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Let μ be a nonnegative Radon measure on R
d which only satisfies the following growth condition

that there exists a positive constant C such that μ(B(x, r)) ≤ Crn for all x ∈ R
d, r > 0 and

some fixed n ∈ (0, d]. In this paper, the authors prove that for suitable indexes ρ and λ, the
parametrized g∗

λ
function M∗,ρ

λ
is bounded on Lp(μ) for p ∈ [2,∞) with the assumption that the

kernel of the operator M∗,ρ
λ

satisfies some Hörmander-type condition, and is bounded from L1(μ)
into weak L1(μ)with the assumption that the kernel satisfies certain slightly stronger Hörmander-
type condition. As a corollary,M∗,ρ

λ
with the kernel satisfying the above stronger Hörmander-type

condition is bounded on Lp(μ) for p ∈ (1, 2). Moreover, the authors prove that for suitable indexes
ρ and λ,M∗,ρ

λ
is bounded from L∞(μ) into RBLO(μ) (the space of regular bounded lower oscillation

functions) if the kernel satisfies the Hörmander-type condition, and from the Hardy space H1(μ)
into L1(μ) if the kernel satisfies the above stronger Hörmander-type condition. The corresponding
properties for the parametrized area integral Mρ

S are also established in this paper.

Copyright q 2008 H. Lin and Y. Meng. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Let μ be a nonnegative Radon measure on R
d which only satisfies the following growth

condition that for all x ∈ R
d and all r > 0:

μ
(
B(x, r)

) ≤ C0r
n, (1.1)

where C0 and n are positive constants and n ∈ (0, d], and B(x, r) is the open ball centered
at x and having radius r. Such a measure μ may be nondoubling. We recall that a measure
μ is said to be doubling, if there is a positive constant C such that for any x ∈ supp(μ) and
r > 0, μ(B(x, 2r)) ≤ Cμ(B(x, r)). It is well known that the doubling condition on underlying
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measures is a key assumption in the classical theory of harmonic analysis. However, in
recent years, many classical results concerning the theory of Calderón-Zygmund operators
and function spaces have been proved still valid if the underlying measure is a nonnegative
Radon measure on R

d which only satisfies (1.1) (see [1–8]). The motivation for developing
the analysis with nondoubling measures and some examples of nondoubling measures can
be found in [9]. We only point out that the analysis with nondoubling measures played a
striking role in solving the long-standing open Painlevé’s problem by Tolsa in [10].

LetK be a μ-locally integrable function on R
d ×R

d \{(x, y) : x = y}. Assume that there
exists a positive constant C such that for any x, y ∈ R

d with x /=y,

∣
∣K(x, y)

∣
∣ ≤ C|x − y|−(n−1), (1.2)

and for any x, y, y′ ∈ R
d,

∫

|x−y|≥2|y−y′ |

[∣∣K(x, y) −K
(
x, y′)∣∣ +

∣∣K(y, x) −K
(
y′, x
)∣∣] 1

|x − y|dμ(x) ≤ C. (1.3)

The parametrized Marcinkiewicz integral Mρ(f) associated to the above kernel K and the
measure μ as in (1.1) is defined by

Mρ(f)(x) ≡
(∫∞

0

∣∣∣∣
1
tρ

∫

|x−y|≤t

K(x, y)
|x − y|1−ρ f(y)dμ(y)

∣∣∣∣

2dt

t

)1/2

, x ∈ R
d, (1.4)

where ρ ∈ (0,∞). The parametrized area integral Mρ

S and g∗
λ
function M∗,ρ

λ
are defined,

respectively, by

Mρ

S(f)(x) ≡
(∫∞

0

∫

|y−x|<t

∣∣∣∣
1
t ρ

∫

|y−z|≤t

K(y, z)
|y − z|1−ρ f(z)dμ(z)

∣∣∣∣

2dμ(y)dt
tn+1

)1/2

, x ∈ R
d, (1.5)

M∗,ρ
λ
(f)(x) ≡

{∫∫

R
d+1
+

(
t

t + |x − y|
)λn∣∣∣∣

1
tρ

∫

|y−z|≤t

K(y, z)
|y − z|1−ρ f(z)dμ(z)

∣∣∣∣

2dμ(y)dt
tn+1

}1/2
, x ∈ R

d,

(1.6)

where R
d+1
+ = {(y, t) : y ∈ R

d, t > 0}, ρ ∈ (0,∞), and λ ∈ (1,∞). It is easy to verify that if μ is
the d-dimensional Lebesgue measure in R

d, and

K(x, y) =
Ω(x − y)
|x − y|d−1 (1.7)

with Ω homogeneous of degree zero and Ω ∈ Lipα(S
d−1) for some α ∈ (0, 1], then K satisfies

(1.2) and (1.3). Under these conditions, Mρ in (1.4) is just the parametrized Marcinkiewicz
integral introduced byHörmander in [11], andMρ

S andM∗,ρ
λ

as in (1.5) and (1.6), respectively,
are the parametrized area integral and the parametrized g∗

λ function considered by Sakamoto
and Yabuta in [12]. We point out that the study of the Littlewood-Paley operators is motivated
by their important roles in harmonic analysis and PDE [13, 14]. Since the Littlewood-Paley
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operators of high dimension were first introduced by Stein in [15], a lot of papers focus on
these operators, among them we refer to [16–21] and their references.

When ρ = 1, the operator Mρ as in (1.4) is just the Marcinkiewicz integral with
nondoubling measures in [22], where the boundedness of such operator in Lebesgue spaces
and Hardy spaces was established under the assumption that Mρ is bounded on L2(μ).
Throughout this paper, we always assume that the parametrized Marcinkiewicz integral
with nondoubling measures Mρ as in (1.4) is bounded on L2(μ). By a similar argument in
[22], it is easy to obtain the boundedness of the parametrized Marcinkiewicz integral Mρ

with ρ ∈ (0,∞) from L1(μ) into weak L1(μ), from the Hardy space H1(μ) into L1(μ), and
from L∞(μ) into RBLO(μ) (the space of regular bounded lower oscillation functions; see
Definition 2.5 below). As a corollary, it is easy to see that Mρ is bounded on Lp(μ) with
p ∈ (1,∞).

Themain purpose of this paper is to establish some similar results for the parametrized
area integral Mρ

S and the parametrized g∗
λ function M∗,ρ

λ as in (1.5) and (1.6), respec-
tively.

This paper is organized as follows. In the rest of Section 1, we will make some
conventions and recall some necessary notation. In Section 2, we will establish the
boundedness of M∗,ρ

λ
as in (1.6) in Lebesgue spaces Lp(μ) for any p ∈ (1,∞). And we

will also consider the endpoint estimates for the cases p = 1 and p = ∞. In Section 3,
we will prove that M∗,ρ

λ as in (1.6) is bounded from H1(μ) into L1(μ). And in the last
section, the corresponding results for the parametrized area function Mρ

S as in (1.5) are
established.

For a cube Q ⊂ R
d we mean a closed cube whose sides parallel to the coordinate

axes and we denote its side length by l(Q) and its center by xQ. Let α > 1 and β > αn. We
say that a cube Q is an (α, β)-doubling cube if μ(αQ) ≤ βμ(Q), where αQ denotes the cube
with the same center as Q and l(αQ) = αl(Q). For definiteness, if α and β are not specified,
by a doubling cube we mean a (2, 2d+1)-doubling cube. Given two cubes Q ⊂ R in R

d,
set

KQ,R ≡ 1 +
NQ,R∑

k=1

μ
(
2kQ
)

[
l
(
2kQ
)]n , (1.8)

where NQ,R is the smallest positive integer k such that l(2kQ) ≥ l(R) (see [23]).
In what follows, C denotes a positive constant that is independent of main parameters

involved but whose value may differ from line to line. Constants with subscripts, such as C1,
do not change in different occurrences. We denote simply by A � B if there exists a positive
constant C such that A ≤ CB; and A∼B means that A � B and B � A. For a μ-measurable
set E, χE denotes its characteristic function. For any p ∈ [1,∞], we denote by p′ its conjugate
index, namely, 1/p + 1/p′ = 1.

2. Boundedness of M∗,ρ
λ

in Lebesgue spaces

This section is devoted to the behavior of the parametrized g∗
λ function M∗,ρ

λ in Lebesgue
spaces.

Theorem 2.1. LetK be a μ-locally integrable function on R
d ×R

d \{(x, y) : x = y} satisfying (1.2)
and (1.3), and let M∗,ρ

λ be as in (1.6) with ρ ∈ (0,∞) and λ ∈ (1,∞). Then for any p ∈ [2,∞), M∗,ρ
λ

is bounded on Lp(μ).
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To obtain the boundedness ofM∗,ρ
λ in Lp(μ)with p ∈ [1, 2), we introduce the following

condition on the kernel K, that is, for some fixed σ > 2,

sup
r>0,y,y′∈Rd

|y−y′ |≤r

∞∑

l=1

lσ
∫

2lr<|x−y|≤2l+1r

[∣∣K(x, y) −K
(
x, y′)∣∣ +

∣
∣K(y, x) −K

(
y′, x
)∣∣] 1

|x − y|dμ(x) ≤ C,

(2.1)

which is slightly stronger than (1.3).

Theorem 2.2. LetK be a μ-locally integrable function on R
d ×R

d \{(x, y) : x = y} satisfying (1.2)
and (2.1), and let M∗,ρ

λ be as in (1.6) with ρ ∈ (n/2,∞) and λ ∈ (2,∞). Then M∗,ρ
λ is bounded from

L1(μ) into weak L1(μ), namely, there exists a positive constant C such that for any β > 0 and any
f ∈ L1(μ),

μ
({

x ∈ R
d : M∗,ρ

λ
(f)(x) > β

}) ≤ C

β
‖f‖L1(μ). (2.2)

By the Marcinkiewicz interpolation theorem, and Theorems 2.1 and 2.2, we can
immediately obtain the Lp(μ)-boundedness of the operator M∗,ρ

λ for p ∈ (1, 2).

