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We will introduce new means of Cauchy’s type M7, (f, ) defined, for example, as M, (f,p) =

(A1 =8)/7(r=8)) (ML(f, p) = ML(f, )/ ME(F, 1) = ML(f, 1)) 077, in the case when [#7 #s, 1,7 #0.
We will show that this new Cauchy’s mean is monotonic, that is, the following result. Theorem. Let
t,r,u,v € R, such that t < v, r < u. Then for Mf,z (f, p), one has Mf/r < M, . We will also give some
related comparison results.
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1. Introduction

Let Q2 be a convex set equipped with a probability measure y. Then for a strictly monotonic
continuous function f, the integral power mean of order r € R is defined as follows:

<fg(f(u))’dﬂ(u)>l/r, r 0,

1.1)
exp <J‘Q log (f(u))dy(u)), r=0.

M. (f, 1) =

Throughout our present investigation, we tacitly assume, without further comment, that all
the integrals involved in our results exist.
The following inequality for differences of power means was obtained (see [1, Remark

8]):

Mi(f, u) — Mg(f, 1)
TIMIf,p) - ME(fu) 1T

r(r—s)

I(-s)

r(r—s)

T

M, (1.2)
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where r,I,s € R, [#r#s,r,1#0 and where m and M are, respectively, the minimum and the
maximum values of the function x" on the image of f(u) (u € Q).

Let us note that (1.2) was obtained as consequence of the following result (see, e.g., [1,
Corollary 1]).

Theorem 1.1. Let 1, 5,1 € R, and let Q be a convex set equipped with a probability measure p. Then,

MI(f )~ ML) _r(r=s)
MI(fu) - ML) HT=5) "

(1.3)

for some 1 in the image of f(u) (u € Q), provided that the denominator on the left-hand side of (1.3) is
non-zero.

We can also note that from (1.3) we can get the following form of (1.2):

< sup f(u), (1.4)

ueQ

I(1-s) MI(f,p) - Mé(ﬂ#))”"‘”

Inf () < <r(r—S) MI(f, ) - ML(f, )

where r,l,5 € R, r #1#s, r,1 #0. Moreover, (1.4) suggests introducing a new mean of Cauchy
type. We will prove in Section 3 a comparison theorem for these means. Finally we will, in
Section 4, give some applications.

2. New Cauchy’s mean

From (1.4), we can define a new mean M?, as follows:

I(1-s) My(f, u) — M(f, )
r(r=s) My(f,u) - Mi(f, 1)

1/(r=1)
M (o = ( ) trrEs Lz 2.1)

Now by taking lim oM ,(f, u), we will get

M3 (f, ) = M, () = lim M3, (f, 0
(2.2)

_ ( s[MZ(f, ) — ML(f, )]

1/r
T(T—S)[long(f,#)_logMO(f’#)]> , T#s, 7',5750.

Now by taking lim ,_.s M7 ,(f, u), we will get

I}E} M7 (f, p) = Mg (f, ) =M (f, 1)

_ <l(1 —s) [[ f(w)*log f (w)dpu(u)—M:(f, p) log Ms(f, )]
s MI(f, p) - ME5(f, 1)

1/(s=1)
> , l#s,1,s#0.
(2.3)
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By similar way, we can calculate all the cases for r,s,I € R. Finally, we get the following
definition of M? (f, p):

ME () = ( Wi =s) Mi(f,p) = Mi(f, )

1/(r-1)
V4 l 7 l/ O;
r(r—s) Mf(f,#)—M’s(f,#)> Frrs LTy

s[My(f, ) — ML(f, )] >m r#s, r,s#0;

Mrolfo1t) = Mo (f 1) = <r(r—s)[long(f,#) —log My (f, p)]

_ 51 d M 1 M /(s=1)
M?,z(f/#)=Mf,s(f,M)=<l(l 5) | f(w)*log f (w)dp(u) - M3(f, 1) log w)) |

s ML(f, p) - ML(f, )
l#s, 1,5#0;

