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Wiegerinck has shown that a separately subharmonic function need not be subharmonic.
Improving previous results of Lelong, Avanissian, Arsove, and of us, Armitage and Gardiner gave
an almost sharp integrability condition which ensures a separately subharmonic function to be
subharmonic. Completing now our recent counterparts to the cited results of Lelong, Avanissian
and Arsove for so-called quasi-nearly subharmonic functions, we present a counterpart to the
cited result of Armitage and Gardiner for separately quasinearly subharmonic function. This
counterpart enables us to slightly improve Armitage’s and Gardiner’s original result, too. The
method we use is a rather straightforward and technical, but still by no means easy, modification
of Armitage’s and Gardiner’s argument combined with an old argument of Domar.
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1. Introduction

1.1. Previous results

Solving a long standing problem, Wiegerinck [1, Theorem, page 770], see also Wiegerinck
and Zeinstra [2, Theorem 1, page 246], showed that a separately subharmonic function need
not be subharmonic. On the other hand, Armitage and Gardiner [3, Theorem 1, page 256]
showed that a separately subharmonic function u in a domain Ω in R

m+n, m ≥ n ≥ 2, is
subharmonic provided φ(log+u+) is locally integrable inΩ, where φ : [0,+∞) → [0,+∞) is an
increasing function such that

∫+∞

1
s(n−1)/(m−1)(φ(s))−1/(m−1)

ds < +∞. (1.1)

Armitage’s and Gardiner’s result includes the previous results of Lelong [4, Theorem 1,
page 315], of Avanissian [5, Theorem 9, page 140], see also [6, Proposition 3, page 24], and
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[7, Theorem, page 31], of Arsove [8, Theorem 1, page 622], and of us [9, Theorem 1, page
69]. Though Armitage’s and Gardiner’s result is almost sharp, it is, nevertheless, based on
Avanissian’s result, or, alternatively, on the more general results of Arsove and us, see [10].

In [10, Proposition 3.1; Theorem 3.1, Corollary 3.1, Corollary 3.2, Corollary 3.3; pages
57–63], we have extended the cited results of Lelong, Avanissian, Arsove, and us to the
so-called quasi-nearly subharmonic functions. The purpose of this paper is to extend also
Armitage’s and Gardiner’s result to this more general setup. This is done in Theorem 4.1
below. With the aid of this extension, we will also obtain a refinement to Armitage’s and
Gardiner’s result in their classical case, that is for separately subharmonic functions, see
Corollary 4.5 below. The method of proof will be a rather straightforward and technical, but
still by nomeans easy, modification of Domar’s andArmitage’s and Gardiner’s argument, see
[11, Lemma 1, pages 431-432 and 430] and [3, proof of Proposition 2, pages 257–259, proof of
Theorem 1, pages 258-259].

Notation

Our notation is rather standard, see, for example, [7, 10, 12]. mN is the Lebesgue measure
in the Euclidean space R

N , N ≥ 2. We write νN for the Lebesgue measure of the unit ball
BN(0, 1) in R

N , thus νN = mN(BN(0, 1)). D is a domain of R
N . The complex space C

n is
identified with the real space R

2n, n ≥ 1. Constants will be denoted by C and K. They will be
nonnegative and may vary from line to line.

2. Quasi-nearly subharmonic functions

2.1. Nearly subharmonic functions

We recall that an upper semicontinuous function u : D → [−∞,+∞) is subharmonic if for all
BN(x, r) ⊂ D,

u(x) ≤ 1
νNrN

∫
BN(x,r)

u(y)dmN(y). (2.1)

The function u ≡ −∞ is considered subharmonic.
We say that a function u : D → [−∞,+∞) is nearly subharmonic, if u is Lebesgue

measurable, u+ ∈ L1
loc(D), and for all BN(x, r) ⊂ D,

u(x) ≤ 1
νNrN

∫
BN(x,r)

u(y)dmN(y). (2.2)

Observe that in the standard definition of nearly subharmonic functions, one uses the slightly
stronger assumption that u ∈ L1

loc(D), see, for example, [7, page 14]. However, our above
slightly more general definition seems to be more useful, see [10, Proposition 2.1(iii) and
Proposition 2.2(vi) and (vii), pages 54-55].

2.2. Quasi-nearly subharmonic functions

A Lebesgue measurable function u : D → [−∞,+∞) is K-quasi-nearly subharmonic, if u+ ∈
L1

loc(D) and if there is a constant K = K(N,u,D) ≥ 1 such that for all BN(x, r) ⊂ D,

uM(x) ≤ K

νNrN

∫
BN(x,r)

uM(y)dmN(y) (2.3)
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for all M ≥ 0, where uM := sup{u,−M} + M. A function u : D → [−∞,+∞) is quasi-nearly
subharmonic, if u is K-quasi-nearly subharmonic for some K ≥ 1.

