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Let y be the Jacobi measure supported on the interval [—1, 1]. Let us introduce the
Sobolev-type inner product (f,g) = [', f(x)g(x)du(x) + Mf(1)g(1) + N f'(1)g’ (1)
where M,N = 0. In this paper we prove a Cohen-type inequality for the Fourier expan-
sion in terms of the orthonormal polynomials associated with the above Sobolev inner
product. We follow Dreseler and Soardi (1982) and Markett (1983) papers, where such
inequalities were proved for classical orthogonal expansions.
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1. Introduction and main result

Let du(x) = (1 —x)*(1 +x)ﬁdx, a>—1, 3 > —1, be the Jacobi measure supported on the
interval [—1,1]. We will say that f(x) € LP(dy) if f(x) is measurable on [—1,1] and
Il fll e (g < o0, where

1/p
(I | f(x) [P du(x ) ifl <p<oo,
I fllzean = (1.1)
esssup| f(x)| if p = oo,
—l<x<1
Now let us introduce the Sobolev-type spaces
Sp={f:IIFIS, =1l flTog + MIF P +N|f/(1)[F <0}, 1=p<oo,
(1.2)

o =1{f:lIflls. = fllr=an < oo}, p=oco.
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Let f and g function in S,. We can introduce the discrete Sobolev-type inner product
1
(f.8) = J_l Fogx)du(x) +Mf(1)g(1)+N f'(1)g'(1), (1.3)

where M > 0, N > 0. We denote by {qi,a’ﬂ ) } 50 the sequence of orthonormal polynomials
with respect to the inner product (1.3) (see [1, 2]). These polynomials are known in
the literature as Jacobi-Sobolev-type polynomials. For M = N = 0, the classical Jacobi
orthonormal polynomials appear. We will denote them by { pﬁ,‘x’ﬁ ) boso

For f € S, the Fourier expansion in terms of Jacobi-Sobolev-type polynomials is

> FRg? (), (1.4)
k=0

where
foy = {(f.a"). (1.5)

The Cesaro means of order § of the Fourier expansion (1.4) are defined by (see [3,
pages 76-77])

n

A~
ohf () = 3 =k f kg™ (), (1.6)

where Ai = (k;;‘s).
For a function f € S, and a given sequence {ckn}rpon € N U {0}, of complex num-

bers with |c,,,| > 0, we define the operators To™"" by
o,3,M,N " A~ «,
SN ) =S o f (R)gP. (1.7)
k=0

Let us denote py = (48 +4)/(25+3) and its conjugate qo = (45 +4)/(25+ 1). Here is
the main result.

TueorREM 1.1. Let f = o = —1/2, 3 > —1/2, and 1 < p < co. There exists a positive constant
¢, independent of n, such that

n(2p+2)/p—(2+3)/2 if1<p<po
BMN -
Tsﬁ H[S ] > C|Cn,n| (IOg n)(2ﬁ+l)/(4ﬁ+4) lfp = po> P = o> (1.8)
» n(p+1)/2-(2B+2)/p ifgo < p < oo,

where by [S,] one denotes the space of all bounded, linear operators from the space S, into
itself, with the usual operator norm ||-|| [5,]-
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CoROLLARY 1.2. Let a, f3, and p be as in Theorem 1.1. For ¢, = 1, k = 0,...,n, and for p
outside the Pollard interval (py,qo),

||SH||[SP] — 00, n— o, (19)

where S, denotes the nth partial sum of the expansion (1.4).
For ¢k, = A‘Z,k/Af,, 0 < k < n, Theorem 1.1 yields the following.

CoroLLARY 1.3. Let o, 3, p, and § be given numbers such that f > —1/2,

—%s(xs[},
1<p<oo,
0s6<2ﬂp+2—2/32+3 if1<p<po, (1.10)
Os6<2‘8+1—2ﬂ;2 if o< p < 0.
Then, for p ¢ [po,qol,
lloalls,) — 01— oo. (1.11)

2. Preliminaries

We summarize some properties of Jacobi-Sobolev-type polynomials that we will need in
the sequel (cf. [1]). Throughout this paper, positive constants are denoted by ¢,cy,... and
they may vary at every occurrence. The notation u,, ~ v, means ¢; < u,/v, < ¢, for nlarge
enough, and by u, = v,, we mean that the sequence u,/v, converges to 1.

