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1. Introduction

Since time-delay systems are frequently encountered in engineering, biology, economy, and
other disciplines, it is significant to study these systems [1]. On the other hand, because many
evolution processes in nature are characterized by the fact that at certain moments of time
they experience an abrupt change of state, the study of dynamic systems with impulse effects
has been assuming greater importance [2–4]. It is natural to expect that the hybrid systems
which are called impulsive functional differential systems can represent a truer framework for
mathematical modeling of many real world phenomena. Recently, several papers dealing with
stability problem for impulsive functional differential systems have been published [5–10].

The usual stability concepts do not give any information about the rate of decay of the
solutions, and hence are not strict concepts. Consequently, strict-stability concepts have been
defined and criteria for such notions to hold are discussed in [11]. Till now, to the best of our
knowledge, only the following very little work has been done in this direction [12–15].

In this paper, we investigate strict stability for impulsive functional differential systems.
The paper is organized as follows. In Section 2, we introduce some basic definitions and nota-
tions. In Section 3, we first give two comparison lemmas on differential inequalities. Then, by
these lemmas, a comparison theorem is obtained and several direct results are deduced from
it. An example is also given to illustrate the advantages of our results.
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2. Preliminaries

We consider the following impulsive functional differential system:

x′(t) = f
(
t, xt

)
, t /= τk,

�x
(
τk
)

� x
(
τk
) − x

(
τ−k

)
= Ik

(
x
(
τ−k

))
, k ∈ Z

+,
(2.1)

where Z
+ is the set of all positive integers, f : R

+ × D → R
n, D is an open set in PC

([−τ, 0],Rn), here R
+ = [0,∞), τ > 0, and PC([−τ, 0],Rn) = {φ : [−τ, 0] → R

n, φ(t) is con-
tinuous everywhere except for a finite number of points t̂ at which φ(t̂+) and φ(t̂−) exist and
φ(t̂+) = φ(t̂)}. Ik : S(ρ0) → R

n for each k ∈ Z
+, where S(ρ0) = {x ∈ R

n : ‖x‖ < ρ0, ‖·‖ denotes
the norm of vector in R

n}, 0 = τ0 ≤ τ1 < τ2 < · · · < τk < · · · with τk → ∞ as k → ∞ and x′(t)
denotes the right-hand derivative of x(t). For each t ∈ R

+, xt ∈ PC is defined by xt(s) = x(t+s),
−τ ≤ s ≤ 0. For φ ∈ PC, |φ|1 = sup−τ≤s≤0‖φ(s)‖, |φ|2 = inf−τ≤s≤0 ‖φ(s)‖. We assume that f(t, 0) ≡ 0
and Ik(0) ≡ 0, so that x(t) ≡ 0 is a solution of (2.1), which we call the zero solution.

Let t0 ∈ [τm−1, τm) for some m ∈ Z
+ and ϕ ∈ D, a function x(t) : [t0 − τ, β) → R

n (β ≤ ∞)
is said to be a solution of (2.1)with the initial condition

xt0 = ϕ, (2.2)

if it is continuous and satisfies the differential equation x′(t) = f(t, xt) in each [t0, τm),
[τi, τi+1), i = m, m + 1, . . ., and at t = τi it satisfies �x(τi) = Ii(x(τ−i )).

Throughout this paper, we always assume the following conditions hold to ensure the
global existence and uniqueness of solution of (2.1) through (t0, ϕ).

(H1) f is continuous on [τk−1, τk) × D for each k ∈ Z
+ and for all k ∈ Z

+ and ϕ ∈ D, the
limits lim(t,φ)→(τ−

k
,ϕ)f(t, φ) = f(τ−

k
, ϕ) exist.

(H2) f(t, φ) is Lipschitzian in φ in each compact set in D.

(H3) Ik(x) ∈ C[S(ρ0),Rn] for all k ∈ Z
+ and there exists ρ0 ≤ ρ such that x ∈ S(ρ0) implies

that x + Ik(x) ∈ S(ρ) for all k ∈ Z
+.

The function V (t, x) : R+ × R
n → R

+ belongs to class V0 if the following hold.

(A1) V is continuous on each of the sets [τk−1, τk) × R
n and for each x ∈ R

n and k ∈ Z
+,

lim(t,y)→(τ−
k
,x)V (t, y) = V (τ−

k
, x) exists.

