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Let f be a normalized analytic function defined on the unit disk and fλ(z) := (1 − λ)z + λf(z)
for 0 < λ ≤ 1. For α > 0, a function f ∈ SP(α, λ) if zf ′(z)/fλ(z) lies in the parabolic region
Ω := {w : |w − α| < Rew + α}. Let CP(α, λ) be the corresponding class consisting of functions f
such that (zf ′(z))′/f ′

λ
(z) lies in the region Ω. For an appropriate δ > 0, the δ-neighbourhood of a

function f ∈ CP(α, λ) is shown to consist of functions in the class SP(α, λ).
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1. Introduction

Let A denote the class of all analytic functions f(z) defined on the open unit disk Δ := {z :
|z| < 1} and normalized by f(0) = 0 and f ′(0) = 1, and let S be the subclass of A consisting
of univalent functions. Let ST and CV be the well-known subclasses of S, respectively,
consisting of starlike and convex functions. Given δ ≥ 0, Ruscheweyh [1] defined the δ-
neighbourhood Nδ(f) of a function:

f(z) = z +
∞∑

n=2

anz
n ∈ A (1.1)

to be the set

Nδ(f) :=

{
g(z) : g(z) = z +

∞∑

k=2

bkz
k, and

∞∑

k=2

k
∣∣ak − bk

∣∣ ≤ δ

}
. (1.2)

Ruscheweyh [1] proved among other results that N1/4(f) ⊂ ST for f ∈ CV. Sheil-Small and
Silvia [2] introduced more general notions of neighbourhood of an analytic function. These
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included noncoefficient neighbourhoods as well. Problems related to the neighbourhoods of
analytic functions were considered by many others, for example, see [3–12].

An analytic function f(z) ∈ S is uniformly convex [13] if for every circular arc γ
contained in Δ with center ζ ∈ Δ, the image arc f(γ) is convex. Denote the class of all
uniformly convex functions by UCV. In [14, 15], it was shown that a function f(z) is
uniformly convex if and only if

Re
{
1 +

zf ′′(z)
f ′(z)

}
>

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ (z ∈ Δ). (1.3)

The class Sp of functions zf ′(z) with f(z) in UCV was introduced in [15] and clearly f(z) is
in Sp if and only if

Re
{
zf ′(z)
f(z)

}
>

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ (z ∈ Δ). (1.4)

The class UCV of uniformly convex functions and the class Sp of parabolic starlike functions
were investigated in [16–20]. A survey of these functions can be found in [21].

Let α > 0 and 0 < λ ≤ 1. The class SP(α, λ) consists of functions f ∈ S satisfying

Re
{

zf ′(z)
(1 − λ)z + λf(z)

}
+ α >

∣∣∣∣
zf ′(z)

(1 − λ)z + λf(z)
− α

∣∣∣∣ (z ∈ Δ). (1.5)

By writing fλ(z) := (1 − λ)z + λf(z), the inequality in (1.5) can be written as

Re
{
zf ′(z)
fλ(z)

}
+ α >

∣∣∣∣
zf ′(z)
fλ(z)

− α

∣∣∣∣. (1.6)

Observe that (1.5) defines a parabolic region. More explicitly, f ∈ SP(α, λ) if and only
if the values of the functional zf ′(z)/fλ(z) lie in the parabolic region Ω, where

Ω :=
{
w : |w − α| < Rew + α

}
=
{
w = u + iv : v2 < 4αu

}
. (1.7)

The geometric properties of the function fλ when f belongs to certain classes of starlike
and convex functions were investigated by several authors [22–27]; in particular, we recall the
following result.

Theorem 1.1 (see [25]). Let f ∈ CV. Then,

(1) fλ(z) := (1 − λ)z + λf(z) ∈ ST if and only if λ ∈ C and |λ − 1| ≤ 1/3;

(2) if f ′′(0) = 0, then fλ ∈ ST for λ ∈ [0, 1].

For α > 0 and 0 < λ ≤ 1, the class CP(α, λ) consists of functions f ∈ S satisfying

Re
{(

zf ′(z)
)′

f ′
λ
(z)

}
+ α >

∣∣∣∣

(
zf ′(z)

)′

f ′
λ
(z)

− α

∣∣∣∣ (z ∈ Δ). (1.8)

When λ = 1, the classes SP(α, λ) and CP(α, λ) reduce, respectively, to the classes introduced
in [28, 29]. Besides several other properties, the authors in [28, 29] also gave geometric
interpretations, respectively, of the classes SP(α) := SP(α, 1) and CP(α) := CP(α, 1).

