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Let E be a real q-uniformly smooth Banach space with constant dq, q ≥ 2. Let T : E → E and
G : E → E be a nonexpansive map and an η-strongly accretive map which is also κ-Lipschitzian,
respectively. Let {λn} be a real sequence in [0, 1] that satisfies the following condition: C1: limλn = 0
and

∑
λn = ∞. For δ ∈ (0, (qη/dqk

q)1/(q−1)) and σ ∈ (0, 1), define a sequence {xn} iteratively in E

by x0 ∈ E, xn+1 = Tλn+1xn = (1 − σ)xn + σ[Txn − δλn+1G(Txn)], n ≥ 0. Then, {xn} converges strongly
to the unique solution x∗ of the variational inequality problem VI(G,K) (search for x∗ ∈ K such
that 〈Gx∗, jq(y − x∗)〉 ≥ 0 for all y ∈ K), where K := Fix(T) = {x ∈ E : Tx = x}/=∅. A convergence
theorem related to finite family of nonexpansive maps is also proved.
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1. Introduction

Let E be a real-normed space and let E∗ be its dual space. For some real number q (1 < q < ∞),
the generalized duality mapping Jq : E → 2E

∗
is defined by

Jq(x) =
{
f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖q,∥∥f∗∥∥ = ‖x‖q−1}, (1.1)

where 〈·, ·〉 denotes the pairing between elements of E and elements of E∗.
Let K be a nonempty closed convex subset of E, and let S : E → E be a nonlinear

operator. The variational inequality problem is formulated as follows. Find a point x∗ ∈ K
such that

VI(S,K) :
〈
Sx∗, jq

(
y − x∗)〉 ≥ 0 ∀y ∈ K. (1.2)
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If E = H, a real Hilbert space, the variational inequality problem reduces to the following. Find
a point x∗ ∈ K such that

VI(S,K) :
〈
Sx∗, y − x∗〉 ≥ 0 ∀y ∈ K. (1.3)

AmappingG : D(G) ⊂ E → E is said to be accretive if for all x, y ∈ D(G), there exists jq(x−y) ∈
Jq(x − y) such that

〈
Gx −Gy, jq(x − y)

〉 ≥ 0, (1.4)

where D(G) denotes the domain of G. For some real number η > 0, G is called η-strongly accre-
tive if for all x, y ∈ D(G), there exists jq(x − y) ∈ Jq(x − y) such that

〈
Gx −Gy, jq(x − y)

〉 ≥ η‖x − y‖q. (1.5)

G is κ-Lipschitzian if for some κ > 0, ‖G(x)−G(y)‖ ≤ κ‖x−y‖ for all x, y ∈ D(G) andG is called
nonexpansive if k = 1.

In Hilbert spaces, accretive operators are called monotone where inequalities (1.4) and
(1.5) hold with jq replaced by the identity map of H.

It is known that if S is Lipschitz and strongly accretive, then VI(S,K) has a unique solu-
tion. An important problem is how to find a solution of VI(S,K) whenever it exists. Consid-
erable efforts have been devoted to this problem (see, e.g., [1, 2] and the references contained
therein).

It is known that in a real Hilbert space, the VI(S,K) is equivalent to the following fixed-
point equation:

x∗ = PK

(
x∗ − δSx∗), (1.6)

where δ > 0 is an arbitrary fixed constant and PK is the nearest point projection map from H
onto K, that is, PKx = y, where ‖x − y‖ = infu∈K ‖x − u‖ for x ∈ H. Consequently, un-
der appropriate conditions on S and δ, fixed-point methods can be used to find or approx-
imate a solution of VI(S,K). For instance, if S is strongly monotone and Lipschitz, then a
mapping G : H → H , defined by Gx = PK(x − δSx), x ∈ H with δ > 0 sufficiently small,
is a strict contraction. Hence, the Picard iteration, x0 ∈ H, xn+1 = Gxn, n ≥ 0 of the classical
Banach contraction mapping principle, converges to the unique solution of the VI(K,S).

It has been observed that the projection operator PK in the fixed-point formulation (1.6)
maymake the computation of the iterates difficult due to possible complexity of the convex set
K. In order to reduce the possible difficulty with the use of PK, Yamada [2] recently introduced
a hybrid descent method for solving the VI(K,S). Let T : H → H be a map and let K := {x ∈
H : Tx = x} /= ∅. Let S be η-strongly monotone and κ-Lipschitz on H. Let δ ∈ (0, 2η/κ2) be
arbitrary but fixed real number and let a sequence {λn} in (0, 1) satisfy the following conditions:

C1: limλn = 0; C2:
∑

λn = ∞; C3: lim
λn − λn+1

λ2n
= 0. (1.7)