A Lebesgue measurable function u : D → [−∞,+∞) is K-quasi-nearly subharmonic n.s.
(in the narrow sense), if u+ ∈ L1

loc(D) and if there is a constant K = K(N,u,D) ≥ 1 such that

for all BN(x, r) ⊂ D,

u(x) ≤ K

νNrN

∫
BN(x,r)

u(y)dmN(y). (2.4)

A function u : D → [−∞,+∞) is quasi-nearly subharmonic n.s., if u is K-quasi-nearly
subharmonic n.s. for some K ≥ 1.

Quasi-nearly subharmonic functions (perhaps with a different terminology, and
sometimes in certain special cases), or the corresponding generalized mean value inequality
(2.4), have previously been considered at least in [9, 10, 12–24]. For properties of mean
values in general, see, for example, [25]. We recall here only that this function class includes,
among others, subharmonic functions, and, more generally, quasisubharmonic and nearly
subharmonic functions (for the definitions of these, see above and, e.g., [4, 5, 7]), also
functions satisfying certain natural growth conditions, especially certain eigenfunctions, and
polyharmonic functions. Also, the class of Harnack functions is included, thus, among others,
nonnegative harmonic functions as well as nonnegative solutions of some elliptic equations.
In particular, the partial differential equations associated with quasiregular mappings belong
to this family of elliptic equations, see Vuorinen [26]. Observe that already Domar [11, page
430] has pointed out the relevance of the class of (nonnegative) quasi-nearly subharmonic
functions. For, at least partly, an even more general function class, see Domar [27].

For examples and basic properties of quasi-nearly subharmonic functions, see the
above references, especially Pavlović and Riihentaus [16], and Riihentaus [10]. For the sake
of convenience of the reader we recall the following.

(i) A K-quasi-nearly subharmonic function n.s. is K-quasi-nearly subharmonic, but
not necessarily conversely.

(ii) A nonnegative Lebesgue measurable function is K-quasi-nearly subharmonic if
and only if it is K-quasi-nearly subharmonic n.s.

(iii) A Lebesgue measurable function is 1-quasi-nearly subharmonic if and only if it is
1-quasi-nearly subharmonic n.s. and if and only if it is nearly subharmonic (in the
sense defined above).

(iv) If u : D → [−∞,+∞) is K1-quasi-nearly subharmonic and v : D → [−∞,+∞) is
K2-quasi-nearly subharmonic, then sup{u, v} is sup{K1, K2}-quasi-nearly subhar-
monic in D. Especially, u+ := sup{u, 0} is K1-quasi-nearly subharmonic in D.

(v) Let F be a family of K-quasi-nearly subharmonic (resp., K-quasi-nearly subhar-
monic n.s.) functions in D and let w := supu∈Fu. If w is Lebesgue measurable
and w+ ∈ L1

loc(D), then w is K-quasi-nearly subharmonic (resp., K-quasi-nearly
subharmonic n.s.) in D.

(vi) If u : D → [−∞,+∞) is quasi-nearly subharmonic n.s., then either u ≡ −∞ or u is
finite almost everywhere in D, and u ∈ L1

loc(D).
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3. Lemmas

3.1. The first lemma

The following result and its proof are essentially due to Domar [11, Lemma 1, pages 431-432
and 430]. We state the result, however, in a more general form, at least seemingly. See also [3,
page 258].

Lemma 3.1. Let K ≥ 1. Let φ : [0,+∞) → [0,+∞) be an increasing (strictly or not) function for
which there exist s0, s1 ∈ N, s0 < s1, such that φ(s) > 0 and

2Kφ
(
s − s0

) ≤ φ(s) (3.1)

for all s ≥ s1. Let u : D → [0,+∞) be a K-quasi-nearly subharmonic function. Suppose that

u
(
xj

) ≥ φ(j) (3.2)

for some xj ∈ D, j ≥ s1. If

Rj ≥
(
2K
νN

)1/N[φ(j + 1)
φ(j)

mN

(
Aj

)]1/N
, (3.3)

where

Aj :=
{
x ∈ D : φ

(
j − s0

) ≤ u(x) < φ(j + 1)
}
, (3.4)

then either BN(xj , Rj) ∩ (RN \D) /= ∅ or there is xj+1 ∈ BN(xj , Rj) such that

u(xj+1) ≥ φ(j + 1). (3.5)

Proof. Choose

Rj ≥
(
2K
νN

)1/N[φ(j + 1)
φ(j)

mN

(
Aj

)]1/N
, (3.6)

and suppose that BN(xj , Rj) ⊂ D. Suppose on the contrary that u(x) < φ(j + 1) for all x ∈
BN(xj , Rj). Using theassumption (2.3) (or (2.4))we see that

