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1. Introduction

Throughout this paper, we use the following notations:

N:={1,2,3,...},

No :=Nu {0},
(1.1)
Ry={ueR:u>-1},
R, =R\ {0}.
Let o denote the class of all functions of the form
f(z)=z+ Zanz”, (1.2)
n=2

which are analytic in the open unit disk U := {z € C: |z]| < 1}.
For f; € o4 given by

fi(z)=z+ Zan,]-z” (j=1,2), (1.3)
n=2
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the Hadamard product (or convolution) fixf, of f1 and f> is defined by
(fixf2)(2) = 2+ > anianz". (1.4)
n=2

Using the convolution (1.4), Shagsi and Darus [1] introduced the generalization of the
Ruscheweyh derivative as follows.
For f e 4, A >0, and u € R_;, we consider
z
*

RAf(Z) = GT

i Rif(z) (z€l), (1.5)

where R, f(z) = (1-1)f(z) + Azf (z), z€ U.
If f € 4 is of the form (1.2), then we obtain the power series expansion of the form

Rif(z)=z+ i[l + (n-1)A]C(u, n)a,z", (1.6)
n=2
where
1+u),_
C(u,n) = Tl)'l (n e N), (1.7)

and where (a), is the Pochhammer symbol (or shifted factorial) defined (in terms of the
Gamma function) by

_Tla+n) |1, ifn=0, aeC)\ {0},
(@), = ['(a) _{a(a+1)-~-(a+n—l), ifneN, aeC. (18
In the case m € Ny, we have
m— (m)
Ry f(z) = ZESEN (19

m!

and for A = 0, we obtain uth Ruscheweyh derivative introduced in [2], R}’ = R™.
Using the generalized Ruscheweyh derivative operator RY, we define the following
classes.

Definition 1.1. Let S)(u, v; a) be the class of functions f € & satisfying

R{f(z)
Re{m} > (110)

forsome 0 < a <1, uER(_)l, veER_, A>0,and all z e U.
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In this paper, basic properties of the class .S, (u, v;a) are studied, such as coefficient
bounds, extreme points, and integral means inequalities for the fractional derivative.

2. Coefficient inequalities

Theorem 2.1. Let0<a <1, u € R%, v € Ry, and A > 0. If f € o satisfies

iBn(u, v,a)|a, <2(1-a), (2.1)

n=2
where
By(u,v,a) :=[1+n-1DA{|C(u,n) - (1+a)C(v,n)|+C(u,n) +(1-a)C(v,n)}, (2.2)

then f € S\ (u,v; a).

Proof. Let (2.1) be true for0 < a <1, u € R?l, v € Rj,and A > 0. For f € <4, define the
function F by

_Rif=
F(z) := —szf(z) a. (2.3)
It is sufficient to show that
F(z)-1
| F(z)+1 24
for z € U.
So, we have
|P(z) —1| _|Rif(2) - L+ )RS (2)
F(z)+1 Rif(z) + (1-a)R]f(2)
] a-3I,[+ (n-1DA[C(u,n) - (1 +a)C(v,n)]a,z""
le-a)+ Soo[1+ (m—1)A[C(u,n) + (1 —a)C(v,n)]a,z"!
a+ 32,1+ (n-1)A]|C(u,n) - (1 +a)C(v,n)||allz"" (2.5)

T 2-a) - S+ (n-DAC(w,n) + (1 - a)C(o,n)]|ag|2|""

oo+ X[l + (- DMICw,n) - (1 +a)C(v,n)||a,|
2-a) - 3551+ (n-DM[C(u,n) + (1 - a)C(v,n)]|a|

<1 (by (2.1)).

Therefore, f € Sy (u,v; a). O
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Theorem 2.2. If f € Sy (u,v; a), then

21-a nl
] < (1-a)

[1+ (n-1)A]|C(u,n) — C(v,n)| <

forn >2, with a; = 1.

Proof. Define the function

G(z) = ! <ij(z) a) =1 +§:ﬁnz".

T 1-a\R{f(2) ) n=1
Since Re{G(z)} > 0, we get
|an| <2
forn=1,2,....
From the definition of G(z), we obtain
R‘jf(z)l—_otch}’f(z) CRf(2) [1 . gﬁnzn]-

So, by (1.6), we have

z+ 1 ti[C(u,Z) - aC(v,2)]axz* + 11-|-_2; [C(u,3) —aC(v,3)]azz® + - --
=z+ @z + @z +azzt