Starting with an arbitrary initial guess x0 ∈ H, let a sequence {xn} be generated by the follow-
ing algorithm:

xn+1 = Txn − λn+1δS
(
Txn

)
, n ≥ 0. (1.8)

Then, Yamada [2] proved that {xn} converges strongly to the unique solution of VI(K,S).
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In the case that K =
⋂r

i=1 F(Ti) /= ∅, where {Ti}ri=1 is a finite family of nonexpansive
mappings, Yamada [2] studied the following algorithm:

xn+1 = T[n+1]xn+1 − λn+1δS
(
T[n+1]xn

)
, n ≥ 0, (1.9)

where T[k] = Tk mod r for k ≥ 1,with the mod function taking values in the set {1, 2, . . . , r},where
the sequence {λn} satisfies the conditions C1, C2, andC4:

∑ |λn − λn+N | < ∞. Under these
conditions, he proved the strong convergence of {xn} to the unique solution of the VI(K,S).

Recently, Xu and Kim [1] studied the convergence of the algorithms (1.8) and (1.9), still
in the framework of Hilbert spaces, and proved strong convergence with conditionC3 replaced
by C5: lim((λn −λn+1)/λn+1) = 0 and with condition C4 replaced by C6: lim((λn −λn+r)/λn+r) =
0. These are improvements on the results of Yamada. In particular, the canonical choice λn :=
1/(n + 1) is applicable in the results of Xu and Kim but is not in the result of Yamada [2]. For
further recent results on the schemes (1.8) and (1.9), still in the framework of Hilbert spaces,
the reader my consult Wang [3], Zeng and Yao [4], and the references contained in them.

Recently, the present authors [5] extended the results of Xu and Kim [1] to q-uniformly
smooth Banach spaces, q ≥ 2. In particular, they proved theorems which are applicable in Lp

spaces, 2 ≤ p < ∞ under conditions C1, C2, and C5 or C6 as in the result of Xu and Kim.
It is our purpose in this paper to modify the schemes (1.8) and (1.9) and prove strong

convergence theorems for the unique solution of the variational inequality VI(K,S). Further-
more, in the case Ti : E → E, i = 1, 2, . . . , r, is a family of nonexpansive mappings with
K =

⋂r
i=1 F(Ti) /= ∅, we prove a convergence theorem where condition C6 is replaced by

limn→∞ ‖Tn+1xn − Tnxn‖ = 0. An example satisfying this condition is given see, for example,
[6]. All our theorems are proved in q-uniformly smooth spaces, q ≥ 2. In particular, our theo-
rems are applicable in Lp spaces, 2 ≤ p < ∞.

2. Preliminaries

Let E be a real Banach space and let K be a nonempty, closed, and convex subset of E. Let P
be a mapping of E onto K. Then, P is said to be sunny if P(Px + t(x − Px)) = Px for all x ∈ E
and t ≥ 0. A mapping P of E into E is said to be a retraction if P 2 = P. A subset K is said to be
sunny nonexpansive retract of E if there exists a sunny nonexpansive retraction of E onto K. A
retraction P is said to be orthogonal if for each x, x − P(x) is normal to K in the sense of James
[7].

It is well known (see [8]) that if E is uniformly smooth and there exists a nonexpansive
retraction of E onto K, then there exists a nonexpansive projection of E onto K. If E is a real
smooth Banach space, then P is an orthogonal retraction of E ontoK if and only if P(x) ∈ K and
〈P(x) − x, jq(P(x) − y)〉 ≤ 0 for all y ∈ K. It is also known (see, e.g., [9]) that if K is a convex
subset of a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable
and T : K → K is nonexpansive with F(T) /= ∅, then F(T) is a nonexpansive retract of K.

LetK be a nonempty closed convex and bounded subset of a Banach space E and let the
diameter of K be defined by d(K) := sup{‖x − y‖ : x, y ∈ K}. For each x ∈ K, let r(x,K) :=
sup{‖x − y‖ : y ∈ K} and let r(K) := inf{r(x,K) : x ∈ K} denote the Chebyshev radius
of K relative to itself. The normal structure coefficient N(E) of E (see, e.g., [10]) is defined by
N(E) := inf{d(K)/r(K) : K is a closed convex and bounded subset of E with d(K) > 0}.
A space E such that N(E) > 1 is said to have uniform normal structure. It is known that all
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uniformly convex and uniformly smooth Banach spaces have uniform normal structure (see,
e.g., [11, 12]).

We will denote a Banach limit by μ. Recall that μ is an element of (l∞)∗ such that ‖μ‖ =
1, lim infn→∞an ≤ μnan ≤ lim supn→∞an and μnan = μn+1an for all {an}n≥0 ∈ l∞ (see, e.g.,
[11, 13]).