(A2) V (t, x) is locally Lipschitzian in x ∈ R
n and for t ∈ R

+, V (t, 0) ≡ 0. Let V ∈ V0, D+V
along the solution x(t) of (2.1) is defined as

D+V
(
t, x(t)

)
= lim

δ→0+
sup

1
δ

[
V
(
t + δ, x(t + δ)

) − V
(
t, x(t)

)]
. (2.3)

Let us introduce the following notations for further use:

(i) K0 = {a(u) ∈ C[R+,R+] : increasing and a(0) = 0};
(ii) K = {a(u) ∈ K0 : strictly increasing};
(iii) K1 = {a(u) ∈ K0 : a(u) ≤ u and a(u) > 0 foru > 0};
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(iv) K2 = {a(u) ∈ K : a(u) ≥ u};
(v) PC1(ρ) = {φ ∈ PC([−τ, 0],Rn) : |φ|1 < ρ};
(vi) PC2(θ) = {φ ∈ PC([−τ, 0],Rn) : |φ|2 > θ > 0}.

Definition 2.1. The zero solution of (2.1) is said to be strictly stable (SS), if for any t0 ∈ R
+ and

ε1 > 0, there exists a δ1 = δ1(t0, ε1) > 0 such that ϕ ∈ PC1(δ1) implies ‖x(t; t0, ϕ)‖ < ε1 for t ≥ t0,
and for every 0 < δ2 ≤ δ1, there exists an 0 < ε2 < δ2 such that

ϕ ∈ PC2
(
δ2
)
implies ε2 <

∥∥x
(
t; t0, ϕ

)∥∥, t ≥ t0. (2.4)

Definition 2.2. The zero solution of (2.1) is said to be strictly uniformly stable (SUS), if δ1, δ2,
and ε2 in (SS) are independent of t0.

Remark 2.3. If in (SS) or (SUS), ε2 = 0, we obtain nonstrict stabilities, that is, the usual stability
or uniform stability, respectively. Moreover, strict stability immediately implies that the zero
solution is not asymptotically stable.

The preceding notions imply that the motion remains in the tube like domains. To ob-
tain sufficient conditions for such stability concepts to hold, it is necessary to simultaneously
obtain both lower and upper bounds of the derivative of Lyapunov function. Thus, we need to
consider the following two auxiliary systems:

v′ = g1(t, v), t /= τk,

v
(
τk
)
= φk

(
v
(
τ−k

))
,

v
(
t0
)
= v0 ≥ 0,

(2.5)

and

u′ = g2(t, u), t /= τk,

u
(
τk
)
= ψk

(
u
(
τ−k

))
,

u
(
t0
)
= u0 ≥ 0,

(2.6)

where g1, g2 ∈ C[R+ × R
+,R], g1(t, u) ≤ g2(t, u), g1(t, 0) ≡ g2(t, 0) ≡ 0, φk, ψk : R

+ → R
+,

φk(u) ≤ ψk(u) for each k ∈ Z
+.

From the theory of impulsive differential systems [2], we obtain that

ρ
(
t; t0, v0

) ≤ γ
(
t; t0, u0

)
, t ≥ t0 wheneverv0 ≤ u0, (2.7)

where ρ(t; t0, v0) and γ(t; t0, u0) are the minimal and maximal solutions of (2.5), (2.6), respec-
tively.

The corresponding definitions of strict stability of the auxiliary systems (2.5), (2.6) are
as follows.

Definition 2.4. The zero solutions of comparison systems (2.5), (2.6), as a system, are said to be
strictly stable (SS∗), if for any t0 ∈ R

+ and ε1 > 0, there exist a δ1 = δ1(t0, ε1), δ2 = δ2(t0, ε1), and
ε2 = ε2(t0, ε1) satisfying 0 < ε2 < δ2 < δ1 < ε1 such that

ε2 < ρ
(
t; t0, v0

) ≤ γ
(
t; t0, u0

)
< ε1, t ≥ t0, provided δ2 < v0 ≤ u0 < δ1. (2.8)

Definition 2.5. The zero solutions of comparison systems (2.5),(2.6), as a system , are said to be
strictly uniformly stable (SUS∗), if δ1, δ2, and ε2 in (SS∗) are independent of t0.
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3. Main results

We first give two Razumikhin-type comparison lemmas on differential inequalities.