In this paper, the neighbourhoodNδ(f) for functions f ∈ CP(α, λ) is investigated. It is
shown that all functions g ∈ Nδ(f) are in the class SP(α, λ) for a certain δ > 0. It is of interest
to note that the conditions on δ obtained here coincide with those in [30] for corresponding
results in the classes CP(α) and SP(α).
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2. Main results

In order to obtain the main results, a characterization of the class SP(α, λ) in terms of the
functions in another class SP′(α, λ) is needed. For a fixed α > 0, 0 < λ ≤ 1, and t ≥ 0, a
function Ht,λ is said to be in the class SP′(α, λ) if the function Ht,λ is of the form

Ht,λ(z) :=
1

1 −
(
t ± 2

√
αti

)
[

z

(1 − z)2
−
[
z − (1 − λ)z2

]

1 − z

(
t ± 2

√
αti

)]
(z ∈ Δ). (2.1)

Recall that for any two functions f(z) and g(z) given by

f(z) = z +
∞∑

n=2

anz
n, g(z) = z +

∞∑

n=2

bnz
n, (2.2)

the Hadamard product (or convolution) of f and g is defined by

(
f∗g

)
(z) := z +

∞∑

n=2

anbnz
n =:

(
g∗f

)
(z). (2.3)

Lemma 2.1. Let α > 0 and 0 < λ ≤ 1. A function f is in the class SP(α, λ) if and only if

1
z

(
f∗Ht,λ

)
(z)/= 0 (z ∈ Δ), (2.4)

for all Ht,λ ∈ SP′(α, λ).

Proof. Let f ∈ SP(α, λ). Then, the image of Δ under w = zf ′(z)/fλ(z) lies in the parabolic
region Ω(α, λ) = {w : |w − α| < Rew + α} so that

zf ′(z)
fλ(z)

/= t ± 2
√
αti (z ∈ Δ, t ≥ 0). (2.5)

Thus f ∈ SP(α, λ) if and only if

zf ′(z) −
[
t ± 2

√
αti

]
fλ(z)

z
(
1 −

[
t ± 2

√
αti

]) /= 0 (z ∈ Δ, t ≥ 0), (2.6)

or equivalently

1
z

(
f∗Ht,λ

)
(z)/= 0 (z ∈ Δ, t ≥ 0), (2.7)

for all Ht,λ ∈ SP′(α, λ).

Lemma 2.2. Let α > 0 and 0 < λ ≤ 1. If

Ht,λ(z) := z +
∞∑

k=2

hk,λ(t)zk ∈ SP′(α, λ), (2.8)

then

∣∣hk,λ(t)
∣∣ ≤

⎧
⎪⎪⎨

⎪⎪⎩

k

2
√
α(1 − α)

, 0 < α <
1
2
,

k, α ≥ 1
2
,

(2.9)

for all t ≥ 0.
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Proof. Writing Ht,λ(z) = z +
∑∞

k=2hk,λ(t)zk, and comparing coefficients of zk in (2.1), one
obtains

hk,λ(t) =
k − λ

(
t ± 2

√
αti

)

1 −
(
t ± 2

√
αti

) . (2.10)

Thus, for t ≥ 0 and 0 < λ ≤ 1,

∣∣hk,λ(t)
∣∣2 =

∣∣∣∣∣
k − λ

(
t ± 2

√
αti

)

1 −
(
t ± 2

√
αti

)

∣∣∣∣∣

2

=
(k − λt)2 + 4λ2αt

(1 − t)2 + 4αt

= λ2 +
(k − λ)(k + λ − 2λt)

(1 − t)2 + 4αt

≤ λ2 +
(k2 − λ2)

(1 − t)2 + 4αt
.

(2.11)

It is easy to see that

(1 − t)2 + 4αt ≥

⎧
⎪⎨

⎪⎩

4α(1 − α), 0 < α <
1
2
,

1, α ≥ 1
2
.

(2.12)

Hence, for 0 < α < 1/2, and 0 < λ ≤ 1,

∣∣hk,λ(t)
∣∣2 ≤ λ2 +

(
k2 − λ2

)

4α(1 − α)
≤ k2

4α(1 − α)
, (2.13)

and, for α ≥ 1/2,

∣∣hk,λ(t)
∣∣2 ≤ λ2 + k2 − λ2 = k2. (2.14)

Lemma 2.3. For each complex number ε and f ∈ A, define the function Fε by

Fε(z) :=
f(z) + εz

1 + ε
. (2.15)

Let α > 0, 0 < λ ≤ 1, and Fε ∈ SP(α, λ) for |ε| < δ for some δ > 0. Then

∣∣∣∣
1
z

(
f∗Ht,λ

)
(z)

∣∣∣∣ ≥ δ (z ∈ Δ), (2.16)

for everyHt,λ ∈ SP′(α, λ).
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Proof. If Fε ∈ SP(α, λ) for |ε| < δ, where δ > 0 is fixed, then by Lemma 2.1, for all Ht,λ ∈
SP′(α, λ), it follows that