Let E be a normed space with dimE ≥ 2. The modulus of smoothness of E is the function
ρE : [0,∞) → [0,∞) defined by

ρE(τ) := sup
{‖x + y‖ + ‖x − y‖

2
− 1 : ‖x‖ = 1; ‖y‖ = τ

}
. (2.1)

The space E is called uniformly smooth if and only if limt→0+(ρE(t)/t) = 0. For some positive
constant q, E is called q-uniformly smooth if there exists a constant c > 0 such that ρE(t) ≤ ctq,
t > 0. It is known that

Lp or (lp) spaces are

{
2-uniformly smooth if 2 ≤ p < ∞,

p-uniformly smooth if 1 < p ≤ 2
(2.2)

(see, e.g., [13]). It is well known that if E is smooth, then the dualitymapping is singled-valued,
and if E is uniformly smooth, then the duality mapping is norm-to-norm uniformly continuous
on bounded subset of E.

We will make use of the following well-known results.

Lemma 2.1. Let E be a real-normed linear space. Then, the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, j(x + y)

〉 ∀x, y ∈ E, ∀j(x + y) ∈ J(x + y). (2.3)

In the sequel, we will also make use of the following lemmas.

Lemma 2.2 (see [14]). Let (a0, a1, . . .) ∈ l∞ such that μn(an) ≤ 0 for all Banach limit μ and
lim supn→∞ (an+1 − an) ≤ 0. Then, lim supn→∞ an ≤ 0.

Lemma 2.3 (see [15]). Let {xn} and {yn} be bounded sequences in a Banach space E and let {βn} be
a sequence in [0, 1] with 0 < lim inf βn ≤ lim sup βn < 1. Suppose xn+1 = βnyn + (1 − βn)xn for all
integers n ≥ 0 and lim sup(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, lim ‖yn − xn‖ = 0.

Lemma 2.4 (see [16]). Let {an} be a sequence of nonnegative real numbers satisfying the following
relation:

an+1 ≤
(
1 − αn

)
an + αnσn + γn, n ≥ 0, (2.4)

where (i) {αn} ⊂ [0, 1],
∑

αn = ∞; (ii) lim supσn ≤ 0; (iii) γn ≥ 0; (n ≥ 0),
∑

γn < ∞. Then, an → 0
as n → ∞.

Lemma 2.5 (see [17]). Let E be a real q-uniformly smooth Banach space for some q > 1, then there
exists some positive constant dq such that

‖x + y‖q ≤ ‖x‖q + q
〈
y, jq(x)

〉
+ dq‖y‖q ∀x, y ∈ E, jq(x) ∈ Jq(x). (2.5)
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Lemma 2.6 (see [12, Theorem 1]). Suppose E is a Banach space with uniformly normal structure,
K is a nonempty bounded subset of E, and T : K → K is uniformly k-Lipschitzian mapping with
k < N(E)1/2. Suppose also that there exists a nonempty bounded closed convex subset of C of K with
the following property (P):

x ∈ C implies ωw(x) ⊂ C, (P)

where ωw(x) is the ω-limi set of T at x, that is, the set

{
y ∈ E : y = weak-lim

j
Tnjx for some nj −→ ∞

}
. (2.6)

Then, T has a fixed point in C.

3. Main results

We first prove the following lemma which will be central in the sequel.

Lemma 3.1. Let E be a real q-uniformly smooth Banach space with constant dq, q ≥ 2. Let T : E → E
and G : E → E be a nonexpansive map and an η-strongly accretive map which is also κ-Lipschitzian,
respectively. For δ ∈ (0, (qη/dqκ

q)1/(q−1)), σ ∈ (0, 1), and λ ∈ (0, 2/p(p − 1)), define a map Tλ : E →
E by Tλx = (1 − σ)x + σ[Tx − λδG(Tx)], x ∈ E. Then, Tλ is a strict contraction. Furthermore,

∥∥Tλx − Tλy
∥∥ ≤ (1 − λα)‖x − y‖, x, y ∈ E, (3.1)

where α = q/2 −
√
q2/4 − σδ(qη − δq−1dqκq) ∈ (0, 1).

Proof. For x, y ∈ E,

∥∥Tλx − Tλy
∥∥q =

∥∥(1 − σ)(x − y) + σ
[
Tx − Ty − λδ

(
G(Tx) −G(Ty)

)]∥∥q

≤ (1 − σ)‖x − y‖q + σ
[‖Tx − Ty‖q − qλδ

〈
G(Tx) −G(Ty), jq(Tx − Ty)

〉

+ dqλ
qδq

∥∥G(Tx) −G(Ty)
∥∥q]

≤ (1 − σ)‖x − y‖q + σ
[‖Tx − Ty‖q − qλδη‖Tx − Ty‖q + dqλ

qδqκq‖Tx − Ty‖q]