+(1+1)C(v,2)arz> + (1 +1)C(v,2)a2d12° + (1 + )C(v,2)aradrz* + - -

+(1+20)C(v,3)asz® + (1 +210)C(v,3)azaz* + - -

or

z4 % [C(1,2) - C(v,2)]arz?® + 11+ 2\

-

=z+a12°+ [(1+ VM) C(v,2)axa1 + G2]2°

+[(1+20)C(v,3)aza; + (1 + V) C(v,2)ardy + az]z* + - -+

DL+ (n—-u-1)AIC(v,n - u)|an-|
u=1

[C(u,3) - C(v,3)]azz’ +---

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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or, equivalently,

i +(” 1)A [C(u, j) - C(0, )] anz"

n=

(2.12)
0 n-1
=z+ Z (Z[l +(n-u-1)A]C(v,n- u)anuﬁu>z"
n=2 \u=1
When we consider the coefficients of z” of both series in the above equality, we have
a, = 1-a §[1+(n—u—1)A]C(vn—u)a a (2.13)
" [+ (n-1A][C(w,n) - Clo,n)] & ' e '
Therefore,
|an| < l-a ni[u(n-u-nucwn-u)m X
"7+ (n-1ANC(u,n) - C(v,n)| & ' e
(2.14)
2(1-a) =
[1 T DA[Clun) = C(‘U,n)|§[1 +(n-u-1DAC(v,n—u)la, .|,
since |a,| <2, (u=1,2,...). O
3. Extreme points
Definition 3.1. Let K 1 (1, v; a) be the subclass of S (u, v; a) which consists of function
f(z)=z+ Zanz" (a, >0) (3.1)
n=2
whose coefficients satisfy inequality (2.1).
Theorem 3.2. Let fi(z) = z and
- 2(1-a) —
fi(z)=z+ B (.0, ) (k=2,3,...), (3.2)

where By (u, v, a) is given by (2.2).
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Then f € 3\ (u,v; ax) if and only if it can be expressed in the form

£2) = 3 6cfe(2), (3.3)
k=1
where 6, > 0 and 32,6k = 1.
Proof. Assume that
£2) = 3 6cfe(2). (3.4)
k=1
Then
£(2) = 61f1(2) + 3 6efil2)
k=2
3 & 2(1-a) 4
=01z + kz:;(ﬁk <z + —Bk(u,v,a)z >
(3.5)
3 & 2(1-a)
= <Z5k> zZ+ Z(Sk Bk(u, o, {X)
3 & 2(1-a)
—ET Zék Bi(u,v, a)
Thus
= 2(1-a) &
Z ————Bi(u,v,a) =2(1 - a) D 6 =2(1 - a) (1 - 61) < 2(1 - a). (3.6)
k=2 k(u/ v, ) k=2
Therefore, we have f € S V(u,v;a).
Conversely, suppose that f € 3, (u,v; a). Since
2(1-a) 3
ai S W (k —2,3,...), (37)
we can set
_ Bi(u,v,a) 3
6k. 2(1 a) k (k—2/3 )/
(3.8)
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Then
f(z)y=z+ Zakzk
k=2
: - . 2(1-a)
= <Z§k> z+ Zék Bk(u, D, a)
= 2(1-a) k)
=61z+ ) Okl 2+ o7 3.9
" é k<z Br(u,v,a) 39)
= 61f1(2) + 26k fi(2)
k=2
= > 6k fi(2).
k=1
This completes the proof of Theorem 3.2. O

Corollary 3.3. The extreme points of S, (u,v; ) are given by

2(1-a)
Bi(u, v, )

fi(z) =z, fr(z) = (k=2,3,...), (3.10)

where By (u, v, a) is given by (2.2).

4. The main integral means inequalities for the fractional derivative

We discuss the integral means inequalities for functions f € 8, (1, v; a).
The following definitions of fractional derivatives by Owa [3] (also by Srivastava and
Owa [4]) will be required in our investigation.

Definition 4.1. The fractional derivative of order 7 is defined, for a function f, by

1 dfS®
DY) = ey o) e <1<, @1)

where the function f is analytic in a simply connected region of the complex z-plane

containing the origin, and the multiplicity of (z—¢)™" is removed by requiring log(z — ¢)
to be real when z — ¢ > 0.

Definition 4.2. Under the hypothesis of Definition 4.1, the fractional derivative of order p + 1
is defined, for a function f, by

DEIf(z) = L Dlf(z), (42)

where 0 <7 <1and p € Np.
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It readily follows from (4.1) in Definition 4.1 that

I'(k+1) _
1 k:— kT] <
D!z TSk (0<n<1, keN). (4.3)

We will also need the concept of subordination between analytic functions and a
subordination theorem of Littlewood [5] in our investigation.

Definition 4.3. Given two functions f and g, which are analytic in U, the function f is said to
be subordinate to g in U if there exists a function w analytic in U with

w(0) =0, lw(z)|<1 (z€l), (4.4)
such that
f(2) = g(w(z)) (z€0). (4.5)
We denote this subordination by
f(2) <8(2). (4.6)
Lemma 4.4. If the functions f and g are analytic in U with
f(z) <g(2), (4.7)

then, for u>0and z =re®® (0<r<1),
2 2
[ o< [ g@rae. (43)

Our main theorem is contained in the following.

