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1. Introduction and preliminaries

Let U be the unit disk of the complex plane:

U={zeC:|z|<1}. (1.1)
Let H(U) be the space of holomorphic functions in U,
Ay ={fedlU), f(z)=z+amz"™" +---, zelU} (1.2)
with A1 = A, and
S={fe€A:fisunivalent in U}. (1.3)

Lemma 1.1 (see [1]). If the function f is regular in the unit disc U,

f(z)=z+az’+--,

Zf"(Z)

f'(2)

(1.4)
(1-1=P)

then the function f is univalent in U.
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Definition 1.2 (St. Ruscheweyh [2]). For f € A, n € NU {0}, let R" be the operator defined by
R": A — A,

Rf(2) = f(z),
R'f(z) = zf'(2)

(1.5)
(n+ 1R f(z) = z[R"f(2)] + nR"f(z), zel.
Remark1.3. If f € A
f(z)=z+ iajzj, (1.6)
i=2

then

R'f(z)=z+ iCzﬂ._lajzj, zel, (1.7)
j=1

with

R"£(0) =0, [R"f(0)] = 1. (1.8)

Lemma 1.4 ([3, Schwarz’s lemma], [4, Lemma 4.26, page 103]). If the analytic function f(z) is
regular in U with f(0) = 0and |f(z)| <1 for all z € U, then

|f(2)| <1z, vzel, (1.9)

and |f'(0)| < 1.
The equality holds if and only if f(z) =cz, z€ U, |c| =1.

2. Main results

By using the Ruscheweyh differential operator given by Definition 1.2, we introduce the
following integral operator.

Definition 2.1. Let n,m € NU {0}, i € {1,2,3,...,m}, a; € C. Define the integral operator
I(fi, fores fon) : AT — A,

I(fo, fareee) i) (2) = L [Rnle(t)]al [Rnftm(t)rmdt, zel, 2.1)

where f;(z) € A and R" is the Ruscheweyh differential operator.

Remark 2.2. (i)Forn=0, m=1, ey =1, ap =az=---=a,, =0,

R'f(z) = f(z) € A, (22)
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we obtain Alexander integral operator introduced in 1915 in [5]:

Zf(t
I(z) = @dt, z € U. (2.3)
0
(ii) Forn=0, m=1, a1 =a€[0,1], x=a3=---=a,, =0, Rof(z) = f(z) € S,and we
obtain the integral operator
z t a
I,(z) :J’ [@] dt (2.4)
0

studied in [6].
(iii) Forn=1, m=1, a1 =y €C, |y|<1/4, ap=---=a,, =0, le(z) =zf'(z) € S, we
obtain the integral operator

Fy(z) = L [f'(®)]"dt (2.5)

studied in [7, 8].
(iv)Forn=0, meNU ({0}, a; €C, i€ {1,2,...,m}, R°f(z) = f(z) € S, and we obtain
the integral operator

Fo- [ RO [0 »

studied in [9].
(v) Forn,m e NuU {0}, i € {1,2,...,m}, a; > 0, we obtain the integral operator F,, :
A™m — A,

Eun(fu, foreeor fun)(2) = fo [an?(t)]m [an;m(t)rmdt 2.7)

studied in [10].
(vijForn=0, m=1, a1 =y,a =+ =a, =0, RRf(z) = f(z), and we obtain the
integral operator

F,(z) = fo [@] Lt (2.8)

studied in [11, 12].

Theorem 2.3. Let n,m e NU {0}, i € {1,2,...,m}, a; €C, fi€ A If

z(R'fi(2))"
R"fi(z)

then I(f1, fa, ..., fm)(z) given by (2.1) is univalent.