≤ [
1 − σλδ

(
qη − dqλ

q−1δq−1κq)]‖x − y‖q
≤ [

1 − σλδ
(
qη − dqδ

q−1κq)]‖x − y‖q.
(3.2)

Define

f(λ) := 1 − σλδ
(
qη − dqδ

q−1κq) = (1 − λτ)q for some τ ∈ (0, 1) say. (3.3)

Then, there exists ξ ∈ (0, λ) such that

1 − σλδ
(
qη − dqδ

q−1κq) = 1 − qτλ +
1
2
q(q − 1)(1 − ξτ)q−2λ2τ2. (3.4)
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This implies that

1 − σλδ
(
qη − dqδ

q−1κq) ≤ 1 − qτλ +
1
2
q(q − 1)λ2τ2. (3.5)

Then, we have τ ≤ q/2 −
√
q2/4 − σδ(qη − dqδq−1κq).

Set

α :=
q

2
−
√

q2

4
− σδ

(
qη − dqδq−1κq

)
, (3.6)

and the proof is complete.

We note that in Lp spaces, 2 ≤ p < ∞, the following inequality holds (see, e.g., [13]). For
each x, y ∈ Lp, 2 ≤ p < ∞,

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, j(x)

〉
+ (p − 1)‖y‖2. (3.7)

Using this inequality and following the method of proof of Lemma 3.1, the following corollary
is easily proved.

Corollary 3.2. Let E = Lp, 2 ≤ p < ∞. Let T : E → E, G : E → E be a nonexpansive map, an η-
strongly monotone, and κ-Lipschitzian map, respectively. For λ, σ ∈ (0, 1) and δ ∈ (0, 2η/(p − 1)κ2),
define a map Tλ : E → E by Tλx = (1 − σ)x + σ[Tx − λδG(Tx)], x ∈ E. Then, Tλ is a contraction. In
particular,

∥∥Tλx − Tλy
∥∥ ≤ (1 − λα)‖x − y‖, x, y ∈ H, (3.8)

where α = 1 −
√
1 − σδ(2η − (p − 1)δκ2) ∈ (0, 1).

Corollary 3.3. LetH be a real Hilbert space, T : H → H, G : H → H a nonexpansive map and an η-
strongly monotone map which is also κ-Lipschitzian, respectively. For λ, σ ∈ (0, 1) and δ ∈ (0, 2η/κ2),
define a map Tλ : H → H by Tλx = (1 − σ)x + σ[Tx − λδG(Tx)], x ∈ H. Then, Tλ is a contraction.
In particular,

∥∥Tλx − Tλy
∥∥ ≤ (1 − λα)‖x − y‖, x, y ∈ H, (3.9)

where α = 1 −
√
1 − σδ(2η − δκ2) ∈ (0, 1).

Proof. Set p = 2 in Corollary 3.2 and the result follows.

Corollary 3.3 is a result of Yamada [2] and is the main tool used in [1–4].
We now prove our main theorems.

Theorem 3.4. Let E be a real q-uniformly smooth Banach space with constant dq, q ≥ 2. Let T : E → E
and G : E → E be a nonexpansive map and an η-strongly accretive map which is also κ-Lipschitzian,
respectively. Let {λn} be a real sequence in [0, 1] satisfying

C1: limλn = 0; C2:
∑

λn = ∞. (3.10)

For δ ∈ (0, (qη/dqκ
q)1/(q−1)) and σ ∈ (0, 1), define a sequence {xn} iteratively in E by x0 ∈ E,

xn+1 = Tλn+1xn = (1 − σ)xn + σ
[
Txn − δλn+1G

(
Txn

)]
, n ≥ 0. (3.11)

Then, {xn} converges strongly to the unique solution x∗ of the variational inequality VI(G,K).
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Proof. Let x∗ ∈ K := Fix (T), then the sequence {xn} satisfies

∥∥xn − x∗‖ ≤ max
{∥∥x0 − x∗∥∥,

δ

α

∥∥G
(
x∗)∥∥

}
, n ≥ 0. (3.12)

It is obvious that this is true for n = 0. Assume that it is true for n = k for some k ∈ N.
From the recursion formula (3.11), we have

∥∥xk+1 − x∗∥∥ =
∥∥Tλk+1xk − x∗∥∥

≤ ∥∥Tλk+1xk − Tλk+1x∗∥∥ +
∥∥Tλk+1x∗ − x∗∥∥

≤ (
1 − λk+1α

)∥∥xk − x∗∥∥ + λk+1δ
∥∥G

(
x∗)∥∥

≤ max
{∥∥x0 − x∗∥∥,

δ

α

∥∥G
(
x∗)∥∥

}
,

(3.13)

and the claim follows by induction. Thus, the sequence {xn} is bounded and so are {Txn} and
{G(Txn)}.