Lemma 3.1. Assume that

(i) g1, g2 ∈ C[R+ × R
+,R], − g1(t, ·), g2(t, ·) ∈ K0 for each t;

(ii) there exists mi : R+ → R
+ (i = 1, 2), where mi(t) (i = 1, 2) are continuous on [τk−1, τk) and

limt→τ−
k
mi(t) = mi(τ−k ) (i = 1, 2) exist, k ∈ Z

+, satisfying

g1
(
t,m1(t)

) ≤ D+m1(t),

D+m2(t) ≤ g2
(
t,m2(t)

)
.

(3.1)

Then

ρ(t) ≤ m1(t) if inf
−τ≤s≤0

m1
(
t0 + s

) ≥ v0, (3.2)

m2(t) ≤ γ(t) if sup
−τ≤s≤0

m2
(
t0 + s

) ≤ u0, (3.3)

where ρ(t) = ρ(t; t0, v0) and γ(t) = γ(t; t0, u0) are the minimal and maximal solutions of systems (3.4)
and (3.5), respectively,

v′ = g1(t, v),

v
(
t0
)
= v0 ≥ 0,

(3.4)

u′ = g2(t, u),

u
(
t0
)
= u0 ≥ 0.

(3.5)

Proof. First, we prove that (3.2) holds. Otherwise, there exist t0 ≤ t1 < t2 such that

(a) ρ(t1) = m1(t1),

(b) m1(t + s) ≥ m1(t), s ∈ [−τ, 0], t ∈ [t1, t2], and

(c) ρ(t2) < m1(t2).

By (a), (b), and (ii), applying the classical comparison theorem, we have

ρ(t) ≤ m1(t), t ∈ [
t1, t2

]
, (3.6)

which contradicts (c). So (3.2) is correct. Equation (3.3) can be proved in the same way as
above. Then Lemma 3.1 holds.

Lemma 3.2. Assume that (i) in Lemma 3.1 holds. Suppose further that
(ii) there exists V1 ∈ V0 satisfying

φk

(
V1

(
τ−k , x

)) ≤ V1
(
τk, x + Ik(x)

)
, k ∈ Z

+, (3.7)

where φk ∈ K1, and for any solution x(t) of (2.1), V1(t+ s, x(t+ s)) ≥ V1(t, x(t)), s ∈ [−τ, 0], implies
that

g1
(
t, V1

(
t, x(t)

)) ≤ D+V1
(
t, x(t)

)
; (3.8)
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(iii) there exists V2 ∈ V0 satisfying

V2
(
τk, x + Ik(x)

) ≤ ψk

(
V2

(
τ−k , x

))
, k ∈ Z

+, (3.9)

where ψk ∈ K2, and for any solution x(t) of (2.1), V2(t+ s, x(t+ s)) ≤ V2(t, x(t)), s ∈ [−τ, 0], implies
that

D+V2(t, x(t)) ≤ g2(t, V2(t, x(t))). (3.10)

Then

ρ(t) ≤ V1
(
t, x(t)

)
if inf

−τ≤s≤0
V1

(
t0 + s, x

(
t0 + s

)) ≥ v0, (3.11)

V2
(
t, x(t)

) ≤ γ(t) if sup
−τ≤s≤0

V2
(
t0 + s, x

(
t0 + s

)) ≤ u0, (3.12)

where ρ(t) = ρ(t; t0, v0) and γ(t) = γ(t; t0, u0) are the minimal and maximal solutions of (2.5), (2.6),
respectively.

Proof. Assume t0 ∈ [τm−1, τm), m ∈ Z
+. First, we prove that (3.11) holds for t ∈ [t0, τm), that is

ρ(t) ≤ V1
(
t, x(t)

)
, t ∈ [

t0, τm
)
. (3.13)

Let m1(t) = V1(t, x(t)), t ≥ t0. Equation (3.13) holds obviously by Lemma 3.1 for t ∈ [t0, τm). By
(ii), V1(τm, x(τm)) ≥ φm(V1(τ−m, x(τ

−
m))) ≥ φm(ρ(τ−m)) = ρ(τm). The same proof as for t ∈ [t0, τm)

leads to

ρ(t) ≤ V1
(
t, x(t)

)
, t ∈ [

τm, τm+1
)
. (3.14)

By induction, (3.11) is correct. Similarly, (3.12) can be proved by using Lemma 3.1 and assump-
tion (iii).

