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1. Introduction

Let A and B be linear unbounded operators in a Banach space X , let K(t) be a linear
bounded operator for each t ≥ 0 in X , and let f (t;ε) and f (t) be X-valued functions. We
study the convergence of derivatives of solutions of

ε2u′′(t;ε) +u′(t;ε)= (ε2A+B
)
u(t;ε) +

∫ t

0
K(t− s)

(
ε2A+B

)
u(s;ε)ds+ f (t;ε), t ≥ 0,

u(0;ε)= u0(ε), u′(0;ε)= u1(ε),
(1.1)

to derivatives of solutions of

w′(t)= Bw(t) +
∫ t

0
K(t− s)Bw(s)ds+ f (t), t ≥ 0,

w(0)=w0,
(1.2)

as ε→ 0.
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The notion of hyperbolic singular perturbation problem comes from the work of Fat-
torini [1], where the inhomogeneous hyperbolic singular perturbation problem

ε2u′′(t;ε) +u′(t;ε)= (ε2A+B
)
u(t;ε) + f (t;ε), t ≥ 0,

u(0;ε)= u0(ε), u′(0;ε)= u1(ε),
(1.3)

arising from problems of traffic flow, is studied. It was shown in [1], under some condi-
tions on A, B, and f , that as ε→ 0, if u0(ε)→ w0, u1(ε)→ Bw0, Bu0(ε)→ Bw0, f (·;ε)→
f (·), and f ′(·;ε)→ f ′(·), then u(t;ε)→ w(t) and u′(t;ε)→ w′(t) uniformly on compact
subsets of t ≥ 0, where u(t;ε) is the solution of the Cauchy problem (1.3) and w is the
solution of the Cauchy problem

w′(t)= Bw(t) + f (t), t ≥ 0,

w(0)=w0.
(1.4)

This generalizes his earlier result in [3] about the parabolic singular perturbation problem

ε2u′′(t;ε) +u′(t;ε)= Au(t;ε) + f (t;ε), t ≥ 0,

u(0;ε)= u0(ε), u′(0;ε)= u1(ε),

w′(t)= Aw(t) + f (t), t ≥ 0,

w(0)=w0,

(1.5)

where the same result mentioned above holds.
Stimulated by the work of Fattorini [1] and some models in physics, such as viscoelas-

ticity, we studied in [4] the convergence of solutions of the problem (1.1) to solutions
of the Cauchy problem (1.2). We proved in [4], with some suitable assumptions, that as
ε→ 0, if u0(ε)→ w0, ε2u1(ε)→ 0, and f (·;ε)→ f (·), then u(t;ε)→ w(t) uniformly on
compact subsets of t ≥ 0 for the solution u(t;ε) of (1.1) and the solution w(t) of (1.2).

In this paper, we will continue these studies and investigate the convergence of deriva-
tives of solutions for the problem (1.1) and the problem (1.2). Under those conditions of
Fattorini [1] and some conditions onK(·), we will prove that we also have u′(t;ε)→w′(t)
uniformly on compact subsets of t ≥ 0 for the problem (1.1) and the problem (1.2). This
result includes the corresponding result [1, Theorem 3.4] as a special case for equations
without the integral term (i.e., K(·)≡ 0). This result also covers [2, Theorem 2.1].

For references in this area and related topics, we refer the reader to, for example, the
monographs [3, 5–7] and the papers [1, 2, 4, 8–11], and the references therein.

2. Preliminaries

Here, we follow [1, 4]. Throughout this paper, ε > 0, X is a Banach space, L(X) denotes
the space of all continuous linear operators from X to itself, and D(A) stands for the
domain of an operator A.

We recall some basic assumptions and results of Fattorini [1] that will be used in this
work (see [1] for details).
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(A1) ε2A+B is the generator of a strongly continuous cosine function on X . This is
equivalent to the following:

(1) D(ε2A+B)=D(A)∩D(B) is dense in X ;
(2) the homogeneous version of (1.3) ( f (·;ε)= 0) has a solution for u0(ε), u1(ε) in

a dense subspace D of X ;
(3) the solutions of the homogeneous version of (1.3) depend continuously on their

initial data uniformly on compacts of t ≥ 0
(cf. [3, 1]; see also [12, 13]).

With (A1), one can define two propagators of the homogeneous version of (1.3) by

Q(t;ε)u := u(t;ε), G(t;ε)u := v(t;ε), u∈D, t ≥ 0, (2.1)

where u(t;ε) (resp., v(t;ε)) is the solution of the homogeneous version of (1.3) with
u(0;ε)= u, u′(0;ε)= 0 (resp., with v(0;ε)= 0, v′(0;ε)= ε−2u); these propagators can be
extended to all of X as bounded operators, which we denote by the same symbol; and
these operator-valued functions are strongly continuous in t ≥ 0. Moreover, it follows
from [1] that the solutions of (1.3) are given by

u(t;ε)=Q(t;ε)u0(ε) +G(t;ε)
[
ε2u1(ε)

]
∫ t

0
G(t− s;ε) f (s;ε)ds, (2.2)

and that for u∈ X ,

ε2G′(t;ε)u=Q(t;ε)u−G(t;ε)u. (2.3)

Following Fattorini [1], we also make the following assumptions.
(A2) There exist constants C, ω, ε0 independent of t and ε such that for t ≥ 0 and

0≤ ε ≤ ε0,

∥
∥Q(t;ε)

∥
∥,
∥
∥G(t;ε)

∥
∥≤ Ceωt. (2.4)

(A3) The restriction B0 of B toD(A) is closable and there is a ν such that (λ−B0)D(B0)
is dense in X for Reλ > ν.