Define two sequences {βn} and {yn} by βn := (1−σ)λn+1+σ and yn := (xn+1−xn+βnxn)/βn.
Then,

yn =
(1 − σ)λn+1xn + σ

[
Txn − λn+1δG

(
Txn

)]

βn
. (3.14)

Observe that {yn} is bounded and that

∥∥yn+1 − yn

∥∥ − ∥∥xn+1 − xn

∥∥

≤
∣∣∣∣

σ

βn+1
− 1

∣∣∣∣
∥∥xn+1 − xn

∥∥ +
∣∣∣∣

σ

βn+1
− σ

βn

∣∣∣∣
∥∥Txn

∥∥ +
λn+2(1 − σ)

βn+1

∥∥xn+1 − xn

∥∥

+ (1 − σ)
∣∣∣∣
λn+2
βn+1

− λn+1
βn

∣∣∣∣
∥∥xn

∥∥ +
λn+1σδ

βn

∥∥G
(
Txn

) −G
(
Txn+1

)∥∥ + σδ

∣∣∣∣
λn+1
βn

− λn+2
βn+1

∣∣∣∣
∥∥G

(
Txn+1

)∥∥.

(3.15)

This implies that lim supn→∞ (||yn+1 − yn|| − ||xn+1 − xn||) ≤ 0, and by Lemma 2.3,

lim
n→∞

∥∥yn − xn

∥∥ = 0. (3.16)

Hence,

∥∥xn+1 − xn

∥∥ = βn
∥∥yn − xn

∥∥ −→ 0 as n −→ ∞. (3.17)

From the recursion formula (3.11), we have that

σ
∥∥xn+1 − Txn

∥∥ ≤ (1 − σ)
∥∥xn+1 − xn

∥∥ + λn+1σδ
∥∥G

(
Txn

)∥∥ −→ 0 as n −→ ∞, (3.18)

which implies that

∥∥xn+1 − Txn

∥∥ −→ 0 as n −→ ∞. (3.19)
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From (3.17) and (3.19), we have

∥∥xn − Txn

∥∥ ≤ ∥∥xn − xn+1
∥∥ +

∥∥xn+1 − Txn

∥∥ −→ 0 as n −→ ∞. (3.20)

We now prove that lim supn→∞〈−G(x∗), j(xn+1 − x∗)〉 ≤ 0.
Define a map φ : E → R by

φ(x) = μn

∥∥xn − x
∥∥2 ∀x ∈ E. (3.21)

Then, φ(x) → ∞ as ‖x‖ → ∞, φ is continuous and convex, so as E is reflexive, there exists
y∗ ∈ E such that φ(y∗) = minu∈E φ(u). Hence, the set

K∗ :=
{
x ∈ E : φ(x) = min

u∈E
φ(u)

}
/= ∅. (3.22)

By Lemma 2.6, K∗ ∩ K/=∅. Without loss of generality, assume that y∗ = x∗ ∈ K∗ ∩ K. Let
t ∈ (0, 1). Then, it follows that φ(x∗) ≤ φ(x∗ − tG(x∗)) and using Lemma 2.1, we obtain that

∥∥xn − x∗ + tG
(
x∗)∥∥2 ≤ ∥∥xn − x∗∥∥2 + 2t

〈
G
(
x∗), j

(
xn − x∗ + tG

(
x∗))〉 (3.23)

which implies that

μn

〈 −G
(
x∗), j

(
xn − x∗ + tG

(
x∗))〉 ≤ 0. (3.24)

Moreover,

μn

〈 −G
(
x∗), j

(
xn − x∗)〉 = μn

〈 −G
(
x∗), j

(
xn − x∗) − j

(
xn − x∗ + tG

(
x∗))〉

+ μn

〈 −G
(
x∗), j

(
xn − x∗ + tG

(
x∗))〉

≤ μn

〈 −G
(
x∗), j

(
xn − x∗) − j

(
xn − x∗ + tG

(
x∗))〉.

(3.25)

Since j is norm-to-norm uniformly continuous on bounded subsets of E, we have that

μn

〈 −G
(
x∗), j

(
xn − x∗)〉 ≤ 0. (3.26)

Furthermore, since ‖xn+1 − xn‖ → 0, asn → ∞,we also have

lim sup
n→∞

(〈 −G
(
x∗), j

(
xn − x∗)〉 − 〈 −G

(
x∗), j

(
xn+1 − x∗)〉) ≤ 0, (3.27)

and so we obtain by Lemma 2.2 that lim supn→∞ 〈−G(x∗), j(xn − x∗)〉 ≤ 0.
From the recursion formula (3.11) and Lemma 2.1, we have

∥∥xn+1 − x∗∥∥2 =
∥∥Tλn+1xn − Tλn+1x∗ + Tλn+1x∗ − x∗∥∥2

≤ ∥∥Tλn+1xn − Tλn+1x∗∥∥2 + 2λn+1δ
〈 −G

(
x∗), j

(
xn+1 − x∗)〉

≤ (
1 − λn+1α

)∥∥xn − x∗∥∥2 + 2λn+1δ
〈 −G

(
x∗), j

(
xn+1 − x∗)〉,

(3.28)

and by Lemma 2.4, we have that xn → x∗as n → ∞. This completes the proof.
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The following corollaries follow from Theorem 3.4.