(] f) log Fwdpw) - ME(Fm log Mu(F 0\
Ms,O(f’/") - MO,S(f’I/l) - < IOng(fr/’l) _logMO(f'/’l) > S#O/
E(MI(f, ) - Mi(f )\
0 _ 0 ;
M (fo 1) = (rz(Mg(f,#) —Mé(f,,u))) oo
o v e (L 2MiE-Myae] N
Mio(f, 1) = My, (fo 1) = <r2 [MZ(log f, 1) —Mf(logf,#)]> T
o 2t-s [ f'log fdpu(u) - ML(f, u) log Mi(f, ) :
Mt,t—eXp<—t(t_s) * Mf(f,‘u)—Mé(f,M) >’ 7
MY, = oxp (= 2 1S10BS 100 - Myf 108 Muf RN
i M (f, p) — M{(f, 1)
MO = exp (1 (log f)’dpu(u) - <logMo<f,ﬂ>>3>
00 ~ 3 (10gf) du(u) - (logMo(f,,u))2
o < 1 f(og f)du(w) —Mi(f,#)(long(fr#))2> 50
2T fo1og fdu(u) — (M3(f, 1) log Ma(f, 1)) '
. 1 [ (log f)*du(u) - (log Ms(f, p1))*
My = exp <E 2( [log fdu(u) - log Ms(f, 1)) > 70
(2.4)

3. Monotonicity of new means

In this section, we will prove the monotonicity of (2.4). We need the following lemmas for
log-convex function.
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Lemma 3.1. Let f be log-convex function and if x1 < y1, x2 < Yo, X1#X2, Y17 Yo, then the following

inequality is valid:
(f)

Proof. In [2, page 3] we have the following result for convex function f, with x; < vy, x, <

Y2, X1# X2, Y1 #Y2!

1/ (x2=x1)

Flya)\
: <f(3/1>> ' G

flr) = fla) _ fly2) = fy1) (3.2)
X2 — X1 Y2—W1
Putting f = log f, we get
1/(x2-x1) 1/(y2-11)
log <f (xz)> < log (f (yz)> / (3.3)
f(x) f(y)
after applying exponential function we get (3.1). O

The following two lemmas are proved (for functionals) in [3] (Theorem 4 and Lemma 2,
for Lemma 3.2 see also [4, Theorem 1]).

Lemma 3.2. Let us consider A; defined as

[ Mi(g, 1) - Mi(g, 1)
t(t-1) ’

Ai(g, p) = { log My (g, u) —log M (g, 1), =0; (34)

t#0,1;

fglog 8= Mo(g, p)log Mo(g, 1), t=1.
\

Then, Ay is a log-convex function.
Lemma 3.3. Let us consider A; defined as

MU0 - MyER),  t20;

At = (35)

%(Mi(logﬁﬂ) - Mi(log f,p)), t=0.

Then, Ay is a log-convex function.

Theorem 3.4. Let t,r,u,v € R, such that, t <v, r < u. Then for (2.4), we have

M;, <M . (3.6)
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Proof
Case 1 (s#0). Let us consider A; defined as in Lemma 3.2. A; is a continuous and log-convex.
So, Lemma 3.1 implies that for t,r,u,v € R, such that, t <v, r <u, t#r, v#u, we have

1(t-r) 1/ (v-u)
()""s(3)
A, Ay

For s > 0 by substituting ¢ = f°, t =t/s, r =r/s, u = u/s, v = v/s € R, such that, t/s <
v/s, r/s<u/s, t#r, v#u,in (3.4), we get

52

t(l—S) [Mi(fl.”)_Mé(fl.”)]/ t#ols;

Ais(f, ) = { s(log M(f, ) —log Mo(f, 1)), t=0; (3.8)

([ 1081 - Miw10g Mutr ), 1=

And (3.7) becomes

At,s 1(t-r) § Av,s 1/(v-u) 39)
() <(x2) e

From (3.9), we get our required result.