φ(j) ≤ u
(
xj

)

≤ K

νNRN
j

∫
BN(xj ,Rj )

u(x)dmN(x)

≤ K

νNRN
j

∫
BN(xj ,Rj )∩Aj

u(x)dmN(x) +
K

νNRN
j

∫
BN(xj ,Rj )\Aj

u(x)dmN(x)

<

[
KmN

(
BN
(
xj , Rj

) ∩Aj

)
νNRN

j

φ(j + 1)
φ(j)

+
KmN

(
BN
(
xj , Rj

) \Aj

)
νNRN

j

φ
(
j − s0

)
φ(j)

]
φ(j)

< φ(j),

(3.7)

a contradiction.
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3.2. The second lemma

The next lemma is a slightly generalized version of Armitage’s and Gardiner’s result [3,
Proposition 2, page 257]. The proof of our refinement is—as already pointed out—a rather
straightforwardmodification of Armitage’s and Gardiner’s argument [3, proof of Proposition
2, pages 257–259].

Lemma 3.2. Let K ≥ 1. Let ϕ : [0,+∞) → [0,+∞) and ψ : [0,+∞) → [0,+∞) be increasing
functions for which there exist s0, s1 ∈ N, s0 < s1, such that

(i) the inverse functions ϕ−1 and ψ−1 are defined on [inf{ϕ(s1 − s0), ψ(s1 − s0)},+∞),

(ii) 2K(ψ−1 ◦ ϕ)(s − s0) ≤ (ψ−1 ◦ ϕ)(s) for all s ≥ s1,

(iii)
∑+∞

j=s1+1[((ψ
−1 ◦ ϕ)(j + 1)/(ψ−1 ◦ ϕ)(j))(1/ϕ(j − s0))]

1/(N−1)
< +∞.

Let u : D → [0,+∞) be a K-quasi-nearly subharmonic function. Let s̃1 ∈ N, s̃1 ≥ s1, be arbitrary.
Then for each x ∈ D and r > 0 such that BN(x, r) ⊂ D either

u(x) ≤ (ψ−1 ◦ ϕ)(s̃1 + 1
)

(3.8)

or

Φ
(
u(x)

) ≤ C

rN

∫
BN(x,r)

ψ
(
u(y)

)
dmN(y), (3.9)

where C = C(N,K, s0) and Φ : [s2,+∞) → [0,+∞),

Φ(t) :=

⎛
⎝+∞∑

j=j0

[(
ψ−1 ◦ ϕ)(j + 1)(
ψ−1 ◦ ϕ)(j)

1
ϕ
(
j − s0

)
]1/(N−1)⎞

⎠
1−N

, (3.10)

and j0 ∈ {s1 + 1, s1 + 2, . . .} is such that
(
ψ−1 ◦ ϕ)(j0) ≤ t <

(
ψ−1 ◦ ϕ)(j0 + 1

)
, (3.11)

and s2 := (ψ−1 ◦ ϕ)(s1 + 1).

Proof. Take x ∈ D and r > 0 arbitrarily such that BN(x, r) ⊂ D. We may suppose that u(x) >
(ψ−1 ◦ ϕ)(s̃1 + 1). Since ϕ and ψ are increasing and (ψ−1 ◦ ϕ)(s) → +∞ as s → +∞, there is an
integer j0 ≥ s̃1 + 1 such that

(
ψ−1 ◦ ϕ)(j0) ≤ u(x) <

(
ψ−1 ◦ ϕ)(j0 + 1

)
. (3.12)

Write xj0 := x, D0 := BN(xj0 , r) and for each j ≥ j0,

Aj :=
{
y ∈ D0 :

(
ψ−1 ◦ ϕ)(j − s0

) ≤ u(y) <
(
ψ−1 ◦ ϕ)(j + 1)

}
,

Rj :=
(
2K
νN

)1/N
[(

ψ−1 ◦ ϕ)(j + 1)(
ψ−1 ◦ ϕ)(j) mN

(
Aj

)]1/N
.