Corollary 2.3. Under the same assumption of Theorem 2.2, M∗,ρ
λ is bounded on Lp(μ) for any p ∈

(1, 2).

Remark 2.4. We point out that it is still unclear if condition (2.1) in Theorem 2.2 and
Corollary 2.3 can be weakened.

Now we turn to discuss the property of the operator M∗,ρ
λ

in L∞(μ). To this end,
we need to recall the definition of the space RBLO(μ) (the space of regular bounded lower
oscillation functions).

Definition 2.5. Let η ∈ (1,∞). A μ-locally integrable function f on R
d is said to be in the space

RBLO(μ) if there exists a positive constant C such that for any (η, ηd+1)-doubling cube Q,

mQ(f) − ess inf
x∈Q

f(x) ≤ C, (2.3)

and for any two (η, ηd+1)-doubling cubes Q ⊂ R,

mQ(f) −mR(f) ≤ CKQ,R. (2.4)

The minimal constant C as above is defined to be the norm of f in the space RBLO(μ) and
denoted by ‖f‖RBLO(μ).

Remark 2.6. The space RBLO(μ)was introduced by Jiang in [24], where the (η, ηd+1)-doubling

cube was replaced by (4
√
d, (4

√
d)

n+1
)-doubling cube. It was pointed out in [25] that it is

convenient in applications to replace (4
√
d, (4

√
d)

n+1
)-doubling cubes by (η, ηd+1)-doubling

cubes with η ∈ (1,∞) in the definition of RBLO(μ). Moreover, it was proved in [25] that the
definition is independent of the choices of the constant η ∈ (1,∞). The space RBLO(μ) is a
subspace of RBMO(μ)which was introduced by Tolsa in [23].
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Theorem 2.7. Let K be a μ-locally integrable function on R
d × R

d \ {(x, y) : x = y} satisfying
(1.2) and (1.3), and letM∗,ρ

λ
be as in (1.6) with ρ ∈ (0,∞) and λ ∈ (1,∞). Then for any f ∈ L∞(μ),

M∗,ρ
λ (f) is either infinite everywhere or finite almost everywhere. More precisely, if M∗,ρ

λ (f) is finite
at some point x0 ∈ R

d, thenM∗,ρ
λ (f) is finite almost everywhere and

∥
∥M∗,ρ

λ
(f)
∥
∥
RBLO(μ) ≤ C‖f‖L∞(μ), (2.5)

where the positive constant C is independent of f .

We point out that Theorem 2.7 is also new even when μ is the d-dimensional Lebesgue
measure on R

d.
In the rest part of Section 2, we will prove Theorems 2.1, 2.2, and 2.7, respectively. To

prove Theorem 2.1, we first recall some basic facts and establish a technical lemma. For η > 1,
let M(η) be the noncentered maximal operator defined by

M(η)f(x) ≡ sup
Q
x

Q cube

1
μ(ηQ)

∫

Q

∣∣f(y)
∣∣dμ(y), x ∈ R

d. (2.6)

It is well known that M(η) is bounded on Lp(μ) provided that p ∈ (1,∞) (see [23]). The
following lemma which is of independent interest plays an important role in our proofs.

Lemma 2.8. Let K be a μ-locally integrable function on R
d × R

d \ {(x, y) : x = y} satisfying
(1.2) and (1.3), and η ∈ (1,∞). Let Mρ be as in (1.4) and M∗,ρ

λ
be as in (1.6) with ρ ∈ (0,∞) and

λ ∈ (1,∞). Then for any nonnegative function φ, there exists a positive constant C such that for all
f ∈ Lp(μ) with p ∈ (1,∞),

∫

Rd

[M∗,ρ
λ
(f)(x)

]2
φ(x)dμ(x) ≤ C

∫

Rd

[Mρ(f)(x)
]2
M(η)(φ)(x)dμ(x). (2.7)

Proof. Notice that

∫

Rd

[M∗,ρ
λ (f)(x)

]2
φ(x)dμ(x)

=
∫

Rd

∫∫

R
d+1
+

(
t

t + |x − y|
)λn∣∣∣∣

1
tρ

∫

|y−z|≤t

K(y, z)
|y − z|1−ρ f(z)dμ(z)

∣∣∣∣

2dμ(y)dt
tn+1

φ(x)dμ(x)

≤
∫

Rd

∫∞

0

∣∣∣∣
1
tρ

∫

|y−z|≤t

K(y, z)
|y − z|1−ρ f(z)dμ(z)

∣∣∣∣

2dt

t
sup
t>0

[∫

Rd

(
t

t + |x − y|
)λn φ(x)

tn
dμ(x)

]

dμ(y)

=
∫

Rd

[Mρ(f)(y)
]2sup

t>0

[∫

Rd

(
t

t + |x − y|
)λn φ(x)

tn
dμ(x)

]

dμ(y).

(2.8)

Thus, to prove Lemma 2.8, it suffices to verify that for any y ∈ R
d,

sup
t>0

∫

Rd

(
t

t + |x − y|
)λn φ(x)

tn
dμ(x) � M(η)(φ)(y). (2.9)
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For any fixed y ∈ R
d and t > 0, write

∫

Rd

(
t

t + |x − y|
)λn φ(x)

tn
dμ(x)

=
∫

|x−y|≤t

(
t

t + |x − y|
)λn φ(x)

tn
dμ(x) +

∫

|x−y|>t

(
t

t + |x − y|
)λn φ(x)

tn
dμ(x)

≡ E1 + E2.

(2.10)

LetQy be the cubewith center at y and side length l(Qy) = 2t. Obviously, {x : |x−y| < t} ⊂ Qy,
which leads to

E1 ≤
∫

|x−y|≤t

φ(x)
tn

dμ(x) � 1
μ
(
ηQy

)
∫

Qy

φ(x)dμ(x) � M(η)φ(y). (2.11)

As for E2, a straightforward computation proves that

E2 ≤
∞∑

k=0

∫

2kt<|x−y|≤2k+1t

(
t

t + |x − y|
)λn φ(x)

tn
dμ(x)

�
∞∑

k=0

(
1
2k

)nλ(
2k+1t

)n 1
(
2k+1t

)n

∫

|x−y|≤2k+1t
φ(x)dμ(x)

� M(η)(φ)(y).

(2.12)

Combining the estimates for E1 and E2 yields (2.9), which completes the proof of Lemma 2.8.

Proof of Theorem 2.1. For the case of p = 2, choosing φ(x) = 1 in Lemma 2.8, then we easily
obtain that

∫

Rd

[M∗,ρ
λ
(f)(x)

]2
dμ(x) �

∫

Rd

[Mρ(f)(x)
]2
dμ(x), (2.13)

which, along with the boundedness of Mρ in L2(μ), immediately yields that Theorem 2.1
holds in this case.

For the case of p ∈ (2,∞), let q be the index conjugate to p/2. Then from Lemma 2.8
and the Hölder inequality, it follows that

∥∥M∗,ρ
λ
(f)
∥∥2
Lp(μ) = sup

φ≥0, ‖φ‖Lq(μ)≤1

∫

Rd

[M∗,ρ
λ
(f)(x)

]2
φ(x)dμ(x)

� sup
φ≥0, ‖φ‖Lq(μ)≤1

∫

Rd

[Mρ(f)(x)
]2
M(η)φ(x)dμ(x)

�
∥∥Mρ(f)

∥∥2
Lp(μ) sup

φ≥0, ‖φ‖Lq(μ)≤1

∥∥M(η)φ
∥∥
Lq(μ)

� ‖f‖2Lp(μ) sup
φ≥0, ‖φ(x)‖Lq(μ)≤1

‖φ‖Lq(μ)

� ‖f‖2Lp(μ),

(2.14)

which completes the proof of Theorem 2.1.
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To prove Theorem 2.2, we need the following Calderón-Zygmund decomposition with
nondoubling measures (see [23] or [26]).

Lemma 2.9. Let p ∈ [1,∞). For any f ∈ Lp(μ) and λ > 0 (λ> 2d+1‖f‖L1(μ)/‖μ‖ if ‖μ‖ < ∞), one
has the following.

(a) There exists a family of almost disjoint cubes {Qj}j (i.e.,
∑

j χQj ≤ C) such that

1
μ
(
2Qj

)
∫

Qj

∣
∣f(x)

∣
∣pdμ(x) >

λp

2d+1
,

1
μ
(
2ηQj

)
∫

ηQj

∣
∣f(x)

∣
∣pdμ(x) ≤ λp

2d+1
∀η > 2,

|f(x)| ≤ λ μ-a.e. on R
d \ ∪jQj .

(2.15)

(b) For each j, let Rj be the smallest (6, 6n+1)-doubling cube of the form 6kQj , k ∈ N, and
let ωj = χQj/

∑
k χQk . Then, there exists a family of functions ϕj with supp(ϕj) ⊂ Rj

satisfying
∫

Rd

ϕj(x)dμ(x) =
∫

Qj

f(x)ωj(x)dμ(x),
∑

j

∣∣ϕj(x)
∣∣ ≤ Bλ (2.16)

(where B is some constant), and when p = 1,

∥∥ϕj

∥∥
L∞(μ)μ

(
Rj

) ≤ C

∫

Qj

∣∣f(x)
∣∣dμ(x); (2.17)

when p ∈ (1,∞),

[∫

Rj

∣∣ϕj(x)
∣∣pdμ(x)

]1/p[
μ
(
Rj

)]1/p′ ≤ C

λp−1

∫

Qj

∣∣f(x)
∣∣pdμ(x). (2.18)

Remark 2.10. From the proof of the Calderón-Zygmund decomposition with nondoubling
measures (see [23] or [26]), it is easy to see that if we replace Rj with R′

j , the smallest

(6
√
d, (6

√
d)

n+1
)-doubling cube of the form (6

√
d)

k
Qj (k ∈ N), the above conclusions (a) and

(b) still hold. Here and hereafter, when we mention Rj in Lemma 2.9 we always mean R′
j .