Theorem 4.5. Let f € 3 (1, v; &) and suppose that

ni:z(n " Plpntn < Bk(zu(,lvjf))Fr((:: 11)—F1;3—_P7)1F_(2P )— p) #9)
for0<p<mn, kzp, 0<n <1, where (n-p),,, denotes the Pochhammer symbol defined by
(n—p)p+1=(n—p)(n—p+1)---n. (4.10)
Also let the function fi be defined by
fk(z)=z+M kK (k=2,3,...). (4.11)

Br(u,v, @)
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If there exists an analytic function w defined by

Br(u,v,a0)['(k+1
(w(z)"" = k(uzz(Jla)a()F& + 1;1 p)z(” Plpa ¥ (m)anz"
with
1" —
Y(n) = W-l-(rll——z)—p)' 0<n<1, n=23,..),

then, for u>0and z =re’® (0<r<1),

27T 2T
f |D§+"f(z)|”degj |IDE i (2)|"d6, (0<n<1).
0 0

Proof. By means of (4.3) and Definition 4.2, we find from (3.1) that

. Zl=n-p SIr2-n-pln+1) -
quf(z)_m n- P)[ Z Tn+1-n-p) " 1]

1-n- ©
= Lpp) [1 + ZF(Z -n-p)(n- p)p+1‘I’(n)anz"‘

re-n- =

where

I(n-p)

YO T iy

O0<n<1,n=23,...).

Since ¥ is a decreasing function of n, we get

I'(2-p)

Similarly, from (4.11), (4.3), and Definition 4.2, we have

L -
D; fk(z)_r(z_ﬂ_p) Bi(u,v,a) T(k+1-n-p)

1],

Z1-1-p . 21-a) T2-n-p)T(k+1) k1

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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For p>0and z = re® (0 < r < 1), we want to show that

27 0 "
f 1+ ZF(Z -n-p)(n- p)I[,Jrl‘P(n)anz”_1 de
0 n=2
(4.19)
27 _ o u
. f L, 20-@) Te-n-pTk+1) )
0 Br(u,v,a) I'(k+1-n-p)
So, by applying Lemma 4.4, it is enough to show that
iy ~ el 2(1l-a) TQ-n-pT(k+1) .,
1 +7§F(2 n-p)n-p)n¥ma,z"" <1+ Be(o,@) Tk+i-n-p) z
(4.20)

If the above subordination holds true, then we have an analytic function w with w(0) = 0 and
|w(z)| < 1 such that

o nl 21-a) TR-n-p)T(k+1) o
1+nzzzr(z—n—P)(n—P)pH‘P(n)anz 1_1+Bk(u,v,a) T T p) (w(z)) .
(4.21)

By the condition of the theorem, we define the function w by

7Yy k - = -
(e = BB D S ), ¥z, (422
n=2

which readily yields w(0) = 0. For such a function w, we have

0

Bi(w,v,a)[(k+1-1-p) .
2(1 - a)F(k + 1) nZ=2(n - p)p+1q'(n)an|z|

lw(z)[F! <

0

Bk(u,v,zx)l"(k+1—11—p)qr(2) (n-p) ..a
Z p+177
n=2

S To g v
ety (4.23)
_Bewo,a)l(k+1-5-p) T2-p) &
B Te R vy r(3_n_p)n2=2(n—p),,+lan
<zl <1
by means of the hypothesis of the theorem.
O

Thus the theorem is proved.

As a special case p = 0, we have the following result from Theorem 4.5.
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Corollary 4.6. Let f € S\(u,v;a) and suppose that

X 21 -a)(k+1)I'(3—1)
nZ:zna" s Br(u,v,a)T(k+1-17)

(k=2,3,..).

If there exists an analytic function w defined by

Br(u,v,a)[(k+1-1) &

k-1 _ n—
(w(z))" = ATk 1) %n‘l’(n)anz !
with
__I'm _
W(n)—w+—1_m, (OSTZ<1, Tl—2,3,...),

then, for u>0and z =re®® (0<r<1),
27T 27
f|Dy@nm93j|Dyu@Vﬂz (0<n<1)
0 0

Letting p = 1 in Theorem 4.5, we have the following.

Corollary 4.7. Let f € 3y (u,v; ) and suppose that

21 -a)T(k+ 1)I'(2 - 1)
Br(u,v,a)l'(k —1)

in(n -1)a, <
n=2

If there exists an analytic function w defined by

By (u,v, )T (k — 1) &

k-1 _ e
with
_T(n-1) i
Ip(n)_l"(n——rl)’ 0<n<1, n=23...),

then, for u>0and z =re’® (0<r<1),

27 20T
[k r@laes [ i) de, ©<n <1,
0 0

(k=2,3,..).

11

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
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