(3.13)
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If BN(xj0 , Rj0) ∩ (RN \D0) /= ∅, then clearly

r < Rj0 ≤
+∞∑
k=j0

Rk. (3.14)

On the other hand, if BN(xj0 , Rj0) ⊂ D0, then by Lemma 3.1 (where now

φ(s) =

⎧⎪⎨
⎪⎩

(
ψ−1 ◦ ϕ)(s), when s ≥ s1 − s0,

s

s1 − s0
φ
(
s1 − s0

)
, when 0 ≤ s < s1 − s0,

(3.15)

say), there is xj0+1 ∈ BN(xj0 , Rj0) such that u(xj0+1) ≥ (ψ−1 ◦ ϕ)(j0 + 1).
Suppose that for k = j0, j0 + 1, . . . , j,

BN
(
xk, Rk

) ⊂ D0, xk+1 ∈ BN
(
xk, Rk

)
(
this for k = j0, j0 + 1, . . . , j − 1

)
, u

(
xk

) ≥ (ψ−1 ◦ ϕ)(k). (3.16)

By Lemma 3.1 there is then xj+1 ∈ BN(xj , Rj) such that u(xj+1) ≥ (ψ−1 ◦ ϕ)(j + 1). Since
u is locally bounded above and (ψ−1 ◦ ϕ)(k) → +∞ as k → +∞, we may suppose that
BN(xj+1, Rj+1) ∩ (RN \D0) /= ∅. But then,

r < dist
(
xj0 , xj0+1

)
+ dist

(
xj0+1, xj0+2

)
+ · · · + dist

(
xj , xj+1

)
+ dist

(
xj+1,R

N \D0
)
, (3.17)

thus

r < Rj0 + Rj0+1 + · · · + Rj + Rj+1 ≤
+∞∑
k=j0

Rk. (3.18)

Using, for j = j0 − s0, j0 + 1 − s0, . . ., the notation

aj :=
{
y ∈ D0 :

(
ψ−1 ◦ ϕ)(j) ≤ u(y) <

(
ψ−1 ◦ ϕ)(j + 1)

}
, (3.19)

we get from (3.18)

r <
+∞∑
k=j0

(
2K
νN

)1/N
[(

ψ−1 ◦ ϕ)(k + 1)(
ψ−1 ◦ ϕ)(k) mN

(
Ak

)]1/N

<

(
2K
νN

)1/N +∞∑
k=j0

⎛
⎝
[(

ψ−1 ◦ ϕ)(k + 1)(
ψ−1 ◦ ϕ)(k)

1
ϕ
(
k − s0

)
]1/N[

ϕ
(
k − s0

)
mN

(
Ak

)]1/N
⎞
⎠

<

(
2K
νN

)1/N
⎛
⎝ +∞∑

k=j0

[(
ψ−1 ◦ ϕ)(k + 1)(
ψ−1 ◦ ϕ)(k)

1
ϕ
(
k − s0

)
]1/(N−1)⎞

⎠
(N−1)/N[

+∞∑
k=j0

ϕ
(
k − s0

)
mN

(
Ak

)]1/N
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<

(
2K
νN

)1/N
⎛
⎝ +∞∑

k=j0

[(
ψ−1 ◦ ϕ)(k + 1)(
ψ−1 ◦ ϕ)(k)

1
ϕ
(
k − s0

)
]1/(N−1)⎞

⎠
(N−1)/N

×
[

+∞∑
k=j0

∫
Ak

ψ
(
u(y)

)
dmN(y)

]1/N

<

(
2K
νN

)1/N
⎛
⎝ +∞∑

k=j0

[(
ψ−1 ◦ ϕ)(k + 1)(
ψ−1 ◦ ϕ)(k)

1
ϕ
(
k − s0

)
]1/(N−1)⎞

⎠
(N−1)/N

×
(

+∞∑
k=j0

[
k∑

j=k−s0

∫
aj

ψ
(
u(y)

)
dmN(y)

])1/N

<

[2(s0 + 1
)
K

νN

]1/N⎛⎝ +∞∑
k=j0

[(
ψ−1 ◦ ϕ)(k + 1)(
ψ−1 ◦ ϕ)(k)

1
ϕ
(
k − s0

)
]1/(N−1)⎞

⎠
(N−1)/N

×
[∫

D0

ψ
(
u(y)

)
dmN(y)

]1/N
.

(3.20)

Thus,

Φ
(
u(x)

) ≤ C

rN

∫
D0

ψ
(
u(y)

)
dmN(y), (3.21)

where C = C(N,K, s0) and Φ : [s2,+∞) → [0,+∞),

Φ(t) :=

⎛
⎝ +∞∑

k=j0

[(
ψ−1 ◦ ϕ)(k + 1)(
ψ−1 ◦ ϕ)(k)

1
ϕ
(
k − s0

)
]1/(N−1)⎞

⎠
1−N

, (3.22)

where j0 ∈ {s1 + 1, s1 + 2, . . .} is such that

(
ψ−1 ◦ ϕ)(j0) ≤ t <

(
ψ−1 ◦ ϕ)(j0 + 1

)
, (3.23)

and s2 = (ψ−1 ◦ ϕ)(s1 + 1).
The function Φmay be extended to the whole interval [0,+∞), as follows:

Φ(t) :=

⎧⎪⎨
⎪⎩
Φ(t), when t ≥ s2,

t

s2
Φ
(
s2
)
, when 0 ≤ t < s2.