Using Lemma 3.2, we can easily get the following theorem about strict stability proper-
ties of (2.1).

Theorem 3.3. Assume that all the conditions of Lemma 3.2 hold. Suppose further that there exist func-
tions ai, bi ∈ K, i = 1, 2, such that

(iv) bi(‖x‖) ≤ Vi(t, x) ≤ ai(‖x‖) forx ∈ S(ρ).
Then the strict stability properties of comparison systems (2.5), (2.6) imply the corresponding

strict stability properties of zero solution of (2.1).

Proof. First, let us prove strict stability of the zero solution of (2.1). Suppose that 0 < ε1 < ρ0
and t0 ∈ R

+ are given. Assume that (SS∗) holds. Then, given b2(ε1) > 0, there exists δ̂1 =
δ̂1(t0, ε1), δ̂2 = δ̂2(t0, ε1), and ε̂2 = ε̂2(t0, ε1) satisfying 0 < ε̂2 < δ̂2 < δ̂1 < b2(ε1) such that

ε̂2 < ρ(t) ≤ γ(t) < b2
(
ε1
)
provided δ̂2 < v0 ≤ u0 < δ̂1, t ≥ t0. (3.15)

By (iv), there exist 0 < δ2 < δ1 < ε1 such that for s ∈ [−τ, 0],
Vi

(
t0 + s, x

) ∈ PC2
(
δ̂2
) ∩ PC1

(
δ̂1
)
provided δ2 < ‖x‖ < δ1, i = 1, 2. (3.16)

Next, choose ε2 = ε2(t0, ε1) > 0 such that a1(ε2) ≤ ε̂2 and ε2 < δ2. We claim that with the choices
of ε2, δ2, and δ1, the zero solution of (2.1) is strictly stable. That means that if x(t) = x(t; t0, ϕ)
is any solution of (2.1), ϕ ∈ PC2(δ2) ∩ PC1(δ1) implies that ε2 < ‖x(t)‖ < ε1, t ≥ t0. If not, we
have either of the following alternatives.
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Case 1. There exists a t1 ∈ [τr, τr+1) such that

ε2 ≥
∥∥x

(
t1
)∥∥. (3.17)

Then clearly ‖x(t)‖ < ρ0, t0 ≤ t ≤ t1. Thus, by Lemma 3.2, (i) and (ii) imply that

ρ(t) ≤ V1(t, x(t)) providedv0 ≤ inf
s∈[−τ,0]

V1
(
t0 + s, x

(
t0 + s

))
, t ∈ [

t0, t1
]
. (3.18)

Using (3.15)–(3.18) and (iv), we get

a1(ε2) ≥ a1(‖x(t1)‖) ≥ V1(t1, x(t1)) ≥ ρ(t1) > ε̂2 ≥ a1(ε2), (3.19)

which is a contradiction.
Case 2. There exists a t̂2 ∈ [τs, τs+1) such that

ε1 ≤
∥∥x

(
t̂2
)∥∥, (3.20)

∥∥x(t)
∥∥ < ε1, t0 ≤ t < τs. (3.21)

By (H3), (3.21) yields

∥∥x
(
τs
)∥∥ =

∥∥x
(
τ−s

)
+ Is

(
x
(
τ−s

))∥∥ < ρ. (3.22)

Because of (3.20) and (3.22), there exists a t2 ∈ [τs, t̂2] such that

ε1 ≤
∥∥x

(
t2
)∥∥ < ρ. (3.23)

By Lemma 3.2, (i) and (iii) imply that

V2(t, x(t)) ≤ γ(t) provided sup
s∈[−τ,0]

V2
(
t0 + s, x

(
t0 + s

))) ≤ u0, t ∈ [
t0, t2

]
. (3.24)

From (3.15), (3.23), (3.24), and (iv), we have the following contradiction:

b2
(
ε1
) ≤ b2

(∥∥x
(
t2
)∥∥) ≤ V2

(
t2, x(t2)

) ≤ γ
(
t2
)
< b2

(
ε1
)
. (3.25)

We, therefore, obtain the strict stability of the zero solution of (2.1). If we assume that the zero
solutions of comparison systems (2.5), (2.6) are (SUS∗), since δ̂1, δ̂2 are independent of t0, we
obtain, because of (iv), δ1 and δ2 in (3.16) are independent of t0, and hence, (SUS) of (2.1)
holds.

