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1. Introduction

Let �= {z ∈ C, |z| < 1} be the unit disk, let � denote the class of the functions f of the
form

{
f (z)= z+ a2z

2 + a3z
3 + ··· , z ∈�

}
, (1.1)

which are analytic in the open disk, and let � satisfy the condition f (0)= f ′(0)− 1= 0.
Consider �= { f ∈� : f is univalent functions in �}.

In [1], Pescar needs the following theorem.

Theorem 1.1 [1]. Let c and β be complex numbers withRe β > 0, |c|≤1, and c �=− 1, and
let h(z)= z+ a2z2 + ··· be a regular function in �.If

∣
∣
∣
∣c|z|2β +

(
1−|z|2β)zh

′′(z)
βh′(z)

∣
∣
∣
∣≤1 (1.2)

for all the z ∈�, then the function

Fβ(z)=
[
β
∫ z

0
tβ−1h′(t)dt

]1/β
= z+ ··· (1.3)

is regular and univalent in �.
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In [2], Ozaki and Nunokawa give the next result.

Theorem 1.2 [2]. Let f ∈� satisfy the following condition:

∣
∣
∣
∣
z2 f ′(z)
f 2(z)

− 1
∣
∣
∣
∣≤1 (1.4)

for all z ∈�, then f is univalent in �.

Lemma 1.3 (The Schwarz lemma) [3, 4]. Let the analytic function f be regular in the unit
disk and let f (0)= 0 . If | f (z)|≤1, then

∣
∣ f (z)

∣
∣≤|z| (1.5)

for all z ∈�, where the equality can hold only if | f (z)| = Kz and K = 1.

In [5], Seenivasagan and Breaz consider, for fi ∈�2 (i = 1,2, . . . ,n) and α1,α2, . . . ,αn,
β ∈ C, the integral operator

Fα1,α2,...,αn,β(z)=
{

β
∫ z

0
tβ−1

n∏

i=1

(
fi(t)
t

)1/αi
dt

}1/β

. (1.6)

When αi = α for all i = 1,2, . . . ,n, Fα1,α2,...,αn,β(z) becomes the integral operator Fα,β(z)
considered in [6].

2. Main results

Theorem 2.1. Let M ≥ 1 and the functions fi ∈�, for i∈ {1, . . . ,n}, satisfy the condition
(1.4), and let β be a real number, β ≥∑n

i=1(2M +1)/|αi| and c is a complex number.
If

|c|≤1− 1
β

n∑

i=1

2M +1
∣
∣αi
∣
∣ , (2.1)

∣
∣ fi(z)

∣
∣≤M (2.2)

for all z ∈�, then the function Fα1,α2,...,αn,β defined in (1.6) is in the class �.

Proof. Define a function

h(z)=
∫ z

0

n∏

i=1

(
fi(t)
t

)1/αi
dt, (2.3)

then we have h(0)= h′(0)− 1= 0. Also, a simple computation yields

h′(z)=
n∏

i=1

(
fi(z)
z

)1/αi
, (2.4)

zh′′(z)
h′(z)

=
n∑

i=1

1
αi

(
z f ′i (z)
fi(z)

− 1
)
. (2.5)
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From (2.5), we have

∣
∣
∣
∣
zh′′(z)
h′(z)

∣
∣
∣
∣≤

n∑

i=1

1
∣
∣αi
∣
∣

(∣∣
∣
∣
z f ′i (z)
fi(z)

∣
∣
∣
∣+1

)
=

n∑

i=1

1
|αi|

(∣
∣
∣
∣
z2 f ′i (z)
(
fi(z)

)2

∣
∣
∣
∣

∣
∣
∣
∣
fi(z)
z

∣
∣
∣
∣+1

)

. (2.6)

From the hypothesis, we have | fi(z)|≤M (z ∈�, i = 1,2, . . . ,n), then by Lemma 1.3,
we obtain that

| fi(z)|≤M|z| (z ∈�, i= 1,2, . . . ,n). (2.7)

We apply this result in inequality (2.6), and we obtain

∣
∣
∣
∣
zh′′(z)
h′(z)

∣
∣
∣
∣≤

n∑

i=1

1
∣
∣αi
∣
∣

(∣∣
∣
∣
z2 f ′i (z)
(
fi(z)

)2

∣
∣
∣
∣M +1

)

≤
n∑

i=1

1
∣
∣αi
∣
∣

(∣∣
∣
∣
z2 f ′i (z)
(
fi(z)

)2 − 1
∣
∣
∣
∣M +M +1

)

=
n∑

i=1

1
∣
∣αi
∣
∣ (M +M +1)=

n∑

i=1

2M +1
∣
∣αi
∣
∣ .