(3.24)

Remark 3.3. Write s3 := sup{s1+3, (ψ−1◦ϕ)(s1+3)}, say. (Wemay suppose that s3 is an integer.)
Suppose, that in addition to the assumptions (i), (ii), (iii) of Lemma 3.2, also the following
assumption is satisfied:
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(iv) the function

[
s1 + 1,+∞) � s �−→

(
ψ−1 ◦ ϕ)(s + 1)(
ψ−1 ◦ ϕ)(s)

1
ϕ
(
s − s0

) ∈ R (3.25)

is decreasing.

Then, one can replace the function Φ | [s3,+∞) by the function Φ1 | [s3,+∞), where Φ1 =
Φϕ,ψ

1 : [0,+∞) → [0,+∞),

Φϕ,ψ

1 (t) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎝
∫+∞

(ϕ−1◦ψ)(t)−2

[(
ψ−1 ◦ ϕ)(s + 1)(
ψ−1 ◦ ϕ)(s)

1
ϕ
(
s − s0

)
]1/(N−1)

ds

⎞
⎠

1−N

, when t ≥ s3,

t

s3
Φϕ,ψ

1

(
s3
)
, when 0 ≤ t < s3.

(3.26)

Similarly, if the function

[
s1 + 1,+∞) � s �−→

(
ψ−1 ◦ ϕ)(s + 1)(
ψ−1 ◦ ϕ)(s) ∈ R (3.27)

is bounded, then in Lemma 3.2, one can replace the function Φ | [s3,+∞) by the function
Φ2 | [s3,+∞), where Φ2 = Φϕ,ψ

2 : [0,+∞) → [0,+∞),

Φϕ,ψ

2 (t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[∫+∞

(ϕ−1◦ψ)(t)−2

ds

ϕ
(
s − s0

)1/(N−1)

]1−N
, when t ≥ s3,

t

s3
Φϕ,ψ

2

(
s3
)
, when 0 ≤ t < s3.

(3.28)

4. The condition

4.1. A counterpart to Armitage’s and Gardiner’s result

Next, we propose a counterpart to Armitage’s and Gardiner’s result [3, Theorem 1, page 256]
for quasi-nearly subharmonic functions. The proof below follows Armitage’s and Gardiner’s
argument [3, proof of Theorem 1, pages 258-259], but is, at least formally, more general.
Compare also Corollary 4.5 below.

Theorem 4.1. Let Ω be a domain in R
m+n, m ≥ n ≥ 2, and let K ≥ 1. Let u : Ω → [−∞,+∞) be a

Lebesgue measurable function. Suppose that the following conditions are satisfied.

(a) For each y ∈ R
n the function

Ω(y) � x �−→ u(x, y) ∈ [−∞,+∞) (4.1)

is K-quasi-nearly subharmonic.
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(b) For each x ∈ R
m the function

Ω(x) � y �−→ u(x, y) ∈ [−∞,+∞) (4.2)

is K-quasi-nearly subharmonic.

(c) There are increasing functions ϕ : [0,+∞) → [0,+∞) and ψ : [0,+∞) → [0,+∞) and
s0, s1 ∈ N, s0 < s1, such that

(c1) the inverse functions ϕ−1 and ψ−1 are defined on [inf{ϕ(s1 − s0), ψ(s1 − s0)},+∞),

(c2) 2K(ψ−1 ◦ ϕ)(s − s0) ≤ (ψ−1 ◦ ϕ)(s) for all s ≥ s1,

(c3) the function

[
s1 + 1,+∞) � s �−→

(
ψ−1 ◦ ϕ)(s + 1)(
ψ−1 ◦ ϕ)(s) ∈ R (4.3)

is bounded,

(c4)
∫+∞
s1

(s(n−1)/(m−1)/ϕ(s − s0)
1/(m−1))ds < +∞,

(c5) ψ ◦ u+ ∈ L1
loc(Ω).

Then, u is quasi-nearly subharmonic in Ω.

Proof. Recall that s3 = sup{s1+3, (ψ−1◦ϕ)(s1+3)} and write s4 := sup{s3+s0, (ϕ−1◦ψ)(s1+3)},
s5 := s4 + s0, say. Clearly, s0 < s1 < s3 < s4 < s5. (We may suppose that s3, s4, and s5 are
integers.) One may replace u by sup{u+,M}, where M = sup{s5 + 3, (ψ−1 ◦ ϕ)(s4 + 3), (ϕ−1 ◦
ψ)(s4 + 3)}, say. We continue to denote uM by u.

Take (x0, y0) ∈ Ω and r > 0 arbitrarily such that Bm(x0, 2r) × Bn(y0, 2r) ⊂ Ω. By
[10, Proposition 3.1, page 57] (that is by a counterpart to [9, Theorem 1, page 69], say), it
is sufficient to show that u is bounded above in Bm(x0, r) × Bn(y0, r).

