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1. Introduction and preliminaries

Let U denote the unit disc of the complex plane:
U={zeC: |z| <1} (1.1)
Let #(U) denote the space of holomorphic functions in U and let
Ap={fed), f(z) =z+apz"" +--, ze U} (1.2)

with A; = A.
Let

S={fe€A: fisunivalent in U}. (1.3)

Definition 1.1 (Ruscheweyh [1]). For f € A, n € NU {0}, let R"” be the operator defined by
R": A— A,
Rf(z) = f(=),

(1.4)
(n+1)R™ f(2) = z[R"f(2)] +nR"f(z), zeU.
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Remark 1.2. If f € A,

[e]
f(z) =Z+Zajzj, zel, (1.5)
i=2
then
R'f(z)=z+ Z CZ+]._1ajzf, zelU. (1.6)
=2

In order to prove our main results, we shall use the following lemmas.

Lemma A (see [2]). Let a be a complex number, Rea >0, and f € A. If

1- |Z|2Rea
Rea

Zf"(Z)
f'(2)

<1, Vzel, (1.7)

then the function

Fa(z) = [a I 0 g1 f’(t)dt] . (1.8)

is in the class S.

Lemma B (see [3]). Let a be a complex number, Rea > 0, and let f(z) = z+ axz*+-- - be a reqular
function in U. If

1- |z|2Rea

Zf”(Z)
f(2)

<1, vzel, (1.9)

Rea

then, for any complex number p with Re f > Re a, the function

1/p

p
Fy(z) = [p IO 1 f’(t)dt] (1.10)
is in the class S.

2. Main results

By using the Ruscheweyh differential operator given by Definition 1.1, we introduce the
following integral operator.
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Definition 2.1. Let n,m € NU {0},i € {1,2,3,...,m}, a; € C, a € C, with Rea > 0, A" =
AxAx---xA Welet]: A" — A be the integral operator given by
—_

m times

/a

I(fi, foreeos f) (2) = F(2) = [a fo fa-1 (@) (Rnftm(t) >amdt]1 @)

where fi€ A,i€{1,2,3,...,n} and R" is the Ruscheweyh differential operator.

Remark 2.2. (i) Forn=0,m=1,a=1, a1 =1, o =az=---=a,, =0,and f(z) € A, we obtain
Alexander integral operator introduced in 1915 in [4]:

f(t
I(z) = @dt, zel. (2.2)
0
(i) Forn=0m=1,a=1a=pe[0,1],mr=a3 =---=a, =0,and f(z) € S, we
obtain the integral operator
z t ﬂ
I(z) =J [#] dat, zel, (2.3)
0

studied in [5].

For p € C with |B| < 1/4, this integral operator was studied in [6, 7] and for || < 1/3,
in [8].

(iii) Forn=1,m=1,a=1,a1=p€C, || <1/4,ay="=a, =0, R f(z) = zf'(2),
z €U, f € S, we obtain the integral operator

I(z) = f [f®)fat, zeu (2.4)

0

studied in [9].
(iv) Forn =0,m e NU{0},a=1,a; >0,i € {1,2,...,m}, we obtain the integral
operator

F(z) = f [@] Y [@] "t (2.5)

0

studied in [10].
(v) Forn=0,meNU{0},a e R,Rea>0,a; €C, f; € S,i € {1,2,...,n}, we obtain
the integral operator introduced in [10] by D. Breaz and N. Breaz:

/a

(o) [aJ‘O ta_1<@>m (@)amdt]l , (2.6)
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(vi) Forn,m e NU{0},a=1,a; € R,i € {1,2,...,m} with a; > 0, we obtain the integral
operator studied in [11, 12]

z Rn 1(t) ay Rn m(t) Am
I(fl,fz,...,fm)(z):j [ ft ] [ ft ] dt. (2.7)
0
(vii) Forn=0,m=1, 01 =1, a0 =--- = a,, = 0, « € C with Rea > 3, we obtain the
integral operator studied in [7, 13]
z 1/a
Gulz) = [af uo <—g (1) )du] . (2.8)
0 u
(viii) Forn=1,m=1,a € C,Rea>0,a1 =1, a = --- = a,, = 0, we obtain the integral
operator
z 1/a
F.(z) = [cx-[ u”"lf'(u)du] (2.9)
0

studied in [14, 15].

We study the conditions for the integral operator introduced in Definition 2.1 to be
univalent.

Theorem 2.3. Let n,m € NU {0},a € CwithRea >0, fi € A, a; € C,i € {1,2,...,m} with
lar| + aa| + -+ + |am| < 1.