Now when s < 0 by substituting ¢ = f°, t =t/s, r =r/s, u=u/s, v =v/s € R, such
that,v/s<t/s, u/s<r/s, t#r, v#u,in (3.4) we get (3.8).

And (3.7) becomes

Ay e s/ (v-u) At s s/ (t-r)
<A : ) < <At' > . (3.10)
Uu,s r,s
Now s < 0, from (3.10), by raising power —s, we get
A \VED A\ V)
< A“) < < A”'S> . (3.11)
t,s u,s

From (3.11), we get our required result.
Case 2 (s = 0). In this case, we can get our result by taking limit s—0 in (3.8) and also in this
case we can consider A; defined as in Lemma 3.3.

A; is log-convex function. So, Lemma 3.1 implies that for t,r,u,v € R, such that, t <

v, r<u, t#r, v#u, we have
A\ V(1) A, 1/(v-u)
<A—t> < (A—> . (3.12)
T u

Therefore, we have for t,r,u,v € R, such that, t <v, r<u, t#r, v#u:

v,u’r

M), <MY (3.13)

which completes the proof. O
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4. Further consequences and applications

In this section, we will represent the various applications of our previous definition of a new
Cauchy mean and monotonicity of this above defined a new Cauchy mean.

4.1. Tobey and Stolarsky-Tobey means

Let E,._; represent the (n — 1)-dimensional Euclidean simplex given by

n-1
E,q= {(ul,uz,---,un1) ‘u; 20, 1<i<n-1, Z u; < 1}, (4.1)
i-1

and setu, =1 - Z;’z_llui. Moreover, with u = (uy,...,u,), let p(u) be a probability measure on
E,_i. The power mean of order p (p € R) of the positive n-tuple x = (xy,...,x,) € R}, with the
weights u = (uy,...,u,), is defined by

My, = 3\ +2)
x, p=0
i=1
Then, the Tobey mean L, ,(x; p) is defined as follows:
Lp,r(x} W) =M, (ﬁp(xr H); ﬂ)/ (4.3)

where M, (g, u) denotes the integral power mean, in which Q is now the (n — 1)-dimensional
Euclidean simplex E,_;. We note that, since M, (x, u) is a mean we have min{x;} < M, (x, u) <
max{x;}. Now setting f(x, u) = Mp(x,y) in (2.4) we get

l l — S Lr,r (X, ﬂ) - Lr,s(xl ‘ll)
Frshr,l(x'nu) = < E _ )) 7 ;)
rr-s Lp,l(x’ /’l) - Lp,s (x, ﬂ)

1/(r-1I)
) , l#r#s, Lr#0;

s[Ly,,(x, p) = L}, o (x, )]
r(r—s)[log Lys(x, 1) —log Lyo(x, p
11 - 5) [ My(x, p)° log dp(u) — L3, ((x, jt) log Ly, (x, 1) ) 1/(s-1)
° L], ) = Lo (x, ) ’

1/r
r;ﬂ’,()(x’nu) = r;,o,r(x"u) = < )]> s T#S/ rIS#OI.

I?ﬂw40=FLA%”):<

l#s, 1,s#0;

| My, (x, 1)° log M (x, p)edpa(u) =L, o (x, ) 10g Lp,s (x, )\ ''* N
log Ly, s(x, ) ~log L, o(x, pt) o 57U

r;sa,s,() (x' nu) = 1—‘;,O,s (x’ #) = <
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12 L (r-1)
IRCANE < Rt M) S
pr ﬂ(LP,l(x,m = Lyo(x 1)

1—'0 (x ) = FO (x ) = < 2[L;7,T(x/‘u) - L;/O(x/ /’l)] >1/r T#O
pr0\ X H p0r\ X 1 r2 [Mg(logﬂp(x, ﬂ),‘u) - M%(logﬁp(x,,u),,u)] ;

2t—s I M, (x, )" log My, (x, p)dpu(u) L, (x, ) IOng,s(x,ﬂ)> s

r S H) =
prl ) =exp { ~gm g L}, (x, ) ~Lp,s(x, )