1
z

(
Fε∗Ht,λ

)
(z)/= 0, (z ∈ Δ), (2.17)

or equivalently
(
f∗Ht,λ

)
(z) + εz

(1 + ε)z /= 0. (2.18)

Since |ε| < δ, it easily follows that
∣∣∣∣
1
z

(
f∗Ht,λ

)
(z)

∣∣∣∣ ≥ δ. (2.19)

Theorem 2.4. Let α > 0 and 0 < λ ≤ 1. Let f ∈ A and δ > 0. For a complex number ε with |ε| < δ,
let the function Fε, defined by (2.15), be in SP(α, λ). Then, Nδ′(f) ⊂ SP(α, λ) for

δ′ :=

⎧
⎪⎨

⎪⎩

2δ
√
α(1 − α), 0 < α <

1
2
,

δ, α ≥ 1
2
.

(2.20)

Proof. Let g(z) = z +
∑∞

k=2bkz
k ∈ Nδ′(f). For any Ht,λ ∈ SP′(α, λ),

∣∣∣∣
1
z

(
g∗Ht,λ

)
(z)

∣∣∣∣ =
∣∣∣∣
1
z

(
f∗Ht,λ

)
(z) +

1
z

(
(g − f)∗Ht,λ

)
(z)

∣∣∣∣

≥
∣∣∣∣
1
z

(
f∗Ht,λ

)
(z)

∣∣∣∣ −
∣∣∣∣
1
z

(
(g − f)∗Ht,λ

)
(z)

∣∣∣∣.
(2.21)

Using Lemma 2.3, it follows that

∣∣∣∣
1
z

(
g∗Ht,λ

)
(z)

∣∣∣∣ ≥ δ −
∣∣∣∣∣

∞∑

k=2

(
bk − ak

)
hk,λ(t)zk

z

∣∣∣∣∣

≥ δ −
∞∑

k=2

∣∣bk − ak

∣∣∣∣hk,λ(t)
∣∣.

(2.22)

Using Lemma 2.2 and noting that g ∈ Nδ′(f), and whence
∑∞

k=2k|bk − ak| < δ′, thus

∣∣∣∣
1
z

(
g∗Ht,λ

)
(z)

∣∣∣∣ ≥

⎧
⎪⎪⎨

⎪⎪⎩

δ − δ′

2
√
α(1 − α)

, 0 < α <
1
2
,

δ − δ′, α ≥ 1
2
.

(2.23)

Therefore, |(1/z)(g∗Ht,λ)(z)|/= 0 in Δ for all Ht,λ ∈ SP(α, λ) if

δ′ =

⎧
⎪⎨

⎪⎩

2δ
√
α(1 − α), 0 < α <

1
2
,

δ, α ≥ 1
2
.

(2.24)

By Lemma 2.1, this means that g ∈ SP(α, λ). This proves that Nδ′(f) ⊂ SP(α, λ).
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We need the following well-known result in [31] concerning convolution of functions.

Lemma 2.5 (see [31]). Let f ∈ CV, g ∈ ST, and suppose F is any analytic function defined on Δ.
Then

f(z)∗g(z)F(z)
f(z)∗g(z) ⊂ coF(Δ), (z ∈ Δ), (2.25)

where co stands for the closed convex hull.

Lemma 2.6. If f ∈ CV, g ∈ SP(α, λ), and gλ ∈ ST, then f∗g ∈ SP(α, λ).

Proof. The conclusion f∗g ∈ SP(α, λ) is a consequence of Lemma 2.5 on noting that

z
(
f(z)∗g(z)

)′
(
f(z)∗g(z)

)
λ

=
f(z)∗zg ′(z)
f(z)∗gλ(z)

=
f(z)∗gλ(z)

(
zg ′(z)/gλ(z)

)

f(z)∗gλ(z)
⊂ co

{
zg ′(z)
gλ(z)

: z ∈ Δ
}
. (2.26)

Theorem 2.7. Let α > 0 and 0 ≤ λ ≤ 1. If f ∈ CP(α, λ) and fλ ∈ CV, then the function Fε defined
by (2.15) belongs to SP(α, λ) for |ε| < 1/4.

Proof. Let f(z) = z +
∑∞

k=2akz
k ∈ CP(α, λ). Then,

Fε(z) =
f(z) + εz

1 + ε
=
(
f∗h

)
(z), (2.27)

where

h(z) :=
z −

(
ε/(1 + ε)

)
z2

1 − z
=

z − ρz2

1 − z
(z ∈ Δ), (2.28)

and ρ := ε/(1 + ε). Note that

Re
zh′(z)
h(z)

≥ 1
2
−

|ρ|
1 − |ρ| > 0 (z ∈ Δ), (2.29)

if |ρ| ≤ 1/3. This clearly holds for |ε| < 1/4. Thus, the function h(z) is starlike for |ε| < 1/4
and whence the function

∫z

0

h(t)
t

dt = h(z)∗ log 1
1 − z

(z ∈ Δ) (2.30)

is in CV. Since f(z) ∈ CP(α, λ), the function zf ′(z) ∈ SP(α, λ). Also fλ(z) ∈ CV implies that
(zf ′(z))λ ∈ ST. By Lemma 2.6,

Fε(z) = (f∗h)(z) = zf ′(z)∗
(
h(z)∗ log 1

1 − z

)
∈ SP(α, λ), (2.31)

for |ε| < 1/4.