Corollary 3.5. Let E = Lp, 2 ≤ p < ∞. Let T : E → E and G : E → E be a nonexpansive map and an
η-strongly accretive map which is also κ-Lipschitzian, respectively. Let {λn} be a real sequence in [0, 1]
that satisfies conditions C1 and C2 as in Theorem 3.4. For δ ∈ (0, 2η/(p − 1)κ2) and σ ∈ (0, 1), define
a sequence {xn} iteratively in E by (3.11). Then, {xn} converges strongly to the unique solution x∗ of
the variational inequality VI(G,K).

Corollary 3.6. Let E = H be a real Hilbert space. Let T : H → H and G : H → H be a nonexpansive
map and an η-strongly monotone map which is also κ-Lipschitzian, respectively. Let {λn} be a real
sequence in [0, 1] that satisfies conditions C1 and C2 as in Theorem 3.4. For δ ∈ (0, 2η/κ2) and
σ ∈ (0, 1), define a sequence {xn} iteratively in H by (3.11). Then, {xn} converges strongly to the
unique solution x∗ of the variational inequality VI(G,K).

Finally, we prove the following more general theorem.

Theorem 3.7. Let E be a real q-uniformly smooth Banach space with constant dq, q ≥ 2. Let Ti :
E → E, i = 1, 2, . . . , r, be a finite family of nonexpansive mappings with K :=

⋂r
i=1 Fix(Ti) /= ∅. Let

G : E → E be an η-strongly accretive map which is also κ-Lipschitzian. Let {λn} be a real sequence in
[0, 1] satisfying

C1: limλn = 0; C2:
∑

λn = ∞. (3.29)

For a fixed real number δ ∈ (0, (qη/dqκ
q)1/(q−1)), define a sequence {xn} iteratively in E by x0 ∈ E :

xn+1 = Tλn+1
[n+1]xn = (1 − σ)xn + σ

[
T[n+1]xn − δλnG

(
T[n+1]xn

)]
, n ≥ 0, (3.30)

where T[n] = Tn mod r . Assume also that

K = Fix
(
TrTr−1 · · · T1

)
= Fix

(
T1Tr · · · T2

)
= · · · = Fix

(
Tr−1Tr−2 · · · Tr

)
(3.31)

and limn→∞ ‖Tn+1xn − Tnxn‖ = 0. Then, {xn} converges strongly to the unique solution x∗ of the
variational inequality VI(G,K).

Proof. Let x∗ ∈ K, then the sequence {xn} satisfies that

∥∥xn − x∗∥∥ ≤ max
{∥∥x0 − x∗∥∥,

δ

α

∥∥G
(
x∗)∥∥

}
, n ≥ 0. (3.32)

It is obvious that this is true for n = 0. Assume it is true for n = k for some k ∈ N.
From the recursion formula (3.30), we have

∥∥xk+1 − x∗∥∥ =
∥∥Tλk+1

[k+1]xk − x∗∥∥

≤ ∥∥Tλk+1
[k+1]xk − Tλk+1

[k+1]x
∗∥∥ +

∥∥Tλk+1
[k+1]x

∗ − x∗∥∥

≤ (
1 − λk+1α

)∥∥xk − x∗∥∥ + λk+1δ
∥∥G

(
x∗)∥∥

≤ max
{∥∥x0 − x∗∥∥,

δ

α

∥∥G
(
x∗)∥∥

}
,

(3.33)
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and the claim follows by induction. Thus, the sequence {xn} is bounded and so are {T[n]xn}
and {G(T[n]xn)}.