The representation of the polynomials qi,""ﬁ " in terms of the Jacobi orthonormal poly-

nomials pi,“’ﬁ ' is

P (x) = A pP () + Bu(x = Dp PP () + Culx = 12 p 5P (), (2.1)
where
(a)if M >0and N >0,then A, = —cn 22, B, =cn22,C, =1,
(c)if M>0and N =0,thenA, =cn2*2,B,=1,C, =0.
The maximum of qi,a’ﬁ) on[—1,1]is

max [gi? ()| ~nf12 iz az —%. (2.2)

xe[-1,1]
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The polynomials qila’ﬁ ) satisfy the estimate

O(e—a—l/Z(n_e)—ﬁ_l/z) if% s@sn—%,
qff"ﬁ)(cose) ‘ _ 1 Oo(ne+172) ifo0<6< %, (2.3)
O(nﬁ+1/2) if m— % <0<m,

fora>—-1/2,>=—-1/2,andn > 1.
The Mehler-Heine-type formula for Jacobi orthonormal polynomials is (see [4, The-
orem 8.1.1] and [4, Formula (4.3.4)])

lim (—1)"n~F~1/2p; (“’S (” B %)) - <E> _ﬁ]ﬂ(Z), (2.4)

n—o00 2

where a, f3 are real numbers, and Jg(z) is the Bessel function. This formula holds uni-
formly for |z| < R, for R a given positive real number.
From (2.4),

(oc+/5)/2<z -

B
7) J5(2) (2.5)

o 5) -2

n+j

holds uniformly for |z| < R, R > 0 fixed, and uniformly on j € N U {0}.

LemMa 2.1. Let o, 3 > —1 and M,N = 0. There exists a positive constant c such that

lim (—1)"n’ﬁ*1/2q51“’ﬁ) (cos(n - %)) = c(g) 7[3][;(2), (2.6)

n—o0 2

uniformly for |z| < R, R >0 fixed.

Proof. Here we will only analyze the case when M = 0 and N > 0. The proof of the other
cases can be done in a similar way. From (2.1), we have

(—1)”n’5*1/2q£{",ﬁ) (cos(n— n—ij)) =A,(-1) ”7ﬂ71/2p,(1“’/3)<c0s<n— %))
-B, (cos( n-Zk ) ) -t
s B-12 pl@42H) ( n+])) 2.7)
+C, (cos( nf— ) )
pB1/2 ) (cos(n n+]))

where j € N U {0}.
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Finally, if n— o0 and using (2.1) and (2.5), we get

lim (—1)”n_ﬁ_1/2q5,“’ﬁ) (COS(ﬂ — L))

n—oo n+j

_ <_ 1 9= (atp)/2 4 5 p—(atpt2)/2 1 4_2—(a+ﬁ+4)/2> (z)_ﬁ] (2) (2.8)

at2 a+2 2) F

—(atp)2( 2 ”

=2 (5) Jp(@). 0

We also need to know the S, norms for Jacobi-Sobolev-type polynomials

r (! P P ONT
‘q;&a’ﬁ)HS =J 1 ‘q;a’ﬁ)(x)‘ du(x)+M qifx’ﬁ)(l)‘ +M‘ (qﬁ,‘x’ﬁ)> (1)( , (2.9)

,  )o

where 1 < p < 0. Hence, it is sufficient to estimate the L?(dy) norms for qff’ﬁ ) For M =
N =0, the calculation of these norms is given in [4, page 391, Exercise 91] (see also [5,
Formula (2.2)]).

LemMMA 2.2. Let M, N = 0andy > —1/p. For = —1/2,

¢ if2y>pp-2+%,
0 @p) [P - p
J (1+x)" | g ()| "dx ~ | logn foy=pp-2+2, 10
-1
pB+p/2-2y-2 _ B
n Y if 2y < pf 2+2.