Rosihan M. Ali et al. 7

Theorem 2.8. Let α > 0 and 0 ≤ λ ≤ 1. If f ∈ CP(α, λ) and fλ ∈ CV, then Nδ′(f) ⊂ SP(α, λ, ),
where

δ′ :=

⎧
⎪⎪⎨

⎪⎪⎩

1
2

√
α(1 − α), 0 < α <

1
2
,

1
4
, α ≥ 1

2
.

(2.32)

Proof. The result follows from Theorems 2.4 and 2.7 by taking δ = 1/4 in Theorem 2.4.

Remark 2.9. It is interesting to note that the values of δ′ in Theorems 2.4 and 2.8 are
independent of λ. In fact, the conclusion of Theorems 2.4, 2.7, and 2.8 is the same as found in
[29] for the subclasses SP(α) and CP(α).

To prove our next result, we need the following results.

Lemma 2.10 (see [32]). Let Ω be a set in the complex plane C and suppose that the mapping Φ :
C

2 × Δ → C satisfies Φ(iρ, σ; z)/∈Ω for z ∈ Δ, and for all real ρ, σ such that σ ≤ −n(1 + ρ2)/2. If
the function p(z) = 1 + cnz

n + · · · is analytic in Δ and Φ(p(z), zp′(z); z) ∈ Ω for all z ∈ Δ, then
Re p(z) > 0.

Lemma 2.11. Let 0 ≤ λ ≤ 1/3. If p(z) = 1 + cz + · · · is analytic in Δ and

Re
{

p(z) + zp′(z)
(1 − λ) + λp(z)

}
> 0, (2.33)

then Re p(z) > 0.

Proof. Let Ω := {w : Rew > 0} and

ψ(r, s) :=
r + s

(1 − λ) + λr
. (2.34)

Then, the given inequality (2.33) can be written as ψ(p(z), zp′(z); z) ∈ Ω. Since

Reψ(iρ, σ; z) =
λρ2 + σ(1 − λ)

(1 − λ)2 + λ2ρ2
≤

(3λ − 1)ρ2 − (1 − λ)

2
[
(1 − λ)2 + λ2ρ2

] ≤ 0 (2.35)

when ρ ∈ R and σ ≤ −(1 + ρ2)/2, the condition of Lemma 2.10 is satisfied. Thus, Re p(z) >
0.

Theorem 2.12. Let 0 ≤ λ ≤ 1/3. If f ∈ SP(α, λ), then fλ ∈ ST.

Proof. If f ∈ SP(α, λ), then

Re
{
zf ′(z)
fλ(z)

}
+ α >

∣∣∣∣
zf ′(z)
fλ(z)

− α

∣∣∣∣, (2.36)

and hence

Re
zf ′(z)
fλ(z)

> 0. (2.37)
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Let the analytic function p(z) be defined by

p(z) =
f(z)
z

(z ∈ U). (2.38)

Computations show that

Re
p(z) + zp′(z)
(1 − λ) + λp(z)

= Re
zf ′(z)
fλ(z)

> 0. (2.39)

By Lemma 2.11, we see that Re p(z) > 0 or Re (f(z)/z) > 0 inU.
In view of (2.37), it follows from Re (f(z)/z) > 0 and

zf ′
λ
(z)

fλ(z)
=

1 − λ

1 − λ + λ
(
f(z)/z

) + λ
zf ′(z)
fλ(z)

(2.40)

that

Re
zf ′

λ(z)
fλ(z)

> 0, (2.41)

or equivalently fλ ∈ ST.

As an immediate consequence, we have the following corollary.

Corollary 2.13. Let 0 ≤ λ ≤ 1/3. If f ∈ CP(α, λ), then fλ ∈ CV.

In view of this corollary, the statement that fλ ∈ CV can be omitted from Theorems 2.7
and 2.8 if 0 ≤ λ ≤ 1/3. Also clearly that f ∈ CP(α, 1) implies f1 = f ∈ CV. Thus, Theorem 2.8
reduces to the corresponding result in [30] for λ = 1.
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[28] J. Sokół and A. Wiśniowska, “On some classes of starlike functions related with parabola,” Zeszyty
Naukowe Politechniki Rzeszowskiej. Matematyka, no. 18, pp. 35–42, 1993.
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