Proof of Theorem 2.2. Let f ∈ L1(μ) and β> 2d+1‖f‖L1(μ)/‖μ‖ (note that if 0 < β ≤
2d+1‖f‖L1(μ)/‖μ‖, the estimate (2.2) obviously holds). Applying Lemma 2.9 to f at the level β,
we obtain f(x) ≡ g(x) + b(x)with

g(x) ≡ f(x)χRd\⋃jQj
(x) +

∑

j

ϕj(x), b(x) ≡
∑

j

[
ωj(x)f(x) − ϕj(x)

]
=
∑

j

bj(x), (2.19)

where ωj , ϕj , Qj , and Rj are the same as in Lemma 2.9. It is easy to see that ‖g‖L∞(μ) � β and
‖g‖L1(μ) � ‖f‖L1(μ). By the boundedness of M∗,ρ

λ
in L2(μ), we easily obtain that

μ
({

x ∈ R
d : M∗,ρ

λ (g)(x) > β
}) ≤ β−2

∥∥M∗,ρ
λ (g)

∥∥2
L2(μ) � β−1‖f‖L1(μ). (2.20)
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From (a) of Lemma 2.9, it follows that

μ
(∪j2Qj

)
� β−1

∑

j

∫

Qj

∣
∣f(x)

∣
∣dμ(x) � β−1

∫

Rd

∣
∣f(x)

∣
∣dμ(x), (2.21)

and therefore, the proof of Theorem 2.2 can be deduced to proving that

μ
({

x ∈ R
d \ ∪j2Qj : M∗,ρ

λ
(b)(x) > β

})
� β−1

∫

Rd

∣
∣f(x)

∣
∣dμ(x). (2.22)

For each fixed j, let R∗
j = 6

√
dRj . Notice that

μ
({

x ∈ R
d \ ∪j2Qj : M∗,ρ

λ
(b)(x) > β

})

≤ β−1
{
∑

j

∫

Rd\R∗
j

M∗,ρ
λ
(bj)(x)dμ(x) +

∑

j

∫

R∗
j \2Qj

M∗,ρ
λ
(bj)(x)dμ(x)

}

.
(2.23)

Thus, it suffices to prove that for each fixed j,
∫

Rd\R∗
j

M∗,ρ
λ

(
bj
)
(x)dμ(x) �

∫

Qj

∣∣f(x)
∣∣dμ(x), (2.24)

∫

R∗
j \2Qj

M∗,ρ
λ

(
bj
)
(x)dμ(x) �

∫

Qj

∣∣f(x)
∣∣dμ(x). (2.25)

To verify (2.24), for each fixed j, let Bj = B(xQj , 2
√
dl(Rj)), and write

∫

Rd\R∗
j

M∗,ρ
λ

(
bj
)
(x)dμ(x)

≤
∫

Rd\R∗
j

[∫∫

|y−x|<t

(
t

t + |x − y|
)λn∣∣∣∣

∫

|y−z|≤t

K(y, z)bj(z)

|y − z|1−ρ dμ(z)
∣∣∣∣

2dμ(y)dt
tn+2ρ+1

]1/2
dμ(x)

+
∫

Rd\R∗
j

⎡

⎣
∫∫

|y−x|≥t
y∈Bj

(
t

t + |x − y|
)λn∣∣∣∣

∫

|y−z|≤t

K(y, z)bj(z)

|y − z|1−ρ dμ(z)
∣∣∣∣

2dμ(y)dt
tn+2ρ+1

⎤

⎦

1/2

dμ(x)

+
∫

Rd\R∗
j

⎡

⎣
∫∫

|y−x|≥t
y∈Rd\Bj

(
t

t + |x − y|
)λn∣∣
∣∣

∫

|y−z|≤t

K(y, z)bj(z)

|y − z|1−ρ dμ(z)
∣∣∣∣

2dμ(y)dt
tn+2ρ+1

⎤

⎦

1/2

dμ(x)

≡ F1 + F2 + F3.
(2.26)

For each fixed j, further decompose

F1 ≤
∫

Rd\R∗
j

⎡

⎣
∫∫

|y−x|<t
y∈4Rj

∣∣∣∣

∫

|y−z|≤t

K(y, z)
|y − z|1−ρ bj(z)dμ(z)

∣∣∣∣

2dμ(y)dt
tn+2ρ+1

⎤

⎦

1/2

dμ(x)

+
∫

Rd\R∗
j

⎡

⎣
∫∫

|y−x|<t
y∈Rd\4Rj

∣∣∣∣

∫

|y−z|≤t

K(y, z)
|y − z|1−ρ bj(z)dμ(z)

∣∣∣∣

2dμ(y)dt
tn+2ρ+1

⎤

⎦

1/2

dμ(x)

≡ H1 +H2.

(2.27)
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It is easy to see that for any x ∈ R
d\R∗

j , y ∈ 4Rj with |y−x| < t and z ∈ Rj , |x−xQj |−2
√
dl(Rj) ≤

|x − y| < t and |y − z| < 4
√
dl(Rj). This fact along the Minkowski inequality and (1.2) leads to

H1 ≤
∫

Rd\R∗
j

∫

Rj

∣
∣bj(z)

∣
∣

⎡

⎢
⎢
⎣

∫∫

|y−x|<t
|y−z|≤t
y∈4Rj

|K(y, z)|2
|y − z|2−2ρ

dμ(y)dt
tn+2ρ+1

⎤

⎥
⎥
⎦

1/2

dμ(z)dμ(x)

�
∫

Rd\R∗
j

∫

Rj

∣
∣bj(z)

∣
∣
[∫

|y−z|<4
√
dl(Rj )

1
|y − z|2n−2ρ

×
(∫∞

|x−xQj
|−2

√
dl(Rj )

dt

tn+2ρ+1

)
dμ(y)

]1/2
dμ(z)dμ(x)

�
∫

Rj

∣∣bj(z)
∣∣
[∫

|y−z|<4
√
dl(Rj )

1
|y − z|2n−2ρ dμ(y)

]1/2
dμ(z)

∫

Rd\R∗
j

1
|x − xQj |(n+2ρ)/2

dμ(x)

� ‖bj‖L1(μ).

(2.28)

As for H2, first write

H2 ≤
∫

Rd\R∗
j

⎡

⎢
⎣

∫∫

|y−x|<t, y∈Rd\4Rj

t≤|y−xQj
|+2

√
dl(Rj )

∣∣∣∣

∫

|y−z|≤t

K(y, z)
|y − z|1−ρ bj(z)dμ(z)

∣∣∣∣

2dμ(y)dt
tn+2ρ+1

⎤

⎥
⎦

1/2

dμ(x)

+
∫

Rd\R∗
j

⎡

⎢
⎣

∫∫

|y−x|<t, y∈Rd\4Rj

t>|y−xQj
|+2

√
dl(Rj )

∣∣∣∣

∫

|y−z|≤t

K(y, z)
|y − z|1−ρ bj(z)dμ(z)

∣∣∣∣

2dμ(y)dt
tn+2ρ+1

⎤

⎥
⎦

1/2

dμ(x)

≡ J1 + J2.

(2.29)

Notice that for any z ∈ Rj , x ∈ R
d \ R∗

j and y ∈ R
d \ 4Rj , |y − z|∼|y − xQj |, and |x − xQj | <

5
√
d|y − xQj |. Thus, by (1.2) and the Minkowski inequality, we obtain that

J1 �
∫

Rd\R∗
j

∫

Rj

∣∣bj(z)
∣∣
[∫

Rd\4Rj

1
|y − z|2n−2ρ

(∫ |y−xQj
|+2

√
dl(Rj )

|y−z|

dt

tn+2ρ+1

)

dμ(y)

]1/2
dμ(z)dμ(x)

�
∫

Rd\R∗
j

∫

Rj

∣∣bj(z)
∣∣
[∫

Rd\4Rj

1
∣∣y − xQj

∣∣n+1/2
l
(
Rj

)

∣∣y − xQj

∣∣2n+1/2
dμ(y)

]1/2
dμ(z)dμ(x)

�
∫

Rj

∣∣bj(z)
∣∣
[∫

Rd\4Rj

l
(
Rj

)1/2

∣∣y − xQj

∣∣n+1/2
dμ(y)

]1/2
dμ(z)

∫

Rd\R∗
j

l
(
Rj

)1/4

∣∣x − xQj

∣∣n+1/4
dμ(x)

�
∥∥bj
∥∥
L1(μ).