If
z(R"fi(z))’ .
W_l <1, zelU,ie{l1,2,...,m}, (2.10)
then F(z) given by (2.1) belongs to class S.
Proof. Let
CCIRAM] R fu®]™
f(z)—f0 [ ; ] [ ; ] dt, zel. (2.11)

By differentiating (2.11), we obtain
R" ay R" Am
fl(z) = [#] l#] =1+ Aoz + Azz?+---, (2.12)

zelU.
From (2.11), (2.12), and the condition in the theorem, we have that f'(z) # 0, z € U.
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Then using (2.12), we obtain
log f'(z) = a1[log R" f1(z) —log z] + -+ + a[log R" fu(2z) —log z], zeU. (2.13)

By differentiating (2.13), after a short calculation, we have

of'(2) _ [2RAG) ], [FRw2)
() ‘“1[ R f1(2) 1]+ ”‘"’[ R fu(2)

- 1], zel. (2.14)

Using the conditions given by the hypothesis of Theorem 2.3, we obtain

_ |~|2Rea " _ |~|2Rea R" ! R !
1-1z] z2f"(2)| _ 1~ o z(R" f1(z)) 1k fan] z(R" fn(2)) .
Rea f'(z) Rea R f1(z) R" fn(2)
1_|Z|2Rea
W[|a1|+|a2|+~-+|am|]
_ 2Rea
1-|z| < 1 <1
Rea Rea

(2.15)

Using (2.12), the conditions in Lemma A are satisfied, hence F(z) belongs to the
class S. 0

Remark 2.4. Fora; e R,i € {1,2,...,m}, then Theorem 2.3 can be rewritten as following.

Corollary 2.5. Let n,m € NU{0},a € C,withRea >0, let a; € R, a; > Qwith a1 +ap+---+a,, <1
and let fie A, i€ {1,2,...,m}.
If

2(R'fi(2)

Rifi(z)

<1, zel,ie{l,2,...,m}, (2.16)

then F(z) given by (2.1) belongs to the class S, where R" is the Ruscheweyh differential operator.

Example 2.6. Letn € NU {0}, m =2, 0 = 2+3i, a1 = 1/4 + i(\/3/4), @ = 1/5-i(2/5),
laa| + |aa| = (5+2v5)/10 < 1, fi(z) = z + az?, R"f1(z) = z+ (n + 1)az?, fo(z) = z + bz?,
R'f)(z) =z + (n+1)bz? a,b € C,with |a| <1/2(n+1),|b| <1/2(n+1), z € U. Then

_|1+2(n+1)bz

‘ B |_ (n+1)bz
1+ (n+1)bz B

1+ (n+1)bz

z[z + (n+1)bz2] ' zel (2.17)

z[1+ (n+1)bz] -
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But

2 |(n+1)bz|’
|1+ (n+ bz

(n+1)bz
1+(n+1)bz

_ (n+1)bz(n+1)bz
(1+ (n+1)bz)(1 + (n+1)bz)

B (n+ 1)’z
1+ (n+1)bz+ (n+1)bz + (n + 1)?|b|z?

_ (n+1)"[bP|zf* (2.18)
1+2(n+1)Rebz + (n+1)*|b]*|z]

< (n+1)*[bP|z[  (m+ )Pzl
T 1-2(n+ Dbllz| + (n+ DABPZP (21— (n+1)b]|z])?

(n+1)|b] B (n+1)-1/4(n+1)*
T[-m+Dp])? T -m+1)-1/2(n+1)]

=1/4(n+1)2= 1
1/4 n+1)2 "

It implies that

‘M <1, zel (2.19)

1+ (n+1)bz

Similarly, we obtain

(n+1)az

— <1 . 2.2
1+(n+1az|~ " zed (2:20)

z[z+ (n+1)az?]’ - ‘ ~

z[1+ (n+1)az]

Using Theorem 2.3, we have

1/(2+3i)
] €s, (2.21)

I(fi, f2) = F(z) = [(2 + 31) f £ (1 4 at) VIO (1 4 pp) /5 gy
0

forall z e U.

Theorem 2.7. Let n,m € NU {0}, a, € C, with Refp > Rea > 0, let f; € A, and let a; € C,
ie€{1,2,...,m}, with |oq| + |az| + - - + |am| < 1.

If

z2(R"fi(2))'

Rfiz)

<1, zelUie{l,2,...,m}, (2.22)
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where R™ is the Ruscheweyh differential operator, then the function given by

1/p

Fp(z) = ['3 ’[: tﬂ—l<w>al (R"j;m(t) >umdt:| (2.23)

belongs to the class S.