Proof. From (2.3), for pf+ p/2 —2y — 2 # 0, we have

a7 @] dx=0) [ (r-077"1|gi (cost)|"a0
/2

J:(l +x)?

n—1/n
_ _p\2ytl _p\pB-p/2
0(1)L/2 (7= 07" (- 6) 0 o)

+0(1) [ (= 0)* P2

n—1/n

= O(nPFP27272) 4+ O(1);

and for (pf+ p/2 — 2y —2) = 0, we have

JO 1+ g5 ()| dx = O (logn). (2.12)
-1
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On the other hand, according to Lemma 2.1, we have

f (r— )" | (cos)| " >J (71— )21 ¢ (cos) | 76
/2

1 2y+1
) (5) " (cos(n- 7))
0 n n

L) 2)

- npﬁ+p/2—2y—2

p

P

112

Using a similar argument as above, for 2y = pff — 2+ p/2, we have

J (r—6)7"" g (cost) | dx>J y
nl/z

>~ J ZZ}/+1
0

Finally, from [1, Theorem 5], we get

(0| ¢ (cosB) | "dx

) wel

T | (@B P s a2yl | (P
(m—0) qn " (cosh) ‘ do > (m—0) qn " (cosB) d@ ~C.
/2 /2

Notice that some of the above results appear in [6].

3. Proof of Theorem 1.1

For the proof of Theorem 1.1, we will use the test functions
g::’ﬁ,j(X) _ (1 _ x2)jp51“+j>/5+j)(x))

where = a = —1/2, 5> —1/2,and j € N\ {1}. By applying the operators Ty
test functions gg’ﬁ’J, for some j >+ 1/2 - (2 +2)/p, we get

T;x,ﬁ,M,N( aﬁ]) ch ( oc/3]> k)q(aﬁ

where

(@P) k) = (™,gP), k=0,1,...0m.

n'dz

n~ldz

o,B,M,N

(2.13)

dz ~ "' > clogn.

(2.14)

(2.15)
(]

(3.1)

to the

(3.2)

(3.3)
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From (2.1), we have

(&™) - | (1= ) P ()P () )

-1
1 . Lo
= 0=) T 0 p P () ()
-1
1 . . .
B[ (=) - 0p T ) O
-1

(a+4,B)

1 . . .
G| (1= - 12 () du)

="+ "+ I

where 0 < k < n, and it is assumed that p(yp (x)=0fori=—1,-2.
According to [5, Formula (2.8)] and [4, Formula (4.3.4)], we get

122

(1 _xZ)jpsloﬁj)ﬁ*-j)(x) _ {hzﬂ)ﬂﬁ} Z bm] «, ﬁ n { n+m}l/2p£t‘i[r;n)(x)~ (3.5)

Taking into account (3.5)

ot . —1/2 2j a, a.
1" = A P S b (o) [ J i 0 (0du(x). (3.6)
m=0

Thus
=0, 0<k=<n-1,
A, {hzﬂﬁﬂ'}_l/ z{hzﬁ}‘/zbo,j(a,ﬁ,n), n=0,m=0. G2
Again, according to [5, Formula (2.8)] and [4, Formula (4.3.4)],
R e e
x [1 (1 =) PP 0 (e = DR (00 ()
(3.8)

py iy —1/2 /2
:Bk{h(:lﬁj’ﬁ*-]} 1 { oc+2/3} 1 me] & Bon)
1
x| PR G- DR du),

Since (see [4, Formula (4.5.4)])

2k P(a+1,ﬁ)(x) 3 2(k+a+1)
2k+a+f+1k 2k+a+p+1

(a+1,B)

(x— PP (x) = PP (x), (3.9)
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and deng“Hﬁ <n-—1, we have
kn ZkBk atj,p+] -12 at+2,p -12
L _2k+oc+,3+1{ " } {h"*l }

y (3.10)
x me,jw,/z,n)j PEE ()P () du(x).
m=0

Formula 16.4 (11) in [7, page 285] shows that

1 a+p+1
(@p) (@+1,8) 2 [la+n+ DI(B+n+1) 2n+a+P+1 «p
j_an ()P (e)dpu(x) = I(n+DI(a+f+n+2)  nta+f+1 h

