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respect to k-symmetric points defined by D},. Coefficient bounds, distortion theorems, extreme
points, convolution conditions, and convex combinations for the functions belonging to this class
are obtained.
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1. Introduction

A continuous function f = u + iv is a complex valued harmonic function in a domain D ¢ C
if both u and v are real harmonic in D. In any simply connected domain, we write f = h+ g
where h and g are analytic in D. A necessary and sufficient condition for f to be locally
univalent and orientation preserving in D is that |[i'| > |¢'| in D (see [1]). Hengartner and
Schober [2] investigated functions harmonic in the exterior of the unit disk U={z:|z|>1}.
They showed that complex valued, harmonic, sense preserving, univalent mapping f must
admit the representation

f(z) = h(z) + g(z) + Alog |z, (1.1)

where h(z) and g(z) are defined by

h(z) = az + ianz‘", g(z) =pz+ ibnz‘", (1.2)
n=1

n=1

for0<|f|<|al, AcCandzeU.
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For z € U\ {0}, let M denote the class of functions:

f(z) = h(z) + g(z) = % + ianzn + ibnzn, (1.3)
n=1 n=1

which are harmonic in the punctured unit disk U \ {0}, where h(z) and g(z) are analytic in
U\ {0} and U, respectively, and h(z) has a simple pole at the origin with residue 1 here.

In [3], the authors introduced the operator @{n for f € S, which is the class of
functions f = h + g that are harmonic univalent and sense-preserving in the unit disk
U = {z : |z| < 1} for which f(0) = h(0) = f-(0) — 1 = 0. For more details about the operator
’D{n, see [4]. .

Now, we define @), for f = h + g given by (1.3) as

O).f(2) = DLh(z) + (-1)D)g(z), (jmeNy=NU{0};z€ U\ {0}), (1.4)
where
o h(z) = ﬂ + injC(m n)a,z"
m - - < 7 n<« s
9,9(z) = infC(m,n)bnz", (1.5)
n=1
-1 (n+m-1)!
Clmmy = (") - O

A function f € M is said to be in the subclass M7, of meromorphically harmonic starlike
functions in U \ {0} if it satisfies the condition

Re{ ~ zh' (z) — zg'(z)
h(z) +g(z)
Note that the class of harmonic meromorphic starlike functions has been studied by Jahangiri

and Silverman [5], and Jahangiri [6].
Now, we have the following definition.

} >0, (zeU\({0}). (1.6)

Definition 1.1. For jm € Ny, 0 < a < 1and k > 1, let Jflelé5§k) (j,m, ) denote the class of
meromorphic harmonic functions f of the form (1.3) such that

j+1
Re{—gr."—f(z)} >0, (zeU\{0)), (1.7)
D), fr(z)
where

D), fi(z) = Dby + (1) Dpge (,m € No,k > 1), (1.8)

_ ] Q0 [ee)
@=L Sad, g = S0, (1.9)

n=1 n=1

1% 27ri
(n-1)v >1e=
D, = —kvéos , <k 1€ =exp < . >> (1.10)
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For more details about harmonic functions with respect to k-symmetric points, see
papers [7, 8] given by the authors.

Also, note that ,/Il«#Séz) (j,0,@) C MHS%(n, a) was introduced by Bostanci and Oztiirk
[9].

Finally, let ,/flJZ.Sgk) (j, m, &) denote the subclass of ,/Ile’(lSék) (j, m, &) consist of harmonic
functions f; = h; + gj such that h; and g; are of the form

h()—

- Zlan|z ;o gi(2) = (1) Y |bylz" (1.11)

n=1

Also, let fi; = hy; + gk, where hy; and g, are of the form

()= 0 +Z<D @l g (2) = (-1) S Dulb 2", (112)

n=1

where @, is given by (1.10).
In this paper, we will give a sufficient condition for functions f = h + g, where h and
g given by (1.3) to be in the class M3 j,m,a). Indeed, it is shown that this coefficient

condition is also necessary for functions to be in the class ,/flJZ.Sék) (j,m,a). Also, we obtain

distortion bounds and characterize the extreme points for functions in ,/IlJé.Sék) (j,m,a).
Convolution and closure theorems are also obtained.