(2.30)



10 Journal of Inequalities and Applications

On the other hand, it is easy to verify that for any y ∈ R
d \ 4Rj and t > |y − xQj | + 2

√
dl(Rj),

Rj ⊂ {z : |y − z| ≤ t} and |x − xQj | < 2t. Choose 0 < ε < min{1/2, (λ − 2)n/2, ρ − n/2, σ/2 − 1}
(we always take ε to satisfy this restriction in our proof). The vanishing moment of bj on Rj

and the Minkowski inequality give us that

J2=
∫

Rd\R∗
j

⎧
⎪⎨

⎪⎩

∫∫

|y−x|<t,y∈Rd\4Rj

t>|y−xQj
|+2

√
dl(Rj )

∣
∣
∣
∣
∣

∫

|y−z|≤t

[
K(y, z)
|y − z|1−ρ −

K
(
y, xQj

)

∣
∣y − xQj

∣
∣1−ρ

]

bj(z)dμ(z)

∣
∣
∣
∣
∣

2
dμ(y)dt
tn+2ρ+1

⎫
⎬

⎭

1/2

dμ(x)

≤
∫

Rd\R∗
j

∫

Rj

∣
∣bj(z)

∣
∣
{∫

Rd\4Rj

∣
∣
∣∣
∣
K(y, z)
|y − z|1−ρ −

K
(
y, xQj

)

∣
∣y − xQj

∣
∣1−ρ

∣
∣
∣∣
∣

2

×
[∫∞

|y−xQj
|+2

√
dl(Rj )

[
log
(
t/l
(
Rj

))]2+2ε
dt

t2ρ−n+1t2n
[
log
(
t/l
(
Rj

))]2+2ε

]

dμ(y)

}1/2

dμ(z)dμ(x)

�
∫

Rd\R∗
j

1

|x − xQj |n
[
log
(∣∣x − xQj

∣∣/l
(
Rj

))]1+ε

∫

Rj

∣∣bj(z)
∣∣

×
{∫

Rd\4Rj

∣∣∣∣∣
K(y, z)
|y − z|1−ρ −

K
(
y, xQj

)

∣∣y − xQj

∣∣1−ρ

∣∣∣∣∣

2

×
[∫∞

|y−xQj
|+2

√
dl(Rj )

[
log
(
t/l
(
Rj

))]2+2ε

t2ρ−n+1
dt

]

dμ(y)

}1/2

dμ(z)dμ(x).

(2.31)

It follows from [27, Lemma 2.2] that for any y ∈ R
d \ 4Rj ,

∫∞

|y−xQj
|+2

√
dl(Rj )

[
log
(
t/l
(
Rj

))]2+2ε

t2ρ−n+1
dt �

[
log
(∣∣y − xQj

∣∣/l
(
Rj

)
+ 2

√
d
)]2+2ε

[∣∣y − xQj

∣∣ + 2
√
dl
(
Rj

)]2ρ−n , (2.32)

which, together with (2.1), leads to

J2 �
∫

Rd\R∗
j

1
∣∣x − xQj

∣∣n[ log
(∣∣x − xQj

∣∣/l
(
Rj

))]1+ε

×
∫

Rj

∣∣bj(z)
∣∣
[∫

Rd\4Rj

∣∣∣∣∣
K(y, z)
|y − z|1−ρ −

K
(
y, xQj

)

∣∣y − xQj

∣∣1−ρ

∣∣∣∣∣

2

×
[
log
(∣∣y − xQj

∣∣/l
(
Rj

)
+ 2

√
d
)]2+2ε

[∣∣y − xQj

∣∣ + 2
√
dl
(
Rj

)]2ρ−n dμ(y)

]1/2
dμ(z)dμ(x)
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�
∫

Rd\R∗
j

1
(∣∣x − xQj

∣
∣)n[ log

(∣∣x − xQj

∣
∣/l
(
Rj

))]1+ε

×
∫

Rj

∣
∣bj(z)

∣
∣

⎧
⎨

⎩

∞∑

k=1

(k + 1)2+2ε

[
2kl
(
Rj

)]2ρ−n

×
⎡

⎣
∫

2kl(Rj )≤|y−xQj
|<2k+1l(Rj )

∣
∣K(y, z) −K

(
y, xQj

)∣∣2

|y − z|2−2ρ

+
∣
∣K
(
y, xQj

)∣∣2
∣
∣
∣
∣
∣

1
|y−z|1−ρ − 1

∣
∣y − xQj

∣
∣1−ρ

∣
∣
∣
∣
∣

2

dμ(y)

⎤

⎦

⎫
⎬

⎭

1/2

dμ(z)dμ(x)

�
∫

Rd\R∗
j

1
(∣∣x − xQj

∣∣)n[ log
(∣∣x − xQj

∣∣/l
(
Rj

))]1+ε

×
∫

Rj

∣∣bj(z)
∣∣

⎧
⎨

⎩

∞∑

k=1

(k + 1)2+2ε

[
2kl
(
Rj

)]2ρ−n

×
⎡

⎣
∫

2kl(Rj )≤|y−xQj
|<2k+1l(Rj )

1
[
2kl
(
Rj

)]n−2ρ

∣∣K(y, z) −K
(
y, xQj

)∣∣

|y − z|

+
l
(
Rj

)2

∣∣y − xQj

∣∣2n−2ρ+2
dμ(y)

⎤

⎦

⎫
⎬

⎭

1/2

dμ(z)dμ(x)

�
∫

Rd\R∗
j

1
∣∣x − xQj

∣∣n[ log
(∣∣x − xQj

∣∣/l
(
Rj

))]1+ε

∫

Rj

∣∣bj(z)
∣∣
[

1 +
∞∑

k=1

(k + 1)2+2ε

22k

]1/2
dμ(z)dμ(x)

�
∥∥bj
∥∥
L1(μ).

(2.33)

Combining the estimates for H1, J1, and J2 yields

F1 �
∥∥bj
∥∥
L1(μ) �

∫

Qj

∣∣f(x)
∣∣dμ(x). (2.34)

To estimate F2, first notice that for any y ∈ Bj , x ∈ R
d\R∗

j , and z ∈ Rj , |y−x| ≥ |x−xQj |/2,
|y−z| ≤ 4

√
dl(Rj), and |x−y|∼|x−xQj |. Thus, by theMinkowski inequality and (1.2), we easily

obtain that

F2 ≤
∫

Rd\R∗
j

∫

Rj

∣∣bj(z)
∣∣

⎡

⎢⎢
⎣

∫∫

|y−x|≥t
|y−z|≤t
y∈Bj

(
t

t + |x − y|
)2n+2ε

∣∣K(y, z)
∣∣2

|y − z|2−2ρ
dμ(y)dt
tn+2ρ+1

⎤

⎥⎥
⎦

1/2

dμ(z)dμ(x)
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�
∫

Rd\R∗
j

∫

Rj

∣
∣bj(z)

∣
∣
[∫

|y−z|≤4
√
dl(Rj )

1
∣
∣x − xQj

∣
∣2n+2ε|y − z|n−ε

×
(∫ |y−x|

0
tε−1dt

)
dμ(y)

]1/2
dμ(z)dμ(x)

�
∫

Rj

∣∣bj(z)
∣∣
[∫

|y−z|≤4
√
dl(Rj )

1
|y − z|n−ε dμ(y)

]1/2
dμ(z)

∫

Rd\R∗
j

1
∣
∣x − xQj

∣
∣n+ε/2

dμ(x)

�
∥
∥bj
∥
∥
L1(μ)

�
∫

Qj

∣
∣f(x)

∣
∣dμ(x).

(2.35)

It remains to estimate F3. By (1.2), we can write

F3 �
∫

Rd\R∗
j

∫

Rj

∣∣bj(z)
∣∣

⎡

⎢⎢⎢
⎣

∫∫

|y−z|≤t≤|y−x|, y∈Rd\Bj

t≤|y−xQj
|+Cεl(Rj )

|x−xQj
|≤2|y−xQj

|

(
t

t + |x − y|
)λn 1

|y − z|2n−2ρ
dμ(y)dt
tn+2ρ+1

⎤

⎥⎥⎥
⎦

1/2

dμ(z)dμ(x)

+
∫

Rd\R∗
j

∫

Rj

∣∣bj(z)
∣∣

⎡

⎢⎢⎢
⎣

∫∫

|y−z|≤t≤|y−x|, y∈Rd\Bj

t≤|y−xQj
|+Cεl(Rj )

|x−xQj
|>2|y−xQj

|

(
t

t + |x − y|
)λn 1

|y − z|2n−2ρ
dμ(y)dt
tn+2ρ+1

⎤

⎥⎥⎥
⎦

1/2

dμ(z)dμ(x)

+
∫

Rd\R∗
j

⎡

⎢
⎣

∫∫

t≤|y−x|, y∈Rd\Bj

|y−xQj
|+Cεl(Rj )<t

(
t

t + |x − y|
)λn∣∣∣∣∣

∫

|y−z|≤t

K(y, z)
|y − z|1−ρ bj(z)dμ(z)

∣∣∣∣∣

2
dμ(y)dt
tn+2ρ+1

⎤

⎥
⎦

1/2

dμ(x)

≡ L1 + L2 + L3,

(2.36)

where Cε = 8
√
de(2+2ε)/ε. Note that for any y ∈ R

d \ Bj and z ∈ Rj with |y − z| ≤ t ≤ |y − x|,
then |y − z|∼|y − xQj | and |y − xQj | ≤ t +

√
dl(Rj). Consequently,

L1 ≤
∫

Rd\R∗
j

∫

Rj

∣∣bj(z)
∣∣

⎡

⎢
⎣

∫

y∈Rd\Bj

|x−xQj
|≤2|y−xQj

|

(∫ |y−xQj
|+Cεl(Rj )

|y−xQj
|−
√
dl(Rj )

dt

tn+2ρ+1

)

× 1
|y − z|2n−2ρ dμ(y)

⎤

⎥
⎦

1/2

dμ(z)dμ(x)

�
∫

Rd\R∗
j

∫

Rj

∣∣bj(z)
∣∣

⎡

⎢
⎣

∫

y∈Rd\Bj

|x−xQj
|≤2|y−xQj

|

l
(
Rj

)

∣∣y − xQj

∣∣3n+1
dμ(y)

⎤

⎥
⎦

1/2

dμ(z)dμ(x)

� ‖bj‖L1(μ).