(2.8)

We have

∣
∣
∣
∣c|z|2β +

(
1−|z|2β

)zh′′(z)
βh′(z)

∣
∣
∣
∣=

∣
∣
∣
∣c|z|2β +

(
1−|z|2β

)1
β

n∑

i=1

1
∣
∣αi
∣
∣

(
z f ′i (z)
fi(z)

− 1
)∣∣
∣
∣

≤|c|+ 1
β
·

n∑

i=1

1
∣
∣αi
∣
∣

(∣
∣
∣
∣
z2 f ′i (z)
f 2i (z)

∣
∣
∣
∣·
∣
∣ fi(z)

∣
∣

|z| +1

)

.

(2.9)

We obtain

∣
∣
∣
∣c|z|2β +

(
1−|z|2β

)zh′′(z)
βh′(z)

∣
∣
∣
∣≤|c|+

1
β

n∑

i=1

2M +1
∣
∣αi
∣
∣ . (2.10)

So from (2.1), we have

∣
∣
∣
∣c|z|2β +

(
1−|z|2β

)zh′′(z)
βh′(z)

∣
∣
∣
∣≤1. (2.11)

Applying Theorem 1.1, we obtain that Fα1,α2,...,αn,β is univalent. �

Theorem 2.2. Let M ≥ 1 and the functions fi ∈�, for i ∈ {1, . . . ,n} satisfy the condition
(1.4), and let β be a real number, β ≥ n(2M +1)/|α| and c is a complex number.

If

|c|≤1− 1
β

n(2M +1)
|α| ,

∣
∣ fi(z)

∣
∣≤M

(2.12)
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for all z ∈�, then the function

Fα,β(z)=
{

β
∫ z

0
tβ−1

n∏

i=1

(
fi(t)
t

)1/α
dt

}1/β

(2.13)

is in the class �.

Proof. In Theorem 2.1, we consider α1 = α2 = ··· = αn = α. �

Corollary 2.3. Let the functions fi ∈�, for i∈ {1, . . . ,n}, satisfy the condition (1.4), and
let β be a real number, β ≥∑n

i=1(3/|αi|) and c is a complex number.
If

|c|≤1− 1
β

n∑

i=1

3
∣
∣αi
∣
∣ ,

∣
∣ fi(z)

∣
∣≤1

(2.14)

for all z ∈�, then the function Fα1,α2,...,αn,β defined in (1.6) is in the class �.

Proof. In Theorem 2.1, we considerM = 1. �

Corollary 2.4. LetM ≥ 1 and the function f ∈�, satisfy the condition (1.4), and let β be
a real number, β ≥ (2M +1)/|α| and c is a complex number.

If

|c|≤1− 1
β

2M +1
|α| ,

∣
∣ f (z)

∣
∣≤M

(2.15)

for all z ∈�, then the function

Gα,β(z)=
{

β
∫ z

0
tβ−1

(
f (t)
t

)1/α
dt

}1/β

(2.16)

is in the class �.

Proof. In Theorem 2.1, we consider n= 1. �

Corollary 2.5. Let the function f ∈ � satisfy the condition (1.4), and let β be a real
number, β ≥ 3/|α| and c is a complex number.

If

|c|≤1− 1
β

3
|α| ,

∣
∣ f (z)

∣
∣≤1

(2.17)
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for all z ∈�, then the function

Gα,β(z)=
{

β
∫ z

0
tβ−1

(
f (t)
t

)1/α
dt

}1/β

(2.18)

is in the class �.

Proof. In Corollary 2.4, we considerM = 1. �
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