“FII\.)

f (x, )" log My, (x, pr)dpu(ue) = L (x, 1) log Ly o(x, p1)
Fg,t,t(xfﬂ) = exp ’ . 20

p,t(x/.”) - Lp,O(x/ 1)

log M, (x, 1)) dpu(u) - (long,o(x/#)f)
J (log M, (x, 1)) "dp(u) - (log Ly (x, )’

1 fM (x, 1)° (log M (x, y)) dp(u)-L;, x/#)(long,s(x,y))2> .

ss( )
piss\ Ko ) =EXP 2(fM (x, 1)* log My (x, pt) dpa(u) (Lp,s(x'”)logL”’S(x’ﬂ)))

I7 000, 1) = exp

e ;

1 f(logM (x, ,u)) du(u) - (108Lp,s(x/ﬂ))2> s#0.
s 2([log M,(x, p)du(u) —log Ms(x, 1))

(4.4)

Theorem 4.1. Let t,r,u,v € R, such that, t <v, r < u. Then for (4.4), we have
F;trgl";vu (4.5)
Proof. 1t is a simple consequence of Theorem 3.4. O

Petari¢ and Simi¢ (see [5, Definition 1]) introduced the Stolarsky-Tobey mean Ep,q(x, 1)
defined by

€pq(X, 1) = Lpgp(x,v) = Myp (Mp(x/.”)?#)/ (4.6)

where L, ,(x,v) is the Tobey mean already introduced above.
For the Stolarsky-Tobey mean and (2.4), we get the following:

e 1/(r-1)
Yo (e = I(1-5) p,w(x ) = €5 s (X, 1)  lirss, Lrso;
P r(r=s)e, . (X, ) = €ppes(x, 1)

YS

s|e, +r(x/ )_Er +s(x’ ) v
s o) = Y5 () = ( (Eppor (1) = Epypes (0 )] ) , T#5, 1,5#0;

r(r —s)[1og epp+s(x, u) —log epp(x, u)]
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(x, p) = (x, 1) = (l(l — 5) | Mp(x, p)* log dp(u) = &, (x, ) log gp/erS(x,#))l/(s—l)
Sl Pls X, S pp+l(x ‘u) pp+s(x/‘u) 7

l#s, 1,s#0;

[ My (x, 1)° log My (x, ) () = &, (%, 1) 10g £ s (x, 1)\ °
10g 6p,p+s (x/ ‘Ll) - log gp,p (x/ ‘l/l) ’

Y;,S,O(x’/’l) = pOs(x ‘Ll) <

s#0;
12 e (x, € X, 1/(r-1)
YO, (% p) = < (Epper (0 10) = &y #>)> , Lr#0;
v rz(gp,p+l(x’#) _gp,p(x/ /’l))
0 0 2[efpir (6, 1) = €], (x, )] v
Ypro (i) = Yo, (1) = | 3 M?(log M ~ M2(log M , 770
r [ 2( 0g P(x/,u)///l) 1( og p(x,y),y)]

= M, (x, )" log M, (x, p)dp(u) — ML1 +s(x,
Y;tt(x’#)zexp<_ 2t—s [My(x ) %8 p(x, 1) #(tu) s log ep ps (x #))/ fis
” t(t—s) Sp,p”(x, ﬂ) ~ Epps (x, /’l)

H-II\.)