(2.37)
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A trivial computation involving the fact that |x − y| > |x − xQj |/2 for any x ∈ R
d \ R∗

j and
y ∈ R

d \ Bj satisfying |x − xQj | > 2|y − xQj | proves that

L2 ≤
∫

Rd\R∗
j

∫

Rj

∣
∣bj(z)

∣
∣

⎡

⎢
⎣

∫

y∈Rd\Bj

|x−xQj
|>2|y−xQj

|

(
t

t + |x − y|
)2n+2ε 1

|y − z|2n−2ρ

×
(∫ |y−xQj

|+Cεl(Rj )

|y−xQj
|−
√
dl(Rj )

dt

tn+2ρ+1

)

dμ(y)

⎤

⎥
⎦

1/2

dμ(z)dμ(x)

�
∫

Rd\R∗
j

∫

Rj

∣
∣bj(z)

∣
∣

⎡

⎢
⎣

∫

y∈Rd\Bj

|x−xQj
|>2|y−xQj

|

(∫ |y−xQj
|+Cεl(Rj )

|y−xQj
|−
√
dl(Rj )

1
t2ρ−n−2ε+1

dt

)

× 1
|x − y|2n+2ε|y − z|2n−2ρ dμ(y)

⎤

⎥
⎦

1/2

dμ(z)dμ(x)

�
∫

Rd\R∗
j

∫

Rj

∣∣bj(z)
∣∣
[∫

Rd\Bj

1
|y − z|n−2ε+1

l
(
Rj

)

∣∣x − xQj

∣∣2n+2ε
dμ(y)

]1/2
dμ(z)dμ(x)

�
∥∥bj
∥∥
L1(μ).

(2.38)

Finally, let us estimate L3. It is easy to see that for any y ∈ R
d \ Bj and t > |y − xQj | + Cεl(Rj),

Rj ⊂ {z : |y − z| ≤ t} and t + |x − y| ≥ |x − xQj | + Cεl(Rj). Thus, from the vanishing moment of
bj on Rj , εit follows that

L3 ≤
∫

Rd\R∗
j

∫

Rj

∣∣bj(z)
∣∣

⎡

⎢⎢⎢
⎣

∫∫

y∈Rd\Bj

t>|y−xQj
|+Cεl(Rj )

|y−z|≤t≤|y−x|

(
t

t + |x − y|
)λn

×
∣
∣∣∣∣
K(y, z)
|y − z|1−ρ −

K
(
y, xQj

)

∣∣y − xQj

∣∣1−ρ

∣
∣∣∣∣

2
dμ(y)dt
tn+2ρ+1

⎤

⎥⎥
⎦

1/2

dμ(z)dμ(x)

=
∫

Rd\R∗
j

∫

Rj

|bj(z)|

⎡

⎢⎢⎢
⎣

∫∫

y∈Rd\Bj

t>|y−xQj
|+Cεl(Rj )

|y−z|≤t≤|y−x|

tλn
(
t + |x − y|)2n[ log ((t + |x − y|)/l(Rj

))]2+2ε

×
[
log
((
t + |x − y|)/l(Rj

))]2+2ε

(
t + |x − y|)λn−2n

×
∣∣∣∣∣
K(y, z)
|y − z|1−ρ −

K
(
y, xQj

)

∣∣y − xQj

∣∣1−ρ

∣∣∣∣∣

2
dμ(y)dt
tn+2ρ+1

⎤

⎥⎥
⎦

1/2

dμ(z)dμ(x)
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�
∫

Rd\R∗
j

∫

Rj

|bj(z)|
(∣∣x − xQj

∣
∣ + Cεl

(
Rj

))n[ log
((∣∣x − xQj

∣
∣ + Cεl

(
Rj

))
/l
(
Rj

))]1+ε

×

⎡

⎢
⎣

∫

y∈Rd\Bj

|y−x|≥|y−xQj
|+Cεl(Rj )

∣
∣
∣
∣
∣
K(y, z)
|y − z|1−ρ −

K
(
y, xQj

)

∣
∣y − xQj

∣
∣1−ρ

∣
∣
∣
∣
∣

2

×
∫ |y−x|

|y−xQj
|+Cεl(Rj )

tλn
[
log
((
t + |x − y|)/l(Rj

))]2+2ε

(
t + |x − y|)λn−2n

× 1
tn+2ρ+1

dt dμ(y)
]1/2

dμ(z)dμ(x)

�
∫

Rd\R∗
j

∫

Rj

∣
∣bj(z)

∣
∣

[∣∣x − xQj

∣
∣ + Cεl

(
Rj

)]n[ log
((∣∣x − xQj

∣
∣ + Cεl

(
Rj

))
/l
(
Rj

))]1+ε

×
⎡

⎣
∫

Rd\Bj

∣∣∣∣∣
K(y, z)
|y − z|1−ρ −

K
(
y, xQj

)

∣∣y − xQj

∣∣1−ρ

∣∣∣∣∣

2

×
[
log
((∣∣y − xQj

∣∣ + Cεl
(
Rj

))
/l
(
Rj

))]2+2ε

[∣∣y − xQj

∣∣ + Cεl
(
Rj

)]2ρ−n dμ(y)

⎤

⎦

1/2

dμ(z)dμ(x),

(2.39)

where in the penultimate inequality, we have used the following inequality

∫ |y−x|

|y−xQj
|+Cεl(Rj )

[
log
((
t + |x − y|)/l(Rj

))]2+2ε

(
t + |x − y|)λn−2ntn+2ρ+1−λn

dt �
[
log
((∣∣y − xQj

∣∣ + Cεl
(
Rj

))
/l
(
Rj

))]2+2ε

(∣∣y − xQj

∣∣ + Cεl
(
Rj

))2ρ−n ,

(2.40)

which can be proved by the same way as in [28, page 357]. Thus, by an argument similar to
the estimate of (2.33), we obtain that

L3 �
∥
∥bj
∥∥
L1(μ). (2.41)

Combining the estimates for L1, L2, and L3 yields that

F3 �
∥∥bj
∥∥
L1(μ) �

∫

Qj

∣∣f(x)
∣∣dμ(x), (2.42)

which along with the estimates for F1 and F2 leads to (2.24).
Now we turn to prove the estimate (2.25). Observe that if supp (h) ⊂ I for some cube

I, then by (1.2), we have that for any s > 1 and any x ∈ R
d \ sI,

M∗,ρ
λ
(h)(x) ≤

∫

I

∣∣h(z)
∣∣
[∫∫

|y−z|≤t

(
t

t + |x − y|
)λn 1

|y − z|2n−2ρ
dμ(y)dt
tn+2ρ+1

]1/2
dμ(z)

≤
∫

I

∣∣h(z)
∣∣[M1(z) +M2(z) +M3(z)

]
dμ(z),

(2.43)
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where

M1(z) ≡
⎡

⎣
∫∫

|y−z|≤t
2|y−z|>|x−z|

(
t

t + |x − y|
)λn 1

|y − z|2n−2ρ
dμ(y)dt
tn+2ρ+1

⎤

⎦

1/2

,

M2(z) ≡
⎡

⎣
∫∫

|y−z|≤t,|y−x|<t
2|y−z|≤|x−z|

(
t

t + |x − y|
)λn 1

|y − z|2n−2ρ
dμ(y)dt
tn+2ρ+1

⎤

⎦

1/2

,

M3(z) ≡
⎡

⎣
∫∫

|y−z|≤t,|y−x|≥t
2|y−z|≤|x−z|

(
t

t + |x − y|
)λn 1

|y − z|2n−2ρ
dμ(y)dt
tn+2ρ+1

⎤

⎦

1/2

.

(2.44)

Some trivial computation leads to that for any x ∈ R
d \ sI and z ∈ I,

M1(z) ≤
[∫

2|y−z|>|x−z|

1
|y − z|2n

(∫∞

|x−z|/2

dt

tn+1

)
dμ(y)

]1/2

�
[

1
|x − z|n

∫

2|y−z|>|x−z|

1
|y − z|2n dμ(y)

]1/2

� 1
|x − xI |n .

(2.45)

As for M2(z), notice that for any x, y, z ∈ R
d satisfying |y − x| < t and 2|y − z| ≤ |x − z|,

|x − z|/2 < t. From this fact and ρ ∈ (n/2,∞), it follows that for any x ∈ R
d \ sI and z ∈ I,

M2(z) ≤
[∫

2|y−z|≤|x−z|

1
|y − z|2n−2ρ

(∫∞

(1/2)|x−z|

dt

tn+2ρ+1

)
dμ(y)

]1/2
� 1

|x − xI |n . (2.46)

To estimate M3(z), we first have that for any x, y, z ∈ R
d satisfying 2|y − z| ≤ |x − z|, 2|y −x| ≥

|x − z|, and |y − x| ≤ 3|x − z|/2. Consequently, for any x ∈ R
d \ sI and z ∈ I,

M3(z) ≤
[ ∫

2|y−z|≤|x−z|

1
|y − z|n−ε

1
|x − z|2n+2ε

(∫ |y−x|

0

dt

t1−ε

)
dμ(y)

]1/2

=
[ ∫

2|y−z|≤|x−z|

|y − x|ε
|x − z|2n+2ε

1
|y − z|n−ε dμ(y)

]1/2

� 1
|x − xI |n .

(2.47)

Combining the estimates for M1(z), M2(z), and M3(z), we obtain that for any x ∈ R
d \ sI,

M∗,ρ
λ
(h)(x) � 1

∣∣x − xI

∣∣n

∫

I

∣∣h(z)
∣∣dμ(z). (2.48)

On the other hand, it follows from [26, Lemma 2.3] (see also [23, Lemma 2.1]) that
∫

R∗
j \2Qj

1
∣∣x − xQj

∣∣n
dμ(x) � 1. (2.49)
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This fact together with (2.48) tells us that

∫

R∗
j \2Qj

M∗,ρ
λ

(
ωjf
)
(x)dμ(x) �

∫

R∗
j \2Qj

1
∣
∣x − xQj

∣
∣n
dμ(x)

∫

Qj

∣
∣f(y)

∣
∣dμ(y) �

∫

Qj

∣
∣f(y)

∣
∣dμ(y).