Define two sequences {βn} and {yn} by βn := (1−σ)λn+1+σ and yn := (xn+1−xn+βnxn)/βn.
Then,

yn =
(1 − σ)λn+1xn + σ

[
T[n+1]xn − λn+1δG

(
T[n+1]xn

)]

βn
. (3.34)

Observe that {yn} is bounded and that

∥∥yn+1 − yn

∥∥ − ∥∥xn+1 − xn

∥∥ ≤
∣∣∣∣

σ

βn+1
− 1

∣∣∣∣
∥∥xn+1 − xn

∥∥

+
σ

βn+1

∥∥T[n+2]xn − T[n+1]xn

∥∥ +
∣∣∣∣

σ

βn+1
− σ

βn

∣∣∣∣
∥∥T[n+1]xn

∥∥

+
λn+2(1 − σ)

βn+1

∥∥xn+1 − xn

∥∥ + (1 − σ)
∣∣∣∣
λn+2
βn+1

− λn+1
βn

∣∣∣∣
∥∥xn

∥∥

+
λn+1σδ

βn

∥∥G
(
T[n+1]xn

) −G
(
T[n+2]xn+1

)∥∥

+ σδ

∣∣∣∣
λn+1
βn

− λn+2
βn+1

∣∣∣∣
∥∥G

(
T[n+2]xn+1

)∥∥.

(3.35)

This implies that lim supn→∞ (‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0, and by Lemma 2.3,

lim
n→∞

∥∥yn − xn

∥∥ = 0. (3.36)

Hence,

∥∥xn+1 − xn

∥∥ = βn
∥∥yn − xn

∥∥ −→ 0 as n −→ ∞. (3.37)

From the recursion formula (3.30), we have that

σ
∥∥xn+1 − T[n+1]xn

∥∥ ≤ (1 − σ)
∥∥xn+1 − xn

∥∥ + λn+1σδ
∥∥G

(
T[n+1]xn

)∥∥ −→ 0 as n −→ ∞ (3.38)

which implies that

∥∥xn+1 − T[n+1]xn

∥∥ −→ 0 as n −→ ∞. (3.39)

From (3.37) and (3.39), we have

∥∥xn − T[n+1]xn

∥∥ ≤ ∥∥xn − xn+1
∥∥ +

∥∥xn+1 − T[n+1]xn

∥∥ −→ 0 as n −→ ∞. (3.40)

Also,

∥∥xn+r − xn

∥∥ ≤ ∥∥xn+r − xn+r−1
∥∥ +

∥∥xn+r−1 − xn+r−2
∥∥ + · · · + ∥∥xn+1 − xn

∥∥, (3.41)

and so

∥∥xn+r − xn

∥∥ −→ 0 as n −→ ∞. (3.42)
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Using the fact that Ti is nonexpansive for each i, we obtain the following finite table:

xn+r − Tn+rxn+r−1 −→ 0 as n −→ ∞;

Tn+rxn+r−1 − Tn+rTn+r−1xn+r−2 −→ 0 as n −→ ∞;
...

Tn+rTn+r−1 · · · Tn+2xn+1 − Tn+rTn+r−1 · · · Tn+2Tn+1xn −→ 0 as n −→ ∞;

(3.43)

and adding up the table yields

xn+r − Tn+rTn+r−1 · · · Tn+1xn −→ 0 as n −→ ∞. (3.44)

Using this and (3.42), we get that limn→∞‖xn − Tn+rTn+r−1 · · · Tn+1xn‖ = 0.
Carrying out similar arguments as in the proof of Theorem 3.4, we easily get that

lim sup
n→∞

〈 −G
(
x∗), j

(
xn+1 − x∗)〉 ≤ 0. (3.45)

From the recursion formula (3.30), and Lemma 2.1, we have

∥∥xn+1 − x∗∥∥2 =
∥∥Tλn+1

[n+1]xn − Tλn+1
[n] x∗ + Tλn+1

[n+1]x
∗ − x∗∥∥2

≤ ∥∥Tλn+1
[n+1]xn − Tλn+1

[n+1]x
∗∥∥2 + 2λn+1σδ

〈 −G
(
x∗), j

(
xn+1 − x∗)〉

≤ (
1 − λn+1α

)∥∥xn − x∗∥∥2 + 2λn+1σδ
〈 −G

(
x∗), j

(
xn+1 − x∗)〉,

(3.46)

and by Lemma 2.4, we have that xn → x∗ as n → ∞. This completes the proof.

The following corollaries follow from Theorem 3.7.

Corollary 3.8. Let E = Lp, 2 ≤ p < ∞. Let Ti : E → E, i = 1, 2, . . . , r, be a finite family of nonex-
pansive mappings with K =

⋂r
i=1 Fix(Ti) /= ∅. Let G : E → E be an η-strongly accretive map which

is also κ-Lipschitzian. Let {λn} be a real sequence in [0, 1] that satisfies conditions C1 and C2 as in
Theorem 3.7 and also limn→∞ ‖Tn+1xn − Tnxn‖ = 0. For δ ∈ (0, 2η/(p − 1)κ2), define a sequence {xn}
iteratively in E by (3.30). Then, {xn} converges strongly to the unique solution x∗ of the variational
inequality VI(G,K).

