Then T̃g : Bα → Bβ

is weakly compact.
For α = 1, we know fa(z) = ln(2/(1 − az)) ∈ B and ‖fa‖B ≤ 3 for any a ∈ D.

Then we have supz∈D(1 − |z|2)β ln(2/(1 − |z|2))|g ′(z)| < ∞. In addition, if f ∈ B0, then (1 −
|z|2)β|(T̃gf)

′
(z)| = (1 − |z|2)β ln(2/(1 − |z|2))|g ′(z)|(|f(z)|/ ln(2/(1 − |z|2))) � |f(z)|/ ln(2/(1 −

|z|2)) → 0 (as |z| → 1), by Lemma 2.2. That is, T̃gf ∈ Bβ

0. Similarly, for α > 1, we
know fa(z) = (1 − |a|2)/(1 − az)α ∈ Bα and ‖fa‖Bα � 1 for any a ∈ D, then

supz∈D(1 − |z|2)β−α+1|g ′(z)| � 1. Hence for any f ∈ Bα
0 , we have (1 − |z|2)β|(T̃gf)

′
(z)| =

(1 − |z|2)β−α+1|g ′(z)|(1 − |z|2)α−1|f(z)| → 0 (as |z| → 1) by Lemma 2.2. That is, T̃g(Bα
0) ⊂ Bβ

0

for α ≥ 1. So T̃g : Bα
0 → Bβ

0 is weakly compact too, which is obvious for the case that

Tg : Bα
0(X) → Bβ

0(X) is weakly compact. By Grantmacher’s theorem [21],

T̃g
(Bα) ⊂ Bβ

0 . (3.17)

For α = 1, if (1.9) does not hold, then there exist some ε0 > 0 and a sequence {zn} ⊂ D

such that |zn| → 1 as n → ∞ and

(
1 − |zn|2

)β
ln

2

1 − |zn|2
∣∣g ′(zn)

∣∣ ≥ ε0, for each n ≥ 1. (3.18)

By the interpolation result in [24], there are a function h ∈ B and a subsequence {znk} of {zn},
which is R-separated such that

h
(
znk

)
= ln

2

1 − ∣∣znk

∣∣2
, for any k ≥ 1. (3.19)

Since T̃gh ∈ Bβ

0 by (3.17), then

lim
|z| → 1−

(
1 − |z|2)β∣∣h(z)∣∣∣∣g ′(z)

∣∣ = 0. (3.20)
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But by (3.18), we know

(
1 − ∣

∣znk

∣
∣2)β

∣
∣h
(
znk

)∣∣
∣
∣g ′(znk

)∣∣ =
(
1 − ∣

∣znk

∣
∣2)β ln

2

1 − ∣
∣znk

∣
∣2
∣
∣g ′(znk

)∣∣ � ε0, for each k ≥ 1,

(3.21)

which contradicts (3.20).
For α > 1, if (1.10) does not hold, we can find ε0 > 0 and a sequence {zn} ⊂ D such that

|zn| → 1 as n → ∞ and

(
1 − ∣

∣zn
∣
∣2)β−α+1∣∣g ′(zn

)∣∣ ≥ ε0, for each n ≥ 1. (3.22)

By [11, Lemma 3.1], there are functions f1, f2 ∈ Bα such that

inf
z∈D

(
1 − ∣∣z1

∣∣)α−1(∣∣f1(z)
∣∣ +

∣∣f2(z)
∣∣) = c > 0. (3.23)

It follows from (3.17) that T̃gf1, T̃gf2 ∈ Bβ

0, that is,

lim
|z| → 1−

(
1 − |z|2)β(∣∣f1(z)

∣∣ +
∣∣f2(z)

∣∣)∣∣g ′(z)
∣∣ = 0. (3.24)

But it follows from (3.23) and (3.22) that

(
1 − |zn|2

)β(∣∣f1
(
zn

)∣∣ +
∣∣f2

(
zn

)∣∣)∣∣g ′(zn
)∣∣

=
(
1 − ∣∣zn

∣∣2)β−α+1(1 − ∣∣zn
∣∣2)α−1(∣∣f1

(
zn

)∣∣ +
∣∣f2

(
zn

)∣∣)∣∣g ′(zn
)∣∣

�
(
1 − ∣∣zn

∣∣2)β−α+1∣∣g ′(zn
)∣∣ ≥ ε0, for each n ≥ 1,

(3.25)

which contradicts (3.24). So for α ≥ 1, the weak compactness of Tg must imply (1.9) and
(1.10), respectively.

As α ∈ (0, 1) and Tg : Bα(X) → Bβ(X) (resp., Tg : Bα
0(X) → Bβ

0(X)) is weakly compact,

we can easy check that g ∈ Bβ (resp., g ∈ Bβ

0), since constant function f(z) ≡ x0 ∈ X belongs
to Bα

0(X). Then the proof is complete.

Finally, we briefly consider the weakly conditional compactness of Tg . Given Banach
spaces E and F, recall that a bounded linear operator T : E → F is weakly conditionally
compact if any bounded sequence (fn) in E has a subsequence (fnk) such that (Tfnk) is weakly
Cauchy. Rosenthal’s l1-criterion [22] implies that T is not weakly conditionally compact if
and only if T fixes a copy of l1 in E. Hence if l1 does not embed into E, then every bounded
operator T : E → F is weakly conditionally compact, so from our Theorem 1.1, we know that
the set of weakly conditionally compact operators is, in general, strictly larger than the set of
weakly compact operators. The following theorem is a counterpart of our previous result.
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Theorem 3.1. Let α, β > 0, X be a complex Banach space and g : D → C a nonconstant holomorphic
function. Then Tg : Bα(X) → Bβ(X) (or Tg : Bα

0(X) → Bβ

0(X)) is weakly conditionally compact
if and only if X does not contain any copy of l1 and the conditions (1.8), (1.9), and (1.10) hold,
respectively, for 0 < α < 1, α = 1, α > 1.

Proof. The sufficiency is established exactly as in the proof of Theorem 1.1. Since X does not
contain a copy of l1, Vn defined in Lemma 2.3 are, in fact, weakly conditionally compact, so
is Tg = limn → ∞ TgVn for α ≥ 1 by the fact that weakly conditionally compact operators also
form a closed operator ideal. For α ∈ (0, 1), the weakly conditional compactness of Tg follows
easily from the definition by modifying the corresponding part of the proof of Theorem 1.1.

For the necessity, assume that Tg is weakly conditionally compact, a similar analysis
as the remarks before the proof of Theorem 1.1 shows that for any bounded sequence (xn)
in X, there exists a subsequence (xnk) such that it is weakly Cauchy, so l1 can not embed
in X by Rosenthal’s l1-theorem. Similar to the proof of Theorem 1.1, Tg is “isomorphic” to

the corresponding scalar-valued operator T̃g , then T̃g : Bα → Bβ (or T̃g : Bα
0 → Bβ

0) is weakly
conditionally compact. Because every nonweakly compact operator on l∞ acts isomorphically
on a copy of l∞, and hence on a copy of l1 (refer to [22]). Notice that Bα is isomorphic to l∞

[19], so T̃g is actually weakly compact. Then the desired conditions (1.8), (1.9), and (1.10)
hold by the proof of Theorem 1.1.
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