Take (ξ, η) ∈ Bm(x0, r) × Bn(y0, r) arbitrarily. In order to apply Lemma 3.2 to the K-
quasi-nearly subharmonic function u(·, η) in Bm(ξ, r) check that the assumptions are satisfied.
Since (i) and (ii) are satisfied, it remains to show that

+∞∑
j=s1+1

[(
ψ−1 ◦ ϕ)(j + 1)(
ψ−1 ◦ ϕ)(j)

1
ϕ(j − s0)

]1/(m−1)
< +∞. (4.4)

Because of the assumption (c3), it is sufficient to show that

+∞∑
j=s1+1

1

ϕ
(
j − s0

)1/(m−1) < +∞. (4.5)

This is of course easy:

+∞∑
j=s1+1

1

ϕ
(
j − s0

)1/(m−1) ≤
∫+∞

s1

ds

ϕ
(
s − s0

)1/(m−1) ≤
∫+∞

s1

s(n−1)/(m−1)

ϕ
(
s − s0

)1/(m−1) ds < +∞. (4.6)
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We know that u(ξ, η) ≥ s4. Therefore it follows from Lemma 3.2 and Remark 3.3 that

Φϕ,ψ

2

(
u(ξ, η)

)
=

[∫+∞

(ϕ−1◦ψ)(u(ξ,η))−2

ds

ϕ
(
s − s0

)1/(m−1)

]1−m

≤ C

rm

∫
Bm(ξ,r)

ψ
(
u(x, η)

)
dmm(x),

(4.7)

where Φϕ,ψ

2 is defined above in (3.28).
Take then the integral mean values of both sides of (4.7) over Bn(η, r):

C

rn

∫
Bn(η,r)

Φϕ,ψ

2

(
u(ξ, y)

)
dmn(y) ≤ C

rn

∫
Bn(η,r)

[
C

rm

∫
Bm(ξ,r)

ψ
(
u(x, y)

)
dmm(x)

]
dmn(y)

≤ C

rm+n

∫
Bm(ξ,r)×Bn(η,r)

ψ
(
u(x, y)

)
dmm+n(x, y)

≤ C

rm+n

∫
Bm(x0,2r)×Bn(y0,2r)

ψ
(
u(x, y)

)
dmm+n(x, y).

(4.8)

In order to apply Lemma 3.2 (and Remark 3.3) once more, define ψ1 : [0,+∞) →
[0,+∞), ψ1(t) := Φϕ,ψ

2 (t), and ϕ1 : [0,+∞) → [0,+∞),

ϕ1(t) :=

⎧⎪⎨
⎪⎩

t

s3
ψ1
((
ψ−1 ◦ ϕ)(s3)) = t

s3
Φϕ,ψ

2

(
ψ−1(ϕ(s3))), when 0 ≤ t < s3,

ψ1
((
ψ−1 ◦ ϕ)(t)) = Φϕ,ψ

2

(
ψ−1(ϕ(t))), when t ≥ s3.

(4.9)

It is straightforward to see that both ψ1 and ϕ1 are strictly increasing and continuous. Observe
also that for t ≥ s4, say,

ϕ1(t) = Φϕ,ψ

2

((
ψ−1 ◦ ϕ)(t))

=

[∫+∞

(ϕ−1◦ψ)((ψ−1◦ϕ)(t))−2

ds

ϕ
(
s − s0

)1/(m−1)

]1−m

=

[∫+∞

t−2

ds

ϕ
(
s − s0

)1/(m−1)

]1−m
.

(4.10)

Check then that the assumptions of Lemma 3.2 (and Remark 3.3) are fullfilled for ϕ1

and ψ1. Write s̃0 := s0 and s̃1 := s4. The assumption (i) is clearly satisfied. We know that for
all s ≥ s3,

ϕ1(t) = ψ1
((
ψ−1 ◦ ϕ)(t))⇐⇒ (

ψ−1
1 ◦ ϕ1

)
(t) =

(
ψ−1 ◦ ϕ)(t). (4.11)

Thus the assumption (ii) is surely satisfied for s ≥ s̃1 = s4. It remains to show that

+∞∑
j=s4+1

[(
ψ−1
1 ◦ ϕ1

)
(j + 1)(

ψ−1
1 ◦ ϕ1

)
(j)

1
ϕ1
(
j − s0

)
]1/(n−1)

< +∞, (4.12)
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say. It is surely sufficient to show that

∫+∞

s5+s0+2

ds

ϕ1
(
s − s0

)1/(n−1) < +∞. (4.13)

Define F : [s5,+∞) × [s5 + s0 + 2,+∞) → [0,+∞),

F(s, t) :=

⎧⎨
⎩
0, when s5 ≤ s < t − s0 − 2,

ϕ
(
s − s0

)−1/(m−1)
, when s5 + s0 + 2 ≤ t − s0 − 2 ≤ s.