(2.50)

The last estimate and the following trivial estimate that

∫

R∗
j

M∗,ρ
λ

(
ϕj

)
(x)dμ(x) ≤

[∫

R∗
j

∣
∣M∗,ρ

λ

(
ϕj

)
(x)
∣
∣2dμ(x)

]1/2
μ
(
R∗

j

)1/2

�
[∫

R∗
j

∣
∣ϕj(x)

∣
∣2dμ(x)

]1/2
μ
(
Rj

)1/2

�
∫

Qj

∣∣f(x)
∣∣dμ(x),

(2.51)

which is obtained by the Hölder inequality and the L2(μ)-boundedness of M∗,ρ
λ
, imply the

inequality (2.25). This finishes the proof of Theorem 2.2.

Proof of Theorem 2.7. Recalling that the definition of RBLO(μ) is independent of the choices of
the constant η ∈ (1,∞), we choose η = 16

√
d in our proof. Hence, to prove Theorem 2.7, it is

enough to prove for any f ∈ L∞(μ), if M∗,ρ
λ (f)(x0) < ∞ for some point x0 ∈ R

d, then for any

(16
√
d, (16

√
d)

d+1
)-doubling cube Q 
 x0,

mQ

[M∗,ρ
λ
(f)
] − ess inf

x∈Q
M∗,ρ

λ
(f)(x) � ‖f‖L∞(μ), (2.52)

and for any two (16
√
d, (16

√
d)

d+1
)-doubling cubes R ⊃ Q,

mQ

[M∗,ρ
λ
(f)
] −mR

[M∗,ρ
λ
(f)
]

� KQ,R‖f‖L∞(μ). (2.53)

We first verify (2.52). For each fixed cube Q, let B be the smallest ball which contains
Q and has the same center as Q. Denote by r the radius of B. Decompose f as

f(x) = f(x)χ8B(x) + f(x)χRd\8B(x) ≡ f1(x) + f2(x), (2.54)

and write

M∗,ρ
λ

(
f2
)
(x) ≤

[∫ r

0

∫

Rd

(
t

t + |x − y|
)λn∣∣∣∣

1
tρ

∫

|y−z|≤t

K(y, z)
|y − z|1−ρ f2(z)dμ(z)

∣∣∣∣

2dμ(y)dt
tn+1

]1/2

+

[∫∞

r

∫

Rd

(
t

t + |x − y|
)λn∣∣∣∣

1
tρ

∫

|y−z|≤t

K(y, z)
|y − z|1−ρ f2(z)dμ(z)

∣∣∣∣

2dμ(y)dt
tn+1

]1/2

≡ M∗,ρ
λ,0

(
f2
)
(x) +M∗,ρ

λ,∞
(
f2
)
(x).

(2.55)
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Thus,

mQ

[M∗,ρ
λ (f)

] − ess inf
x∈Q

M∗,ρ
λ (f)(x)

� mQ

[M∗,ρ
λ

(
f1
)]

+mQ

[M∗,ρ
λ,0

(
f2
)]

+ sup
x′∈Q

∣
∣M∗,ρ

λ,∞(f)
(
x′) −M∗,ρ

λ,∞
(
f2
)(
x′)∣∣

+
1

μ(Q)

∫
sup
x′∈Q

∣
∣M∗,ρ

λ,∞
(
f2
)
(x) −M∗,ρ

λ,∞
(
f2
)(
x′)∣∣dμ(x).

(2.56)

By the Hölder inequality and L2(μ)-boundedness of M∗,ρ
λ
, we obtain that

mQ

[M∗,ρ
λ

(
f1
)] ≤ 1

[μ(Q)]1/2

[∫

Rd

[M∗,ρ
λ

(
f1
)
(x)
]2
dμ(x)

]1/2
� ‖f‖L∞(μ). (2.57)

From (1.2) and the fact that for any x ∈ Q ⊂ B, z ∈ R
d \ 8B, y ∈ R

d satisfying |x − y| < r, and
t ≤ r, {z ∈ R

d : z ∈ (Rd \ 8B)} ∩ {z ∈ R
d : |y − z| ≤ t} = ∅, it follows that

M∗,ρ
λ,0

(
f2
)
(x) �

[∫ r

0

∫

|x−y|≥r

1
|x − y|λn

∣∣∣∣

∫

|y−z|≤t

1
|y − z|n−ρ dμ(z)

∣∣∣∣

2 dμ(y)dt
tn−λn+2ρ+1

]1/2
‖f‖L∞(μ)

�
[∫

|x−y|≥r

1
|x − y|λn dμ(y)

∫ r

0

1
tn−λn+1

dt

]1/2
‖f‖L∞(μ)

� ‖f‖L∞(μ),

(2.58)

which gives us that

mQ

[M∗,ρ
λ,0

(
f2
)]

� ‖f‖L∞(μ). (2.59)

Obviously, for any x′ ∈ Q, z ∈ 8B, and y ∈ R
d with |x′ − y| > 16r, |x′ − y|∼|y − z|. Some

computation involving this fact and (1.2) yields that

sup
x′∈Q

∣∣M∗,ρ
λ,∞
(
f2
)(
x′) −M∗,ρ

λ,∞(f)
(
x′)∣∣

≤ sup
x′∈Q

(∫∞

r

∫

Rd

(
t

t +
∣∣x′ − y

∣∣

)λn∣∣∣∣
1
tρ

∫

|y−z|≤t

K(y, z)f1(z)
|y − z|1−ρ dμ(z)

∣∣∣∣

2dμ(y)dt
tn+1

)1/2

� sup
x′∈Q

(∫∞

r

∫

|x′−y|≤16r

∣∣∣∣
1
tρ

∫

|y−z|≤t

|f1(z)|
|y − z|n−ρ dμ(z)

∣∣∣∣

2dμ(y)dt
tn+1

)1/2

+sup
x′∈Q

⎛

⎝
∫∞

r

∫

|x′−y|>16r
|x′−y|<t

∣∣∣∣
1
tρ

∫

|y−z|≤t

∣∣f1(z)
∣∣

|y − z|n−ρ dμ(z)
∣∣∣∣

2dμ(y)dt
tn+1

⎞

⎠

1/2

+sup
x′∈Q

⎛

⎝
∫∞

r

∫

|x′−y|>16r
|x′−y|≥t

1
∣∣x′ − y

∣∣λn

∣∣∣∣
1
tρ

∫

|y−z|≤t

∣∣f1(z)
∣∣

|y − z|n−ρ dμ(z)
∣∣∣∣

2dμ(y)dt
tn−λn+1

⎞

⎠

1/2

� ‖f‖L∞(μ) + sup
x′∈Q

(∫∞

r

∫

|x′−y|<t

∣∣∣∣

∫

8B

∣∣f1(z)
∣∣

rn−ρ
dμ(z)

∣∣∣∣

2dμ(y)dt
tn+2ρ+1

)1/2

+sup
x′∈Q

(∫

|x′−y|>16r

1
|x − y|λn+2n

∫ |x′−y|

r

∣∣∣∣

∫

8B

∣∣f1(z)
∣∣dμ(z)

∣∣∣∣

2dt dμ(y)
tn−λn+1

)1/2

� ‖f‖L∞(μ).

(2.60)
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Thus, the proof of the estimate (2.52) can be reduced to proving that for any x, x′ ∈ Q,
∣
∣M∗,ρ

λ,∞
(
f2
)
(x) −M∗,ρ

λ,∞
(
f2
)(
x′)∣∣ � ‖f‖L∞(μ). (2.61)

For any x, x′ ∈ Q, write
∣
∣M∗,ρ

λ,∞
(
f2
)
(x) −M∗,ρ

λ,∞
(
f2
)(
x′)∣∣

≤
(∫∞

r

∫

|x−y|>8r

∣
∣
∣
∣
∣

(
t

t + |x − y|
)λn

−
(

t

t +
∣
∣x′ − y

∣
∣

)λn
∣
∣
∣
∣
∣

×
∣
∣
∣
∣
1
tρ

∫

|y−z|≤t

K(y, z)
|y − z|1−ρ f2(z)dμ(z)

∣
∣
∣
∣

2dμ(y)dt
tn+1

)1/2

+

(∫∞

r

∫

|x−y|≤8r

∣
∣
∣∣
∣

(
t

t + |x − y|
)λn

−
(

t

t +
∣
∣x′ − y

∣
∣

)λn
∣
∣
∣∣
∣

×
∣∣∣∣
1
tρ

∫

|y−z|≤t

K(y, z)
|y − z|1−ρ f2(z)dμ(z)

∣∣∣∣

2dμ(y)dt
tn+1

)1/2

≡ U1 +U2.

(2.62)

It follows from the mean value theorem that for any x, x′ ∈ Q ⊂ B and y ∈ R
d with |x−y| > 8r,

∣∣∣∣∣

(
t

t + |x − y|
)λn

−
(

t

t +
∣∣x′ − y

∣∣

)λn
∣∣∣∣∣
�
∣∣x − x′∣∣

t

(
t

t + |x − y|
)λn+1

, (2.63)

which, along with (1.2), tells us that

U1 �
(∫∞

r

∫

|x−y|>8r

∣∣x − x′∣∣
(
t + |x − y|)λn+1

∣∣∣∣

∫

|y−z|≤t

1
|y − z|n−ρ dμ(z)

∣∣∣∣

2 dμ(y)dt
tn+2ρ+1−nλ

)1/2

‖f‖L∞(μ)

�
(∫

|x−y|>8r

r

|x − y|λn+1
∫ |x−y|

r

1
tn−λn+1

dt dμ(y) +
∫∞

r

∫

|x−y|≤t

r

tn+2
dμ(y)dt

)1/2

‖f‖L∞(μ)

� ‖f‖L∞(μ).