1'31, | + [as| + -+ an] <1, zel, (2.9)
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Proof. Since f; € A, i € {1,2,...,m}, from Remark 1.3 we have

R"fi(z) z+ X2 2 Gl 1‘1]12 &
> > Z n+j— 1a]1z ’
=2 (2.10)
R'f;
RO o en

For z = 0, we have

[Rnfl(z)]a1 [Rnfm(z)]um -1 (211)
z z
By differentiating (2.1), we obtain
RVl ay R1’l m Xin
I'(fi, far-ee0 fm)(2) = [ﬂ] ' [fT(Z)] , zel, 212)

I'(fi, fa, -  fm)(0) = 1.
Using (2.12), we obtain

log I'(f1, f2, .-, fm)(z) = a1[log R" f1(z) —log z] + -+ + ap [log R" fn(z) —log z], ze€U.

(2.13)
By differentiating (2.13), we have
e Rl = S R e ARSI
and after a short calculus we obtain
Zj(%ff § fin;)<(zz>) = lel [2(11;:;1;5))) * el [Z(RRJJ:—:;)) 1] zeu
(2.15)
We multiply the modulus of (2.15) by (1 - |z[2) and we obtain
R e
= (1= =)o [2(11;:]/:11((22)))' B 1] T [Z(§:;:((§)))I B 1] ‘ (2.16)
< (1= 12 |l [ B 1] [ L2 E

S fla| + oo+ fam] (A= [2°]) < Jan] + oot | <1

From Lemma A, we have I(fy, f2,..., fm)(z) €S. O
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Remark 2.4. (i) Forn =0, R"fi(z) = fi(z) € S, we obtain Theorem 2.3 from [9].
(ii) For a; € R, a; > 0, Theorem 2.3 can be rewritten as follows.

Corollary 2.5. Let n,m ¢ NU {0}, i € {1,2,...,m}, a; >0withay +ar+---+a, <LIffic A
satisfy

2(R'fi(2)

) <1, zel, (2.17)

then the integral operator given by (2.1) is univalent.
Theorem 2.6. Let n,m e NU {0}, i € {1,2,...,m}, a; € C. If f; € A satisfy
(i) lar] + -~ +lam| <1/3,
(i) [R" fi(z)| <1,
(iii) [22(R" fi(2))'/ (R fi(2))* = 1] < 1
forall z € U, then the integral operator given by (2.1) is univalent.

Proof. Using (2.14), we obtain

2[[(fr - S| ||2RAGR) 2(R'fn(2))
uth o mar| N TRRe ot TR Y ¢
We multiply (2.18) by (1 — |z|?), use Schwarz’s lemma, and obtain
zT"(z)
=0 Ty
e Z(R”f1(2))_ e Z(R"fm(z))'_
= (= B ol [y <1 s (-l | g -1
R" ’ R fu(2))’
= (1= 2 ool | (- e s o (1 )l |2

+(1-1z*) |am]

= (- =Pl || S | o | P || £ (- ]+ ]
ooy [ |PRACY IRAL PR () (R )
= 1= ) e wry | E T gy | |

+ (= 2P [lan] + oo+ ]
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< 0128 [l SR o | LS [ 1oy
- 1128l ZEERER

e (1 ) e —ZZ;Rfi’:Zf;;g et + L] + (1= (2 [Jts] -+ + et
B o |

F (=2 (o] oo ) + (1= 2R (| -+ )
< (U= 2P (Joa] + o] -0+ ) + 201 = ) (] +--+
=301 1) (| + -+ )

<3(|ar| + -+ |am])-
(2.19)

From (2.19) and condition (i), we have

zF"(z)

(1 - |Z|2> F’(Z)

(2.20)

forall z e U.
By Lemma A, it follows that the integral operator I(f1, f2, ..., fm)(z) is univalent. O

Remark 2.7. Forn=0, m=1, a; =a €C, |a|<1/3, ap =--- = ay, = 0, the result was obtained
in [11, Theorem 1].

For a; € R, a; > 0, Theorem 2.6 can be rewritten as follows.
Corollary 2.8. Let n,m e NU {0}, i € {1,2,...,m}, a; > 0. If f; € A satisfy

) ag+ay+---+a,<1/3,
(i) [R"fi(2)| < 1,
(iii) [22(R"fi(2)) /(R fi(2))* - 1| < 1

forall z € U, then the integral operator given by (2.1) is univalent.
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