Theorems 3.2 and 8.3 in [1] tell us that under these assumptions, the closure B0 of B0

generates a strongly continuous semigroup {S(t)}t≥0 satisfying
∥
∥S(t)

∥
∥≤Meμt, t ≥ 0 (2.5)

for constantsM and μ; and

lim
ε→0

Q(t,ε)u= S(t)u, u∈ X , (2.6)

lim
ε→0

[
G(t,ε) + e−t/ε

2
I
]
u= S(t)u, u∈ X , (2.7)

uniformly on compact subset of t ≥ 0, where I is the identity operator.
To link the semigroup {S(t)}t≥0 and the problem (1.4), we assume
(A4) B0 = B.
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Therefore, under the assumption (A4), the solutions of (1.4) are given by

w(t)= S(t)w0 +
∫ t

0
S(t− s) f (s)ds, w0 ∈D

(
B0
)
. (2.8)

The following assumption is made especially for (1.1) and (1.2).
(A5) {K(t)}t≥0 ⊂ L(X). For each x ∈ X , K(·)x ∈W2,1

loc ([0,∞);X). ‖K ′′(·)‖ is locally
bounded on [0,∞). Here K ′′ is the strong derivative.

Definition 2.1. An X-valued function u(·;ε) on [0,∞) is called a solution of the problem
(1.1) if u(·;ε) is twice continuously differentiable, u(t;ε) ∈ D(A)∩D(B) for t ≥ 0 and
the problem (1.1) is satisfied. Similarly, an X-valued function w(·) on [0,∞) is called a
solution of the problem (1.2) if w(·) is continuously differentiable, w(t)∈D(B) for t ≥ 0
and the problem (1.2) is satisfied.

Let u(t;ε) be a solution of (1.1), and as in [1, 3, 10], we write

v
(
t

ε

)
:= et/ε

2
u(t;ε), K̃(t;ε) := εK(εt)et/2ε, f̃ (t;ε) := f (εt;ε)et/2ε, t ≥ 0. (2.9)

Then, by (1.1) we have

v′′(t)=
(

ε2A+B+
1
4ε2

)

v(t) +
∫ t

0
K̃(t− s;ε)

(
ε2A+B

)
v(s)ds+ f̃ (t;ε),

v(0;ε)= u0(ε),v′(0;ε)= 1
2ε
u0(ε) + εu1(ε).

(2.10)

Since the singular perturbations is what we are concerned in this paper, we assume
that the problem (1.1) (i.e., the problem (2.10) for every ε > 0 and the problem (1.2) have
unique solutions, respectively. For the existence and uniqueness theorems for solutions
of the problem (2.10) and the problem (1.2), we refer the reader to [14–16].

3. Convergence theorems

Now, we state and prove our main result of the paper concerning the convergence of
derivatives of solutions for the problem (1.1) and the problem (1.2).

Theorem 3.1. Let T > 0 be fixed, (A1)–(A5) hold, and
(A6) u0(ε)→w0, u1(ε)→ Bw0, Bu0(ε)→ Bw0, as ε→ 0,
(A7) f (·;ε)→ f (·) and f ′(·;ε)→ f ′(·) in L1([0,T];X); f (0;ε)→ f (0) = 0 in X , as

ε→ 0.
Let u(t;ε) and w(t) be the solution of the problem (1.1) and the problem (1.2) on [0,T],

respectively. Then,

u′(t;ε)−→w′(t) uniformly for t ∈ [0,T] as ε −→ 0. (3.1)
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Proof. Using (A5) and a standard fixed point argument, one can deduce that there exists
an L(X)-valued function F(·) such that

F(t) +K(t) +
∫ t

0
K(t− s)F(s)ds= 0,

F(·)x ∈W2,1
loc

(
[0,∞);X

)
for each x ∈ X ,

∥
∥F′(·)∥∥ and ‖F′′(·)‖ are locally bounded on [0,∞),

(3.2)

where F′ and F′′ are strong derivatives (cf. [17, 18]).
Let δ(·) be the Dirac measure. Then,

(δ +F)∗ (δ +K)= δ. (3.3)

Since u(t;ε) satisfies the problem (1.1), we get

ε2u′′(t;ε) +u′(t;ε)= (δ +K)∗ (ε2A+B
)
u(t;ε) + f (t;ε), (3.4)

then by (3.3), we obtain

(δ +F)∗
[
ε2u′′(t;ε) +u′(t;ε)

]
= (ε2A+B

)
u(t;ε) + (δ +F)∗ f (t;ε). (3.5)