2. Coefficient bounds

First, we prove a sufficient coefficient bound.

Theorem 2.1. Let f = h + g be of the form (1.3) and fi = hi + gk where hy and g are given by
(1.9). If

S = Dk 41+ allagayeel + 02— 1K+ 1= al b1y 1, K)

n=1

(2.1)

+ D wtC(m,n)[|ag| + bal] <1-a,

n=2
n#lk+1

where jmeNy, 0<a<1, k>1and Qi (n,k) = ((n-1)k +1)/C(m, nk +1), then f is harmonic
univalent, sense preserving in U\ {0} and f € MASP (j j,m,a).

Proof. For 0 < |z1| < |z2| <1, we have
|f(z1) - f(z2)]
> |h(z1) —h(z2)| - |8(21) - g(22)]

NEEEN

|Zl||Z | |z1 Z2|Z(|a"| +|b |)|Z '+Z£l_1
|z1 — 25| 2 ]
——|1-|z n(|a,| + |b

|Zl||22| | 2| ; (l nl | "|)
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Bt (St « o)+ Sl vk 1 Gl ) ) |
n=1 n=1

|21||Z |

,lz-=|

[1 N [(n-Dk+1+alap-i| - (n-Dk+1- a|b(n_1)k+1|]9£n(n, k)
|Zl||Zz| =

Z n*1C(m,n) [|an| + |bul]-
n¢zk+1
2.2)

This last expression is nonnegative by (2.1), and so f is univalent in U \ {0}. To show that f
is sense preserving in U \ {0}, we need to show that |l'(z)| > |¢'(z)[in U\ {0}. We have

W (2)] 2 iz |2 antInIIZI”1

n=1

(o) [00)
- ananh’”"1 >1- anan|
n=1 n=1

=N [(n - Dk +1+allag-ieallQpu(n, k) - > w*1C(m,n)|a,l
n=1

n=2
n#lk+1
(2.3)
> N [(n- 1Dk +1-allbual|Qn(n k) + >, n*1C(m, n)|b|
=l n;l:kzﬂ
> > 2nlba| + > (21 = 1)|bay 1]
n=1 n=1

> Yinlb, "t = > nlba|lz" 2 [ (2)]-
n=1 n=1

Now, we will show that f € Jfle’Z.Sgk) (j,m, a). According to (1.4) and (1.7), for0 < a < 1, we
have

o}, O h(z) - (-1)D))
Re{_#}zRe{— n @) = CDOm G, (2.4)
Omfr(2) Dl h(z) + (1) D)9k ()
Using the fact that Re{w} > a if and only if |1 — & + w| > |1 + a — w|, it suffices to show that
j+1 ]+1
‘1— I ACN N O] (2.5)
’Dank(Z) o), fi(2)

which is equivalent to

1D f(2) - (1= @)D fi(2)| - |Dh f(2) + (1 + @)D fi(2)| > 0. (2.6)
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Substituting @{nf(z), @{;rlf(z), and @infk(z) in (2.6) yields

9 h(z) - (-1)/D g(z) - (1 - a)[’D] hi(z) + (- 1)7©mgk(z)]

— @' h(z) - (1Dl g(z) + (1 + @)

Dl (2) + <—1>f©£,,gk<z>]

= (_zl)] in”lC(m,n)anz + (- 1)7;n7+1C(m,n)bnz"
+ (1—a)[( - +Zn]C(m n)®,a,z" + (- 1)];11](3(111 ,n)®D,b z"]
i i 1)] i n*1C(m, n)a,z" + (—1)jinj+1C(m n)byz"
n=1 n=1
(1+a)[( zl)] +Zn]C(m n)®,a,z" + (- 1)];nJC(m ,n)®,b,z ]