(3.11)

This formula can also be proved by using [4, page 257, Identity (9.4.3)].
Thus

F"=0, 0<k=n-1,

2nB atj,B+j -12 at+2, -12

IVl,Vl — n n ] ]

: n+oc+[3+1{ } {h* } (3.12)

 hyPbo (@ Bon), n=1, m=0.
In a similar way,
Capiy 12
Ié"”:Ck{hﬁ”’ﬁ“} { a+4ﬁ} zbm] o, f3,n)
(3.13)

j PEE) () (x — 1P () ()

Again, as applications of [4, Formula (4.5.4)] and [4, Formula (9.4.3)], we point out the
following formulas:

_ 1)2pl@tdh) 4k(k-1) plet2h)
(= 1)7Pey™ () = Qk+a+pf+1)2k+a+p+2) Py Q1 (x), (3.14)
where degQr-; <n—1,and
() (a+2,p) _ Q@nta+B+1)2n+a+P+2) op
f P P ) = (e b SR P, (3.15)

Thus

K"=0, 0<k=<n-1,
o An(n—1)C, { a+j,ﬁ+j}*1/2{ha+4,/3}*1/2

ST (nta+PrD)(nta+tp+2) n-2

XhZ’ﬁbo,j(oc,[)’,n), n=2m=0.

(3.16)
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In order to estimate ( gf, B )" (k), we will distinguish the following three cases.
(1) M >0, N >0, then

"= —2ien~2072, Y =2ien 72, L= (3.17)
Thus
(6vP7) () = P 4 " 4 137 = (3.18)
(2) M =0, N >0, then

mn ~ -2J

N ~ 72j Wi~ 5j I
e = = —0. 1
1 OC+2) 12 2 > 3 a+2 (3 9)
Thus
(gP)~(m) = 2. (3.20)
(3) M >0, N =0, then
"= —2ien2072, [t =2, " =o. (3.21)
Thus
(gP)(m) = 2. (3.22)
As a conclusion,
(gff’ﬁ’j)A(k) =0, 0<k=<n-1,
. , (3.23)
(g+7) " (m) = 21,
On the other hand, for 1 < p < o,
aBjl|P _ || aBi|lP
‘g” Hsp B )g” HLP(dy)
= J (1 _x)JP+‘X(1 +x)]P+ﬁ‘p§l“+Jn8+1)(x) ‘pdx
- ‘ U (3.24)
<ar| e pfI )
~1
0 i (a+j,B+7) p
+c2f (L7849 () | .
-1
Taking M = N = 0 in lemma, we have
e
gn[[, <c (3.25)
SP

for j>p+1/2-(2f+2)/p>a+1/2— (2a+2)/pand gy < p < .
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It is well known (see, e.g., [8, Theorem 1]) that
‘p;aﬂ,/ﬂj)(x)‘ <1 _x)—j/Z—u/2—1/4(1 +x)—j/2—/3/2—1/4 (3.26)
for a,f = —1/2,and x € (—1,1). Therefore,
| e

for j>p+1/2=a+1/2.
Now, we will prove our main result.

gg,ﬁ,j

- \12(j-a-172) 12(-B-1/2)
S ) L™ (dy) =c(l-x) (1+x) <g, (3.27)

Proof of Theorem 1.1. Let f = a = —1/2 and 3 > —1/2. By duality, it is enough to assume
that gy < p < co. From (3.2), (3.23), (3.25), and (3.27), we have

75, = [l 1

P
On the other hand, from (2.9) [1, Theorem 2], and lemma, we have

gg»ﬂ»j

ToPMN (g;f’ﬁ’j) HSP > | cun|

q,ﬁ“’ﬁ)HSP. (3.28)

H (“’ﬁ)H S . (logn)l/p if P =q0, (3 29)
qn s, n(2B+1)/2=(2p+2)/p ifqo <p< oo, .
From this expression, taking into account (2.2) and (3.28), the statement of the theorem
follows. O
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