(x, 1) log My (x, p)dp(u) — €, (x, p) log e, (x, )
Yg,t,t(x,#) = exp . , G

€p,pit (0 1) = Epp (2, )

3
2,0,0(x,/4) = exp <%f (log M, (x, #)) du(u) - (loggp,p(x,//l)>2>,
J (log M, (x, #)) dpu(u) - (log ey, (x, 1))

I M, (x, 1)° (log My(x, ) dpe(u) - p+s<x/ﬂ)(logsp.ws(x/ﬂ))z)

p S, s(x #) = exp
" 2| My (1) 1og M, 1)dja(a) — (£hpen (5, 1) 108 Eppra(, 1))

s#0;
log M d 1 e z
Y2 060 = exp , { (log My(x, 1) dp(w) = (10g eppes(x, 1)) ) 540,
2(flog My (x, p)dp(u) —10g ep.pss(x, 1))
(4.7)
Theorem 4.2. Let t,r,u,v € R, such that, t <v, r < u. Then for (4.7), we have
S, <Y (4.8)

ptr = “pou’

Proof. 1t is a simple consequence of Theorem 3.4. O
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4.2, The complete symmetric mean

The rth complete symmetric polynomial mean (the complete symmetric mean) of the positive
real n-tuple x is defined by (see [6, pages 332,341])

e = ()" = <C’[’r] 7, 49)

( n+’1:—1 )

where CLO] (x) =1and c,[f] (x) = Z?:l (]_[?zlx? ) and the sum is taken over all ("*7~1) nonnegative
integer n-tuples (iy,...,i,) with Z;Lli]- =r (r#0). The complete symmetric polynomial mean
can also be written in an integral form as follows:

n r 1/r
Il <f <Z xiui> dy(u)) , (4.10)
En1 \i=1

where p represents a probability measure such that du(u) = (n—1)!du, - - - du,_1. We can see this
as a special case of the integral power mean M, (f, u), where f(u) = 3", xju;, pisa probability
measure as above, and Q is the above defined (n-1)-dimensional simplex E,,_;. Thus from (2.4),
we have the following result:

1(1-s) QMY (x, 1) = (QENY (x, )
=9 QI (x, 1) - (@9 (x, )

A simple consequence of Theorem 3.4 is the following result.

1/(r-1)
©;,,1 (%, 1) = ( > , l#r#s, LreN.  (4.11)

Theorem 4.3. Let t,r,u,v € N, such that, t <v, r < u. Then for (4.11), we have

@S

ntr —

<O

nou’

(4.12)

4.3. Whiteley means

Let x be a positive real n-tuple, s € R (s#0) and r € N. Then, the sth function of degree r is
defined by the following generating function (see [6, pages 341-344]):

- H(1+xit)s, s>0,
3= o (4.13)
r=0 [Ta-=xt)°, s<o.

i=1

The Whiteley mean is now defined by

<t7[1r5](x)>1r s> 0
er,S] (.X') — (wLT,S] (x))l/r — ( ° ) (414)



10 Journal of Inequalities and Applications

For s < 0, the Whiteley mean can be further generalized if we slightly change the definition of
[T,S] 1 [1’,0'] .
t,”" (x) and define h,, "' (x) as follows:

[e/e] n 1
W =T]——, (4.15)
rz::o 11:1[ (1-xt)”
whereo = (0y,...,0,); 0 €Ry; i=1,...,n. The following generalization of the Whiteley mean
for s < 0 is defined by (see [7, Lemma 2.3])

[r,0] 1/r
HIol () = (%) . (4.16)

If we denote by y a measure on the simplex A,_1 = {(uy,...,u,) : u; 20,i =1,...,n—
1, > u; <1} such that

(Zz 101 o,l
du(u) = I )H duy -+ duy, (4.17)

where u, = 1 - X", then we have y as a probability measure and we can also write the mean
Je,[f ](x) in integral form as follows:

n r 1/r
Je}[{,cr] (x) = <fA <Z xi“i) dﬂ(u)) . (4.18)
n-1 \ i=1

Finally, just as we did above in this investigation, we can develop the following analogous
definition:
1/(r-1)

10— s (7Y o) - () ()
T(T—S) ( )(x ‘H) ( so]) (x #)

A simple consequence of Theorem 3.4 is the following result.

570 (X 1) =

, l#r#s, LreN. (4.19)

Theorem 4.4. Let t,r,u,v € N, such that, t <v, r <u. Then for (4.19), we have
ntr < ou (4.20)
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