= W—injC(m,n)[n—(1—0{)(I)n]anz"+(—1)j§:n7C(m,n)[n+(1—a)(Dn]W

n=1 n=1

- "‘(‘Zl)j - gnfC(m,n) [n+(1+a)®,]a.z" + (—1)f§nfC(m,n) [n - (1+a)®,]b,z"

> |“) anc:(m m)[n (1—a>cbn]|an||z"|—gnfC(m,nnm<1—a>cbn]|bn||z"|

_|i 2 ]C(m,n)[n+(1+a)(Dn]|an||Z"|—gnjc(m,n)[n—(1+“)(Dn]|bn||zn|
:2(1|Z|a {1 gnJC(m W aQ] gnJC(m ,n)[n - a®n]|bn||zn+1|}
> 2(1- a){l R Lk g"q’"’”)" “‘D]|bn|}.

(2.7)

From the definition of ®,,, we know that

1, Ik +1,
®, = (n>2, k,1>1). (2.8)
0, n#lk+1,
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Substituting (2.8) in (2.7), then (2.7) is equivalent to
|90 f(2) = (1= @)D fi(2)| - | DI f(2) + (1 + @)D fi(2)]

® (nk+1)/C(m,nk+)[nk+1+a
zz<1—a){1—z( ) Chom e Ul Nyl
n=1
&, (nk +1)/C(m, nk + 1)[nk + 1 - a] . n/C(m,n)
—Z 1_a [brics| = z; ?MM
n#lk+1
n C m,n 1+a
- 5 - |a1|—|b1|}
n#lk+1
= [(n-Dk+1+a n-Dk+1-a '
=21 —zx){ S [ et = T al] @
n=1
& wtC(m,n
- %nanuwnn}zo, by (26).
n=2 -a
n#lk+1
(2.9)
Thus, this completes the proof of the theorem. O

We next show that condition (2.1) is also necessary for functions in /iwesi"’ (j,m,a).

Theorem 2.2. Let f; = hj + gj, where h; and g; are given by (1.11), and fk]. = hkj + 8k, where hk].

and g, are given by (1.12). Then, f; € ,/IlJZSék) (j, m, a), if and only if the inequality (2.1) holds for
the coefficient of f; = h; + gj and fi, = hx; + gk;-

Proof. In view of Theorem 2.1, we need only to show that fjgéﬂiel&_?ék) (j,m,a) if condition

(2.1) does not hold. We note that for f; € ,/IiJé.Sgk) (j,m,a), then by (1.7) the condition (2.4)
must be satisfied for all values of z in U \ {0}. Substituting for hj, gj, hk, and gx, given by
(1.11) and (1.12), respectively, in (2.4) and choosing 0 < z = r < 1, we are required to have
Re{¥(z)/Y(z)} > 0, where

Y(z) = —@W;(z) +(-1)"D) gi(2) —a@fnhk,. (2) — a(~1)/ D), g, (2)

1
" (2.10)
Y(2) = Dpphi, (2) + (1) D)8k, (2)
=2 +Zn7C(m,n)(D la,|z" +;n]C(m,n)(I> || 2.
Then, the required condition Re{W¥(z)/Y(z)} > 0 is equivalent to
((L=0)/2) = S Clom,m)(n + a®lalr” + S Clm,m)(n—a®lblr”

1/z + X2 C(m, n)®@y|a,|r™ + X0 0 C(m, n) Dy b, |r"
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By using (2.8), and if condition (2.1) does not hold, then the numerator of (2.11) is negative
for r sufficiently close to 1. Thus, there exists a zy = rj in (0, 1) for which the quotient in (2.11)

is negative. This contradicts the required condition for f. i € ,ﬂieIZ.Sék) (j,m, &) and so the proof
is complete. O