(2.64)

As for U2, first note that for any x, y ∈ R
d satisfying |y − x| ≤ 8r and t > r, t + |y − x| ≤ 9t, and

then
∣∣∣∣∣

(
t

t + |x − y|
)λn

−
(

t

t +
∣∣x′ − y

∣∣

)λn
∣∣∣∣∣
�
∣∣x − x′∣∣

t
. (2.65)

Therefore,

U2 �
(∫∞

r

∫

|x−y|≤8r

∣∣x − x′∣∣
∣∣∣∣
1
tρ

∫

|y−z|≤t

1
|y − z|n−ρ dμ(z)

∣∣∣∣

2dμ(y)dt
tn+2

)1/2

‖f‖L∞(μ)

�
(∫∞

r

rn+1

tn+2
dt

)1/2

‖f‖L∞(μ)

� ‖f‖L∞(μ).

(2.66)

The estimates for U1 and U2 yield (2.61).
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Now we prove that M∗,ρ
λ (f) satisfies (2.53). Let Q ⊂ R be any two (16

√
d, (16

√
d)d+1)-

doubling cubes. SetN ≡ NQ,R + 1. For any x ∈ Q and any y ∈ R, write

M∗,ρ
λ (f)(x) ≤ M∗,ρ

λ,0

(
f1
)
(x) +M∗,ρ

λ,0

(
f2
)
(x) +M∗,ρ

λ,∞
(
fχ4Q

)
(x)

+M∗,ρ
λ,∞

(
NQ,R∑

k=2

fχ2k+1Q\2kQ

)

(x) +M∗,ρ
λ,∞
(
fχRd\2NQ

)
(y)

+
[M∗,ρ

λ,∞
(
fχRd\2NQ

)
(x) −M∗,ρ

λ,∞
(
fχRd\2NQ

)
(y)
]
.

(2.67)

By (1.2), we obtain that for any x ∈ Q,

M∗,ρ
λ,∞

(
NQ,R∑

k=2

fχ2k+1Q\2kQ

)

(x)

≤
NQ,R∑

k=2

⎡

⎣
∫∞

r

∫

2k−1Q

(
t

t + |x − y|
)λn∣∣
∣
∣
1
tρ

∫

|y−z|≤t
z∈2k+1Q\2kQ

∣
∣f(z)

∣
∣

|y − z|n−ρ dμ(z)
∣
∣
∣
∣

2dμ(y)dt
tn+1

⎤

⎦

1/2

+

⎡

⎣
NQ,R∑

k=2

∫∞

r

∫

2k+2Q\2k−1Q

(
t

t + |x − y|
)λn∣∣∣∣

1
tρ

∫

|y−z|≤t
z∈2k+1Q\2kQ

∣∣f(z)
∣∣

|y − z|n−ρ dμ(z)
∣∣∣∣

2dμ(y)dt
tn+1

⎤

⎦

1/2

+
NQ,R∑

k=2

⎡

⎣
∫∞

r

∫

Rd\2k+2Q

(
t

t + |x − y|
)λn∣∣∣∣

1
tρ

∫

|y−z|≤t
z∈2k+1Q\2kQ

∣∣f(z)
∣∣

|y − z|n−ρ dμ(z)
∣∣∣∣

2dμ(y)dt
tn+1

⎤

⎦

1/2

≡ V1 + V2 + V3.

(2.68)

The Minkowski inequality involving the fact that for any y ∈ 2k−1Q and z ∈ 2k+1Q \ 2kQ,
|y − z|∼|z − xQ| and t ≥ |y − z| ≥ 2k−2l(Q) gives us that

V1 � ‖f‖L∞(μ)

NQ,R∑

k=2

∫

2k+1Q\2kQ

1
∣∣z − xQ

∣∣n

(∫∞

2k−2l(Q)

∫

2k−1Q

1
tn+1

dμ(y)dt
)1/2

dμ(z)

� ‖f‖L∞(μ)

NQ,R∑

k=2

∫

2k+1Q\2kQ

1
∣∣z − xQ

∣∣n
dμ(z)

� KQ,R‖f‖L∞(μ).

(2.69)

It is easy to verify that for any y ∈ 2k+2Q \ 2k−1Q and x ∈ Q, |y − x|∼|y − xQ|, which leads to

V2 �
[
NQ,R∑

k=2

∫

2k+2Q\2k−1Q

∫∞

|y−x|

1
tn+1

dt dμ(y)

]1/2

‖f‖L∞(μ)

+

[
NQ,R∑

k=2

∫

2k+2Q\2k−1Q

1
|x − y|λn

∫ |x−y|

0

1
tn−λn+1

dt dμ(y)

]1/2

‖f‖L∞(μ)

�
[
NQ,R∑

k=2

∫

2k+2Q\2k−1Q

1
∣∣y − xQ

∣∣n
dμ(y)

]1/2

‖f‖L∞(μ)

� KQ,R‖f‖L∞(μ).

(2.70)
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To estimate V3, we first have that for any x ∈ Q, z ∈ 2k+1Q \ 2kQ, and y ∈ R
d \ 2k+2Q,

|y − xQ|∼|y − x|∼|y − z| and |z − xQ| � 2kl(Q). This fact and the Minkowski inequality state
that

V3 � ‖f‖L∞(μ)

NQ,R∑

k=2

∫

2k+1Q\2kQ

{[∫

Rd\2k+2Q

1
∣
∣y − xQ

∣
∣2n

∫∞

|y−x|

1
tn+1

dt dμ(y)
]1/2

+
[∫

Rd\2k+2Q

1
∣
∣y − xQ

∣
∣2n+λn

∫ |y−x|

0

1
tn−λn+1

dt dμ(y)
]1/2}

dμ(z)

� ‖f‖L∞(μ)

NQ,R∑

k=2

∫

2k+1Q\2kQ

1
∣
∣z − xQ

∣
∣n
dμ(z)

� KQ,R‖f‖L∞(μ).

(2.71)

Combining the estimates for V1, V2, and V3 yields that

M∗,ρ
λ,∞

(
NQ,R∑

k=2

fχ2k+1Q\2kQ

)

(x) � KQ,R‖f‖L∞(μ). (2.72)

An argument similar to the estimate of (2.60) shows that for any y ∈ R,

M∗,ρ
λ,∞
(
fχRd\2NQ

)
(y) ≤ M∗,ρ

λ
(f)(y) + C‖f‖L∞(μ). (2.73)

By some estimate similar to that for (2.61), we easily obtain that for any x, y ∈ R,

∣∣M∗,ρ
λ,∞
(
fχRd\2NQ

)
(x) −M∗,ρ

λ,∞
(
fχRd\2NQ

)
(y)
∣∣ � ‖f‖L∞(μ). (2.74)

Therefore, for any x ∈ Q and y ∈ R,

M∗,ρ
λ (f)(x) −M∗,ρ

λ (f)(y) � M∗,ρ
λ,0

(
f1
)
(x) +M∗,ρ

λ,∞
(
fχ4Q

)
(x) +KQ,R‖f‖L∞(μ). (2.75)

Taking mean value over Q for x, and over R for y, then yields

mQ

[M∗,ρ
λ
(f)
] −mR

[M∗,ρ
λ
(f)
]

� mQ

[M∗,ρ
λ,0

(
f1
)]

+mQ

[M∗,ρ
λ,∞
(
fχ4Q

)]
+KQ,R‖f‖L∞(μ)

� KQ,R‖f‖L∞(μ),
(2.76)

wherewe used the fact thatmQ[M∗,ρ
λ,0(f1)] � ‖f‖L∞(μ) andmQ[M∗,ρ

λ,∞(fχ4Q)] � ‖f‖L∞(μ), which
can be proved by a way similar to that for the estimate (2.57). This finishes the proof of
Theorem 2.7.

Remark 2.11. From the proofs of Theorems 2.2 and 2.7, we can see that if we replace the
assumption that Mρ as (1.4) is bounded on L2(μ) by the one that M∗,ρ

λ is bounded on L2(μ),
then Theorems 2.2 and 2.7 still hold. Therefore, applying the interpolation theorem (see
[23, Theorem 7.1]) between the endpoint estimates that M∗,ρ

λ
is bounded from L∞(μ) into

RBLO(μ), which is a subspace of RBMO(μ), and the boundedness of M∗,ρ
λ

in L2(μ), we can
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obtain that M∗,ρ
λ as in (1.6) is bounded on Lp(μ) for p ∈ [2,∞) with the kernel satisfies (1.2)

and (1.3). On the other hand, it follows from the Marcinkiewicz interpolation theorem that
M∗,ρ

λ
as in (1.6) is also bounded on Lp(μ) for p ∈ (1, 2) with the kernel satisfying (1.2) and

(2.1).

3. Boundedness of M∗,ρ
λ in Hardy spaces

In this section, we will prove that the operator M∗,ρ
λ

as in (1.6) is bounded from H1(μ) into
L1(μ). To state our result, we first recall the definition of the space H1(μ) via the “grand”
maximal function characterization of Tolsa (see [29]).

Definition 3.1. Given f ∈ L1
loc(μ), set

MΦf(x) ≡ sup
ϕ∼x

∣
∣
∣
∣

∫

Rd

f(y)ϕ(y)dμ(y)
∣
∣
∣
∣, (3.1)

where the notation ϕ∼x means that ϕ ∈ L1(μ) ∩ C1(Rd) and satisfies

(i) ‖ϕ‖L1(μ) ≤ 1,

(ii) 0 ≤ ϕ(y) ≤ 1/|y − x|n for all y ∈ R
d,

(iii) |∇ϕ(y)| ≤ 1/|y − x|n+1 for all y ∈ R
d.