Using Theorem 3.3, we can get two direct results on strictly uniform stability of zero
solution of (2.1) and the first one is Theorem 3.3 in [15].

Corollary 3.4. In Theorem 3.3, suppose that g1 ≡ g2 ≡ 0, φk(u) = (1 − ck)u, ψk(u) = (1 + dk)u,
k ∈ Z

+, where 0 ≤ ck < 1,
∑∞

k=1 ck < ∞, and dk ≥ 0,
∑∞

k=1 dk < ∞.
Then the zero solution of (2.1) is strictly uniformly stable.
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Corollary 3.5. In Theorem 3.3, suppose that g1(t, u) = −M′
1(t)u, g2(t, u) = M′

2(t)u, where M
′
i(t) ∈

C[R+,R+], i = 1, 2, and Mi(t), i = 1, 2 are bounded, φk(u) and ψk(u), k ∈ Z
+ are just the same as in

Corollary 3.4.
Then the zero solution of (2.1) is strictly uniformly stable.

Proof. Under the given hypotheses, it is easy to obtain the solutions of (2.5) and (2.6):

v(t) = v0

∏

t0≤τk≤t

(
1 − ck

)
exp

[ − (
M1(t) −M1

(
t0
))]

,

u(t) = u0

∏

t0≤τk≤t

(
1 + dk

)
exp

[
M2(t) −M2(t0)

]
.

(3.26)

Since Mi(t), i = 1, 2, are bounded, there exist two positive constants B1, B2 such that |M1(t)| ≤
B1, |M2(t)| ≤ B2. Also, since

∑∞
k=1 ck < ∞,

∑∞
k=1 dk < ∞, it follows that

∏∞
k=1(1 − ck) = N and∏∞

k=1(1+dk) = M, obviously 0 < N ≤ 1, 1 ≤ M < ∞. Given ε1 > 0, choose δ1 = M−1 exp(−2B2)ε1
and for 0 < δ2 < δ1, choose ε2 = δ2N exp(−2B1). Then, if δ2 < v0 ≤ u0 < δ1, we have

ε2 < v(t) ≤ u(t) < ε1. (3.27)

That is, the zero solutions of (2.5), (2.6) are strictly uniformly stable. Hence, by Theorem 3.3,
the zero solution of (2.1) is strictly uniformly stable.

Example 3.6. Consider the system

x′(t) = −a(t)x(t) + b(t)x(t − τ), t /= τk, t ≥ 0,

�x
(
τk
)
= Ik

(
x
(
τ−k

))
, k ∈ Z

+,
(3.28)

where a(t), b(t) are continuous on R
+, b(t) ≥ 0, Ik(x) ∈ C[R,R]. Assume that −1/(1 + t2) ≤

−a(t) + b(t) ≤ 1/(1 + t2), (1 − ck)x2 ≤ (x + Ik(x))
2 ≤ (1 + dk)x2 with 0 ≤ ck < 1,

∑∞
k=1ck < ∞, and

dk ≥ 0,
∑∞

k=1dk < ∞.
Let V1(t, x) = V2(t, x) = V (x) = (1/2)x2, then

(
1 − ck

)
V (x) =

1
2
(
1 − ck

)
x2 ≤ V

(
x + Ik(x)

)

=
1
2
(
x + Ik(x)

)2 ≤ 1
2
(
1 + dk

)
x2 =

(
1 + dk

)
V (x).

(3.29)

For any solution x(t) of (3.28) such that V (x(t + s)) ≥ V (x(t)), s ∈ [−τ, 0], we have

D+V
(
x(t)

)
= −a(t)x2(t) + b(t)x(t)x(t − τ) ≥ [ − a(t) + b(t)

]
x2(t) ≥ − 2

1 + t2
V
(
x(t)

)
, (3.30)

and if V (x(t + s)) ≤ V (x(t)), s ∈ [−τ, 0], we have

D+V
(
x(t)

)
= −a(t)x2(t) + b(t)x(t)x(t − τ) ≤ [ − a(t) + b(t)

]
x2(t) ≤ 2

1 + t2
V
(
x(t)

)
. (3.31)

By Corollary 3.5, the zero solution of (2.1) is strictly uniformly stable.
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