(4.14)

Suppose that m > n and write p = (m − 1)/(n − 1). Using Minkowski’s inequality, see,
for example, [28, page 14], one obtains, with the aid of (4.10),

[∫+∞

s5+s0+2

dt

ϕ1
(
t − s0

)1/(n−1)
](n−1)/(m−1)

=

⎡
⎢⎣
∫+∞

s5+s0+2

⎛
⎝
[∫+∞

t−s0−2

ds

ϕ
(
s − s0

)1/(m−1)

]1−m⎞
⎠

−1/(n−1)

dt

⎤
⎥⎦

(n−1)/(m−1)

=

⎛
⎝
∫+∞

s5+s0+2

[∫+∞

t−s0−2

ds

ϕ
(
s − s0

)1/(m−1)

](m−1)/(n−1)
dt

⎞
⎠

(n−1)/(m−1)

=

(∫+∞

s5+s0+2

[∫+∞

s5

F(s, t)ds
](m−1)/(n−1)

dt

)(n−1)/(m−1)

≤
∫+∞

s5

[∫+∞

s5+s0+2
F(s, t)(m−1)/(n−1)dt

](n−1)/(m−1)
ds

≤
∫+∞

s5

[∫s+s0+2

s5+s0+2

dt

ϕ
(
s − s0

)1/(n−1)
](n−1)/(m−1)

ds

≤
∫+∞

s5

[(
s + s0 + 2

) − (s5 + s0 + 2
)](n−1)/(m−1)

ϕ
(
s − s0

)1/(m−1) ds

≤
∫+∞

s5

(
s − s5

)(n−1)/(m−1)

ϕ
(
s − s0

)1/(m−1) ds

≤
∫+∞

s5

s(n−1)/(m−1)

ϕ
(
s − s0

)1/(m−1)ds < +∞.

(4.15)

The case m = n is considered similarly, just replacing Minkowski’s inequality with
Fubini’s theorem.
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Now, we can apply Lemma 3.2 (and Remark 3.3) to the left hand side of (4.8). Recall
that s̃0 = s0, s̃1 = s4, s̃3 := sup{s̃1 + 3, (ψ−1

1 ◦ ϕ1)(s̃1 + 3)}, and s̃4 := sup{s̃3 + s̃0, (ϕ−1
1 ◦ ψ1)(s̃1 +

3)}. (Here and below, in the previous definitions just replace the functions ϕ and ψ with the
functions ϕ1 and ψ1, resp.) Write moreover s∗4 := sup{s̃4, (ψ−1 ◦ ϕ)(s4)}, say. Since u(ξ, η) ≥
M ≥ s∗4 ≥ s̃4 for all (ξ, η) ∈ Bm(x0, r) × Bn(y0, r), we obtain, using (4.8):

Φϕ1,ψ1

2

(
u(ξ, η)

)
=

[∫+∞

(ϕ−1
1 ◦ψ1)(u(ξ,η))−2

ds

ϕ1
(
s − s0

)1/(n−1)
]1−n

≤ C

rn

∫
Bn(η,r)

Φϕ,ψ

2

(
u(ξ, y)

)
dmn(y)

≤ C

rm+n

∫
Bm(x0,2r)×Bn(y0,2r)

ψ
(
u(x, y)

)
dmm+n(x, y).

(4.16)

From (4.16), from the facts that (ϕ−1
1 ◦ ψ1)(t) = (ϕ−1 ◦ ψ)(t) → +∞ as t → +∞, from

(4.13), and from the fact that

∫
Bm(x0,2r)×Bn(y0,2r)

ψ
(
u(x, y)

)
dmm+n(x, y) < +∞, (4.17)

one sees that u must be bounded above in Bm(x0, r) × Bn(y0, r), concluding the proof.

Corollary 4.2. Let Ω be a domain in R
m+n, m ≥ n ≥ 2, and let K ≥ 1. Let u : Ω → [−∞,+∞) be a

Lebesgue measurable function. Suppose that the following conditions are satisfied.

(a) For each y ∈ R
n the function

Ω(y) � x �−→ u(x, y) ∈ [−∞,+∞) (4.18)

is K-quasi-nearly subharmonic.

(b) For each x ∈ R
m the function

Ω(x) � y �−→ u(x, y) ∈ [−∞,+∞) (4.19)

is K-quasi-nearly subharmonic.