Corollary 3.9. Let E = H be a real Hilbert space. Let Ti : H → H, i = 1, 2, . . . , r, be a finite family of
nonexpansive mappings with K =

⋂r
i=1 Fix(Ti) /= ∅. Let G : H → H be an η-strongly monotone map

which is also κ-Lipschitzian. Let {λn} be a real sequence in [0, 1] that satisfies conditions C1 and C2
as in Theorem 3.7 and also limn→∞ ‖Tn+1xn − Tnxn‖ = 0. For δ ∈ (0, 2η/κ2), define a sequence {xn}
iteratively in H by (3.30). Then, {xn} converges strongly to the unique solution x∗ of the variational
inequality VI(G,K).

Remark 3.10. Observe that conditionC6 in Theorem 3.2 of [1] is dropped in Corollary 3.9, being
replaced by condition limn→∞ ‖Tn+1xn − Tnxn‖ = 0 on the mappings {Ti}ri=1.

Acknowledgment

This research is supported by the Japanese Mori Fellowship of UNESCO at The Abdus Salam
International Center for Theoretical Physics (Trieste, Italy).



12 Journal of Inequalities and Applications

References

[1] H. K. Xu and T. H. Kim, “Convergence of hybrid steepest-descent methods for variational inequali-
ties,” Journal of Optimization Theory and Applications, vol. 119, no. 1, pp. 185–201, 2003.

[2] I. Yamada, “The hybrid steepest descent method for the variational inequality problem over the in-
tersection of fixed point sets of nonexpansive mappings,” in Inherently Parallel Algorithms in Feasibility
and Optimization and Their Applications, D. Butnariu, Y. Censor, and S. Reich, Eds., vol. 8, pp. 473–504,
North-Holland, Amsterdam, The Netherlands, 2001.

[3] L. Wang, “An iteration method for nonexpansive mappings in Hilbert spaces,” Fixed Point Theory and
Applications, vol. 2007, Article ID 28619, 8 pages, 2007.

[4] L.-C. Zeng and J.-C. Yao, “Implicit iteration scheme with perturbed mapping for common fixed points
of a finite family of nonexpansive mappings,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 64, no. 11, pp. 2507–2515, 2006.

[5] C. E. Chidume, C. O. Chidume, and B. Ali, “Convergence of hybrid steepest descent method for vari-
ational inequalities in Banach spaces,” to appear in Proceedings of the American Mathematical Society.

[6] C. E. Chidume and B. Ali, “Convergence theorems for common fixed points for finite families of
nonexpansive mappings in reflexive Banach spaces,” to appear in Nonlinear Analysis: Theory, Methods
& Applications.

[7] R. C. James, “Orthogonality and linear functionals in normed linear spaces,” Transactions of the Ameri-
can Mathematical Society, vol. 61, pp. 265–292, 1947.

[8] R. E. Bruck Jr., “Nonexpansive projections on subsets of Banach spaces,” Pacific Journal of Mathematics,
vol. 47, pp. 341–355, 1973.

[9] N. Shioji andW. Takahashi, “Strong convergence of averaged approximants for asymptotically nonex-
pansive mappings in Banach spaces,” Journal of Approximation Theory, vol. 97, no. 1, pp. 53–64, 1999.

[10] W. L. Bynum, “Normal structure coefficients for Banach spaces,” Pacific Journal of Mathematics, vol. 86,
no. 2, pp. 427–436, 1980.

[11] C. E. Chidume, J. Li, and A. Udomene, “Convergence of paths and approximation of fixed points
of asymptotically nonexpansive mappings,” Proceedings of the American Mathematical Society, vol. 133,
no. 2, pp. 473–480, 2005.

[12] T.-C. Lim andH. K. Xu, “Fixed point theorems for asymptotically nonexpansive mappings,”Nonlinear
Analysis: Theory, Methods & Applications, vol. 22, no. 11, pp. 1345–1355, 1994.

[13] C. E. Chidume, “Geometric properties of Banach spaces and nonlinear iterations,” Research Mon-
graph, International Centre for Theoretical Physics, Trieste, Italy, in print.

[14] N. Shioji and W. Takahashi, “Strong convergence of approximated sequences for nonexpansive map-
pings in Banach spaces,” Proceedings of the American Mathematical Society, vol. 125, no. 12, pp. 3641–
3645, 1997.

[15] T. Suzuki, “Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter non-
expansive semigroups without Bochner integrals,” Journal of Mathematical Analysis and Applications,
vol. 305, no. 1, pp. 227–239, 2005.

[16] H.-K. Xu, “Iterative algorithms for nonlinear operators,” Journal of the London Mathematical Society,
vol. 66, no. 1, pp. 240–256, 2002.

[17] H. K. Xu, “Inequalities in Banach spaces with applications,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 16, no. 12, pp. 1127–1138, 1991.


	1. Introduction
	2. Preliminaries
	3. Main results
	Acknowledgment
	References