Proof. Using (2.14) and (2.22), from the proof of Theorem 2.3, we obtain

1- IZIZRea
Rea

Zfll(z)

e <1, zel. (2.24)

Using (2.12), the conditions from Lemma B are satisfied and by applying it we have
that the function Fy(z) given by (2.23) belongs to the class S. O

Example 2.8. Letn e NU {0}, m=2,=4-i,a=2+3i,Refp>Rea>0,a; =1/4+i(+/3/4),
a =1/5-i(2/5), lm| + |ao| = (5+2v5)/10 < 1, fi(z) = z+ az?, fo(z) = z+bz%, R"fi(z) =
z+(n+1)az?, R"fy(z) = z+ (n+1)bz?,a,b € C, |a| <1/2(n+1),|b| < 1/2(n+1), z € U. Then

(n+1)az
1+(n+1)az

= 4

z(z+ (n+1)az?) ~ ‘ ~

z+ (n+1)az?

zel. (2.25)
(n+1)bz
1+ (n+1)bz

—_ 7

z(z+ (n+1)bz?)' .
z(1+ (n+1)bz)

Using Theorem 2.7, we have

1/ (4—i)
] €S, (2.26)

Fy(z) = [(4 — i) f P14 at) /4 (14 b)) gy
0
forall z € U.

Theorem 2.9. Let n,m € NU {0}, p > 0, a € C with Rea > 0, let f; € Aand let a; € C,
i€ ({1,2,..., mywith|ai| + |ag| + - + |ay| <1/(2u +1).

If
() |R"fi(z)| <,
g ()Y (2.27)
(ii) m_l <1, zeUie{l,2,...,m),
[R" fi(2)]

where R™ is the Ruscheweyh differential operator, then the function F(z) given by (2.1) belongs to the
class S.
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Proof. Using (2.14), we have

zf"(z) z(R'fi(2))" z(R" fn(2))
| 1| R"f (z) +|am| —R"fm(z) -1, zel. (2.28)
Using the conditions from Theorem 2.9 and (2.28) we calculate
1_|Z|2Reu Zf"(Z)
Rea f'(z)
~ 1- |Z|2Rea z(R"fl(z))/ |Z|2Rea Z(Rnfm(Z))l
" Rea o] R f1(z) _1‘+ " Rea || R" fn(2) -1
1_|Z|2Rea [ Z(Rnf1(Z)) 1_|Z|2Rea z(R"fm(z))
S —Req |al|_—R”f1(z) +1]+.-.+ Roa |t | R fn(2) +1
_ 1—IZI2R”‘|OC | z(R"f1(2))’ 1—IZIZR”’| | z2(R" fn(2))'
" Rea ! R"f1(z) Rea " R f(2)
1- 2Rea
P (] e+ )
:1—|z|2R‘f”‘|m| ZRAE)|[RAG] —IzlzRe""a | (R fn(2))'| [R" fn(2)]
Rea (R"fl(z))z |z Rea " (R"fm(z))2 |z|
1- 2Rea
i )
< |:1_|Z|2Re“ 1— |z ZZ(R"fm(z))’]
SH Rea (R"fl(z)) Rea (R”fm(z))2
1- 2Rea
P (] o+ )
= 1- IZIZRM[ Zz(Rnfl(Z)), +1] U4+ 1- |Z|2Rea[ Z2(Rnfm +1] .
Rea (R”fl(z))2 # Rea (R”fm(z))2 #
1- 2Rea
(] o+ L)
2Rea Z2(R" 2Rea 2(1n !
A SO . IR | U]y
ea (R"f( )) ex (Rnfm(z))
_ 2Rea 1- 2Rea
(ol )+ T — o]+ + )
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1 _ |Z|2Rea 1 _ |Z|2Rea
W(|a1|+~-+|am|)2#+ Rea (Jan] + -+ feam])
1— ZZRea

P (o] o+ a2+ D)
1_|Z|2Rea 1

Rea _Reasl' zel

(2.29)

By using (2.12) and (2.29) and by applying Lemma A, we obtain that the function F(z)
given by (2.1) belongs to the class S. O

Theorem 2.10. Let n,m € NU {0}, p > 0, a, p € C with Rep > Rea > 0, and let a; € C,
i€{1,2,3,...,m}, with |a1] + |az| + - + |an| <1/Q2u+1).

If
() |R"fi(z)| < u,
- (2.30)
(i) ZZR—L(Z)Z—l <1, zelUie(l,2,...,m)
(R fi(2))

where R" is the Ruscheweyh differential operator, then function Fp(z) given by (2.23) belongs to the
class S.

Proof. By using (2.30) and (2.12) and from the proof of Theorem 2.9, we have

1- IZIZRea

Rea

Zf"(Z)
f'(2)

<1, zel (2.31)

and applying Lemma B we obtain that the Fs(z) given by (2.23) belongs to the class S. O
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