3. Distortion bounds and extreme points

In this section, we will obtain distortion bounds for functions f; € _/IZJE.Sék) (j,m, &) and also

provide extreme points for the class MASP( j,m,a).
Theorem 3.1. If f; = h; + gj € ,/Ilell.ggk) (j,m,a)and 0 < |z| =r < 1, then

! 1-a )rs|f]~<z>|s1+ 1-a (3.1)

r dm+)(2-a r dmeDC—a)

Proof. We will prove the left side of the inequality. The argument for the right side of the
inequality is similar to the left side, and thus the details will be omitted. Let f; = h; + g; €

MHSE( j,m, a). Taking the absolute value of f, we obtain

z

-1y & e ——
Ifil = D + Zanz" +(=1) anz"
n=1 n=1

1 & n
== >l + [bal)r

v

n=1
- Z(|an| +|bul)r
-1

1
2_
r n
(3.2)
! l-a © 2/ (m +1)(2 - ad,)
> elb,
“r 2(m+1)(2-ady) & 1 (|an| + |bu)7
1 1-a & /nC(m,n)(n+ad,) 1 C(m,n)(n — ad,) )
> - — ) b
T 2](m+1)(2—a);< 1-a |an] + 1-a bn] )7
1 1-a
> - - ———————r, by (27).
= Ym+)2-a) y (27)

The bounds given in Theorem 3.1 hold for functions f; = h + g;j of the form (1.11). And it is
also discovered that the bounds hold for functions of the form (1.3), if the coefficient condition
(2.1) is satisfied. O

The following covering result follows from the left-hand side of the inequality in
Theorem 3.1.

Corollary 3.2. If f; € M S (j,m,a), then

2j(m+1)(2—¢x)—(1—cx)}

fj(U\{O})C{wi|w|< 2im+1)(2-a)

(3.3)
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Next, we determine the extreme points of closed convex hulls of _/ilJZ.Sék) (j,m,a)

denoted by Clco,/fle’é.ggk) (j,m,a).
Theorem 3.3. Let f; = hj + gj where h; and g; are given by (1.11). Then, f; € M S (j,m,a) if
and only if

fin(z) = Z(xnhjn (2) + Yngj, (2)), (3.4)
n=0

where hjy = gjo(z) = (-1)/z, hju(z) = (<1)//z + ((1 - a)/nIC(m,n)(n + a®,))z" (n =
1,2,3,...), gin(2) = (-1)/z+(-1)/(1-a) /nIC(m, n) (n—a®,))Z" (n=1,2,3,...), Zro(xn+

Yn) =1, x, 20, y, > 0. In particular, the extreme points of_/I{JZ_?ék) (j,m,a)are {h;,} and {gjn.}.

Proof. For functions f; = h; + g;, where h; and g; are given by (1.11), we have

fj,n(z) = Z(xnhj,n(z) + yngj,n(z))
n=0

~ o (_ )] © o
- nzzo(xn + Yn) Z;njc(m,n)(nwcp ) (3.5)
1-a
+= 1)],121111C(m,n)(n oc(Dn) v

Now, the first part of the proof is complete, and Theorem 2.2 gives

i n/C(m,n)(n + a®d,) .
~ n]C(m,n)(n +ad,) 1-a "
& n/C(m,n)(n - a®d,)
D c — Yn (3.6)
“~n/C(m, n)n ad,,) 1-a
Z +Yn— (X0 +y0) =1-(x0+y0) <1.
Conversely, suppose that f; € clco,/llJZSs(;k) (j,m,a). Forn=1,2,3,..., set
j
- wC(m,n)(n+ ad,) an] 0<x, <1,
1-«a
(3.7)

_ n/C(m,n)(n-ad,)
" 1-a

|b7l| OS}/n S 1/
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x0=1->7"1(xy + yn). Therefore, f can be written as

+Z|anlz +(=1) Zlbl

fin(z )—

(1)] & (1-a)x, (1-a)y, .
Zl fC(m,n)(n+aCDn) +- )]ZnJC(m n)(n - ad )Z

1)] +i< in(2) _ & ' >xn+Z<g]n(z 1) >yn (3.8)

n=

0 0 -1 j o0 ©
= (21 i@+ (1 Dk S )

Mis

(hjn(2)xn + gjn(2)yn), as required.
0

3
]

4. Convolution and convex combination

In this section, we show that the class ,/Il#.Sék) (j,m, a) is invariant under convolution and
convex combination of its member.