Definition 3.2. The Hardy space H1(μ) is defined to be the set of all functions f ∈ L1(μ)
satisfying that

∫
Rdf dμ = 0 and MΦf ∈ L1(μ). Moreover, we define the norm of f ∈ H1(μ) by

‖f‖H1(μ) ≡ ‖f‖L1(μ) +
∥∥MΦf

∥∥
L1(μ). (3.2)

Theorem 3.3. LetK be a μ-locally integrable function on R
d ×R

d \{(x, y) : x = y} satisfying (1.2)
and (2.1), and M∗,ρ

λ
be as in (1.6) with ρ ∈ (n/2,∞) and λ ∈ (2,∞). Then, M∗,ρ

λ
is bounded from

H1(μ) into L1(μ).

We begin with the proof of Theorem 3.3 with the atomic characterization of H1(μ)
established by Tolsa in [23].

Definition 3.4. Let η ∈ (1,∞) and p ∈ (1,∞]. A function b ∈ L1
loc(μ) is called to be an atomic

block if

(i) there exists some cube R such that supp(b) ⊂ R;

(ii)
∫
Rdb(x)dμ(x) = 0;

(iii) there are functions aj with supports in cubes Qj ⊂ R and numbers λj ∈ R such that
b ≡∑j λjaj , and

∥∥aj

∥∥
L∞(μ) ≤

[
μ
(
ηQj

)]1/p−1[
KQj,R

]−1
. (3.3)

Then, we define |b|
H

1,p
atb(μ)

≡∑j |λj |.
A function f ∈ L1(μ) is said to belong to the space H

1,p
atb(μ) if there exist atomic

blocks bi such that f ≡ ∑∞
i=1 bi with

∑
i |bi|H1,p

atb(μ)
< ∞. The H

1,p
atb(μ) norm of f is defined by

‖f‖
H

1,p
atb(μ)

≡ inf
∑

i |bi|H1,p
atb(μ)

, where the infimum is taken over all the possible decompositions
of f in atomic blocks.
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It was proved in [23] that the definition of H
1,p
atb(μ) is independent of the chosen

constant η ∈ (1,∞), and for any p ∈ (1,∞], all the atomic Hardy spaces H
1,p
atb(μ) are just

the Hardy space H1(μ)with equivalent norms.

Proof of Theorem 3.3. By a standard argument, it suffices to verify that for any atomic block b
as in Definition 3.4 with η = 2 and p = ∞,

∥
∥M∗,ρ

λ
(b)
∥
∥
L1(μ) � |b|H1,∞

atb (μ). (3.4)

Let all the notation be the same as in Definition 3.4. Write

∫

Rd

M∗,ρ
λ (b)(x)dμ(x) =

∫

Rd\6
√
dR

M∗,ρ
λ (b)(x)dμ(x) +

∫

6
√
dR

M∗,ρ
λ (b)(x)dμ(x) ≡ W1 +W2.

(3.5)

By (2.24) and Definition 3.4, we have

W1 � ‖b‖L1(μ) � |b|H1,∞
atb (μ). (3.6)

To estimate the term W2, let b ≡∑j λjaj be as in (iii) of Definition 3.4, and further write

W2 ≤
∑

j

∣∣λj
∣∣
∫

2Qj

M∗,ρ
λ

(
aj

)
(x)dμ(x) +

∑

j

∣∣λj
∣∣
∫

6
√
dR\2Qj

M∗,ρ
λ

(
aj

)
(x)dμ(x). (3.7)

The L2(μ)-boundedness of M∗,ρ
λ

via the Hölder inequality states that for each fixed j,

∫

2Qj

M∗,ρ
λ

(
aj

)
(x)dμ(x) ≤ ∥∥M∗,ρ

λ

(
aj

)∥∥
L2(μ)

[
μ
(
2Qj

)]1/2 �
∥∥aj

∥∥
L∞(μ)μ

(
2Qj

)
� 1. (3.8)

On the other hand, it follows from (2.48) that

∫

6
√
dR\2Qj

M∗,ρ
λ

(
aj

)
(x)dμ(x) �

∫

6
√
dR\2Qj

1
∣∣x − xQj

∣∣n
dμ(x)

∥∥aj

∥∥
L1(μ)

� KQj,R

∥∥aj

∥∥
L∞(μ)μ

(
Qj

)

� 1.

(3.9)

Thus,

W2 �
∑

j

∣∣λj
∣∣ = |b|H1,∞

atb (μ), (3.10)

which completes the proof of Theorem 3.3.
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4. Boundedness of Mρ

S in Lebesgue spaces and Hardy spaces

In this section, we will investigate the boundedness for the operator Mρ

S as in (1.5) in
Lebesgue spaces and Hardy spaces.

It is easy to verify that for any ρ ∈ (0,∞), λ ∈ (1,∞), and x ∈ R
d,

Mρ

S(f)(x) ≤ M∗,ρ
λ
(f)(x), (4.1)

which, together with Theorems 2.1 and 2.2, gives us the boundedness of the operator Mρ

S in
Lp(μ) for p ∈ [1,∞) as follows.

Theorem 4.1. LetK be a μ-locally integrable function on R
d ×R

d \{(x, y) : x = y} satisfying (1.2)
and (1.3), andMρ

S be as in (1.5) with ρ ∈ (0,∞). Then, for any p ∈ [2,∞),Mρ

S is bounded on Lp(μ).

Theorem 4.2. LetK be a μ-locally integrable function on R
d ×R

d \{(x, y) : x = y} satisfying (1.2)
and (2.1), andMρ

S be as in (1.5) with ρ ∈ (n/2,∞). Then,Mρ

S is bounded from L1(μ) to weak L1(μ).

By the Marcinkiewicz interpolation theorem, and Theorems 4.1 and 4.2, we easily
obtain the Lp(μ)-boundedness of the operator Mρ

S for p ∈ (1, 2).

Corollary 4.3. Let K be a μ-locally integrable function on R
d × R

d \ {(x, y) : x = y} satisfying
(1.2) and (2.1), and Mρ

S be as in (1.5) with ρ ∈ (n/2,∞). Then, Mρ

S is bounded on Lp(μ) for any
p ∈ (1, 2).

For the case of p = ∞, we also obtain the similar result for the operator M∗,ρ
λ .

Theorem 4.4. LetK be a μ-locally integrable function on R
d ×R

d \{(x, y) : x = y} satisfying (1.2)
and (1.3), and Mρ

S be as in (1.5) with ρ ∈ (0,∞). Then, for any f ∈ L∞(μ), Mρ

S(f) is either infinite
everywhere or finite almost everywhere. More precisely, ifMρ

S(f) is finite at some point x0 ∈ R
d, then

Mρ

S(f) is finite almost everywhere and
∥∥Mρ

S(f)
∥∥
RBLO(μ) ≤ C‖f‖L∞(μ), (4.2)

where the positive constant C is independent of f .

As for the behavior of the operator Mρ

S in Hardy spaces, we have the following
conclusion.

Theorem 4.5. LetK be a μ-locally integrable function on R
d ×R

d \{(x, y) : x = y} satisfying (1.2)
and (2.1), and Mρ

S be as in (1.5) with ρ ∈ (n/2,∞). Then, Mρ

S is bounded from H1(μ) to L1(μ).

We point out that Theorems 4.4 and 4.5 can not be easily deduced from (4.1), and
Theorems 2.7 and 3.3. However, using the same method, we can prove the above results
more easily than the corresponding results forM∗,ρ

λ . Here, we omit the proofs for brevity.

Acknowledgments

This work is supported by National Natural Science Foundation of China (no. 10701078). The
authors want to express their deep thanks to Professor Dachun Yang for his useful advices.
The authors would like to thank the referee for his very careful reading and many useful
remarks.



24 Journal of Inequalities and Applications

References

[1] D. Deng, Y. Han, and D. Yang, “Besov spaces with non-doubling measures,” Transactions of the
American Mathematical Society, vol. 358, no. 7, pp. 2965–3001, 2006.

[2] Y. Han and D. Yang, “Triebel-Lizorkin spaces with non-doubling measures,” Studia Mathematica, vol.
162, no. 2, pp. 105–140, 2004.

[3] G. Hu, Y. Meng, and D. Yang, “New atomic characterization ofH1 space with non-doublingmeasures
and its applications,”Mathematical Proceedings of the Cambridge Philosophical Society, vol. 138, no. 1, pp.
151–171, 2005.

[4] F. Nazarov, S. Treil, and A. Volberg, “Weak type estimates and Cotlar inequalities for Calderón-
Zygmund operators on nonhomogeneous spaces,” International Mathematics Research Notices, no. 9,
pp. 463–487, 1998.

[5] F. Nazarov, S. Treil, and A. Volberg, “Accretive system Tb-theorems on nonhomogeneous spaces,”
Duke Mathematical Journal, vol. 113, no. 2, pp. 259–312, 2002.

[6] F. Nazarov, S. Treil, andA. Volberg, “The Tb-theorem on non-homogeneous spaces,”ActaMathematica,
vol. 190, no. 2, pp. 151–239, 2003.

[7] X. Tolsa, “Littlewood-Paley theory and the T(1) theorem with non-doubling measures,” Advances in
Mathematics, vol. 164, no. 1, pp. 57–116, 2001.

[8] D. Yang and Do. Yang, “Uniform boundedness for approximations of the identity with nondoubling
measures,” Journal of Inequalities and Applications, vol. 2007, Article ID 19574, 25 pages, 2007.

[9] J. Verdera, “The fall of the doubling condition in Calderón-Zygmund theory,” Publicacions
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