(c) There is a strictly increasing surjection ϕ : [0,+∞) → [0,+∞) such that

(c1)
∫+∞
s0+1

(s(n−1)/(m−1)/ϕ(s − s0)
1/(m−1))ds < +∞ for some s0 ∈ N,

(c2) ϕ(log+u+) ∈ L1
loc(Ω).

Then, u is quasi-nearly subharmonic in Ω.

Proof. Just choose ψ = ϕ ◦ log+ and apply Theorem 4.1.

Remark 4.3. One sees easily that the condition (c1) (or (c4) above) can be replaced by the
condition

(c1′)
∫+∞
1 (s(n−1)/(m−1)/ϕ(s)1/(m−1))ds < +∞.
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Corollary 4.4. Let Ω be a domain in R
m+n, m ≥ n ≥ 2, and let K ≥ 1. Let u : Ω → [−∞,+∞) be a

Lebesgue measurable function. Suppose that the following conditions are satisfied.

(a) For each y ∈ R
n the function

Ω(y) � x �−→ u(x, y) ∈ [−∞,+∞) (4.20)

is K-quasi-nearly subharmonic.

(b) For each x ∈ R
m the function

Ω(x) � y �−→ u(x, y) ∈ [−∞,+∞) (4.21)

is K-quasi-nearly subharmonic.

(c) There is a strictly increasing surjection ϕ : [0,+∞) → [0,+∞) such that

(c1)
∫+∞
s0+1

(s(n−1)/(m−1)/ϕ(s − s0)
1/(m−1))ds < +∞ for some s0 ∈ N,

(c2) ϕ(log(1 + (u+)r)) ∈ L1
loc(Ω) for some r > 0.

Then, u is quasi-nearly subharmonic in Ω.

Proof. It is easy to see that the assumptions of Theorem 4.1 are satisfied. We leave the details
to the reader.

4.2. A refinement to Armitage’s and Gardiner’s result

Next is our slight improvement to Armitage’s and Gardiner’s original result.

Corollary 4.5. Let Ω be a domain in R
m+n, m ≥ n ≥ 2. Let u : Ω → [−∞,+∞) be such that the

following conditions are satisfied.

(a) For each y ∈ R
n the function

Ω(y) � x �−→ u(x, y) ∈ [−∞,+∞) (4.22)

is subharmonic.

(b) For each x ∈ R
m the function

Ω(x) � y �−→ u(x, y) ∈ [−∞,+∞) (4.23)

is subharmonic.

(c) There is a strictly increasing surjection ϕ : [0,+∞) → [0,+∞) such that

(c1)
∫+∞
1 (s(n−1)/(m−1)/ϕ(s)1/(m−1))ds < +∞,

(c2) ϕ(log+[(u+)r]) ∈ L1
loc(Ω) for some r > 0.

Then, u is subharmonic in Ω.

Proof. By [10, Proposition 2.2(v), (vi), page 55], see also [12, Lemma 2.1, page 32] or [19,
Theorem, page 188], (u+)r satisfies the assumptions of Corollary 4.2, thus (u+)r is quasi-nearly
subharmonic in Ω, and therefore, for example, by [10, Proposition 2.2(iii), page 55] locally
bounded above. Hence, also u is locally bounded above, and thus subharmonic in Ω, by [9,
Theorem 1, page 69], say.
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[16] M. Pavlović and J. Riihentaus, “Classes of quasi-nearly subharmonic functions,” Potential Analysis,

vol. 29, no. 1, pp. 89–104, 2008.
[17] Y. Mizuta, Potential Theory in Euclidean Spaces, vol. 6 of GAKUTO International Series. Mathematical

Sciences and Applications, Gakkōtosho, Tokyo, Japan, 1996.
[18] J. Riihentaus, “Subharmonic functions: non-tangential and tangential boundary behavior,” in Function

Spaces, Differential Operators and Nonlinear Analysis, V. Mustonen and J. Rákosnik, Eds., pp. 229–238,
Academy of Sciences of the Czech Republic, Prague, Czech Republic, 2000.

[19] J. Riihentaus, “A generalized mean value inequality for subharmonic functions,” Expositiones
Mathematicae, vol. 19, no. 2, pp. 187–190, 2001.

[20] J. Riihentaus, “A generalized mean value inequality for subharmonic functions and applications,”
preprint, 2003, http://arxiv.org/abs/math.CA/0302261.

[21] J. Riihentaus, “Weighted boundary behavior and nonintegrability of subharmonic functions,” in
Proceedings of the International Conference on Education and Information Systems: Technologies and
Applications (EISTA ’04), M. Chang, Y.-T. Hsia, F. Malpica, M. Suarez, A. Tremante, and F. Welsch,
Eds., vol. 2, pp. 196–202, Orlando, Fla, USA, July 2004.

[22] J. Riihentaus, “Separately quasi-nearly subharmonic functions,” in Complex Analysis and Potential
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