For harmonic functions fj(z) = (-1)//z + Soqlan)z" + (—1)jZ;‘1"=1|bn|E" and Fj(z) =
(-1)/z + 372 |Anlz" + (-1)' 32, |B4[Z", the convolution of f; and F; is given by

(fixFj)(2) = fi(2)*F;j(z) =

+Z|anllA 2" + (= 1)JZIb [IBalz" (4.1)

Theorem 4.1. For 0 < f < a <1, let f; € ,/IiJé.Sék) (jym,a) and F; € ,/IlJZ.Séb(]’,m,ﬂ). Then,
fixFj € mHSP (j,m,a) c m3E (j,m, p).

Proof. We wish to show that the coefficients of f;*F; satisfy the required condition given in

Theorem 2.2. For F; € ,/IlJZSék) (j,m,p), we note that |A,| < 1 and |B,| < 1. Now, for the
convolution function f;*F;, we obtain

infC(m,n)(n+ﬁ(I)n)| A |+inJ'C(m n)(n - pd,)

n bnl|Bx
n=1 1- ﬁ ¢ n=1 1- '6 | ” |
< SO LD, SO D, 42
n=1 n=l

Zn]C(m,n)(n (xq)n)l |+injC(m,n)(n—a(I)n)

b, <1
1-a 1Pal <1,

n=1

since 0 < f < a < land f; € ,/Ilelé.?gk)(j,m,a). Therefore fi*xF; € ,/Ile’ZSgk)(j,m,(x) C
MHSE (j,m, p). O
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We now examine the convex combination of Jllelé.Sék) (j,m,a).
Let the functions f;; be defined, fort =1,2,...,p, by

z

1\ ') =)
Fir2) = T 4 Saglzn + (17 S bl 4.3)
n=1 n=1

Theorem 4.2. Let the functions f;; defined by (4.3) be in the class M3 (j,m,a) for every t =
1,2,...,p. Then, the functions ¢ (z) defined by

P
&(z) = Zthjn (z), (0<c¢<l, (44)
=1

are also in the class MHSH) ( j,m,a), where 3 c; = 1.

Proof. According to the definition of ¢;, we can write

-1) &L & & _
62 - & +Z<anm>zn+(_1)fz<zctbn,t>zn. 45)
n=1 \ t=1 t=1

n=1

Further, since f;(z) are in ,/I{JZ.Sgk) (j,m,a) for every (t =1,2,...,p). Then by (2.7), we have

i{ [(Tl +ad,) <ict|an,t|> + (Tl - aq)n) <ict|bn,t|>:| nfC(m, n)}

n=1 t=1 t=1

Ct <i[(" + ‘X(I)n)|an,t| + (Tl - aq)n)lbn,tunjc(mr Tl)> (4~6)

n=1

<HYcag(l-a)<l-a.

Me 1M

,...
Il
—_

Hence, the theorem follows. O
Corollary 4.3. The class ,/Ile@.Sgk) (j,m, ) is close under convex linear combination.

Proof. Let the functions f;;(z) (t = 1,2) defined by (4.3) be in the class ,/ILJZ.Sgk) (j,m,a). Then,
the function ¢ (z) defined by

¢(z) =pfin(z) + (A -p)fia(z), O<p<l), (4.7)
is in the class ﬂJZSék) (j,m,a). Also, by taking p =2, ¢ = y, and & = (1 — p) in Theorem 4.2,
we have the corollary. O
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