This means that u(t;ε) satisfies

ε2u′′(t;ε) +u′(t;ε)= (ε2A+B
)
u(t;ε) + f̂ (t;ε),

u(0;ε)= u0(ε), u′(0;ε)= u1(ε),
(3.6)

where

f̂ (t;ε)= (δ +F)∗ f (t;ε)−F ∗ [ε2u′′(t;ε) +u′(t;ε)
]
. (3.7)

Similarly, we have

w′(t)= Bw(t) + f̂ (t), t ≥ 0,

w(0)=w0,
(3.8)

where

f̂ (t)= (δ +F)∗ f (t)−F ∗w′(t). (3.9)

By linearity, we view the solution of the problem (3.6) (resp., the problem (3.8)) as the

addition of two solutions such that the first one, u1 (resp., w1), is with f̂ (t;ε) (resp., f̂ (t))
being zero and the second one, u2 (resp., w2), is with zero initial data, so that we have

u2(t;ε)=
∫ t

0
G(t− s;ε) f̂ (s;ε)ds, w2(t)=

∫ t

0
S(t− s) f̂ (s)ds. (3.10)



6 Journal of Inequalities and Applications

For the first solutions u1 and w1 for the problem (3.6) and the problem (3.8), it was
shown in Fattorini [1], with these conditions, that u′1(t;ε)−w′1(t)→ 0 in X uniformly for
t ∈ [0,T] as ε→ 0. Therefore,

∥
∥u′(t;ε)−w′(t)

∥
∥≤ ∥∥u′1(t;ε)−w′1(t)

∥
∥+

∥
∥u′2(t;ε)−w′2(t)

∥
∥

≤ 0
(
ε, [0,T]

)
+
∥
∥u′2(t;ε)−w′2(t)

∥
∥,

(3.11)

where 0(ε, [0,T]) satisfies

0
(
ε, [0,T]

)−→ 0 as ε −→ 0, uniformly for t ∈ [0,T]. (3.12)

As G(0;ε)= 0, S(0)= Identity, and f (0)= 0, we obtain

u′2(t;ε)−w′2(t)=
∫ t

0
G′(t− s;ε) f̂ (s;ε)−

∫ t

0
S′(t− s) f̂ (s)ds− f̂ (t)

=
∫ t

0
G′(t− s;ε)

[
f̂ (s;ε)− f̂ (s)

]
ds

+
∫ t

0

[
G′(t− s;ε)− S′(t− s)

]
f̂ (s)ds− f̂ (t)

=
∫ t

0
G′(t− s;ε)

[
f̂ (s;ε)− f̂ (s)

]
ds+

∫ t

0

[
G(t− s;ε)− S(t− s)

]
f̂ ′(s)ds

+
[
G(t;ε)− S(t)

]
f (0)=

∫ t

0
G′(t− s;ε)

[
f̂ (s;ε)− f̂ (s)

]
ds

+
∫ t

0

[
G(t− s;ε)− S(t− s)

]
f̂ ′(s)ds.

(3.13)

Note that

f̂ ′(t)= f ′(t) +F(0) f (t) +
∫ t

0
F′(t− s) f (s)ds

−F(0)w′(t) +F′(t)w0−F′(0)w(t)−
∫ t

0
F′′(t− s)w(s)ds,

(3.14)

so, from (2.7), we obtain (similar to [4])

∥
∥
∥
∥
∥

∫ t

0

[
G(t− s;ε)− S(t− s)

]
f̂ ′(s)ds

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∫ t

0

[
G(t− s;ε) + e−(t−s)/ε

2
I − S(t− s)

]
f̂ ′(s)ds‖+‖ =

∫ t

0
e−(t−s)/ε

2
f̂ ′(s)ds

∥
∥
∥
∥

= 0
(
ε, [0,T]

)
.

(3.15)
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Next, we have

∫ t

0
G′(t− s;ε)

[
f̂ (s;ε)− f̂ (s)

]
ds=

∫ t

0
G′(t− s;ε)

[
f̂ (s;ε)− f̂ (s) + ε2F(0)u′(s;ε)

]
ds

−
∫ t

0
G′(t− s;ε)ε2F(0)u′(s;ε)ds,

(3.16)

∫ t

0
G′(t− s;ε)ε2F(0)u′(s;ε)ds=

∫ t

0
G′(t− s;ε)ε2F(0)

[
u′(s;ε)−w′(s)

]
ds

+
∫ t

0
G′(t− s;ε)ε2F(0)w′(s)ds.

(3.17)

From (2.3), (2.6), and (2.7), and similar to (3.15), we obtain

∥
∥
∥
∥

∫ t

0
G′(t− s;ε)ε2F(0)w′(s)ds

∥
∥
∥
∥=

∥
∥
∥
∥

∫ t

0

[
Q(t− s;ε)−G(t− s;ε)

]
F(0)w′(s)ds

∥
∥
∥
∥

≤
∥
∥
∥
∥

∫ t

0

[
Q(t− s;ε)− S(t− s)

]
F(0)w′(s)ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t

0

[
G(t− s;ε)− S(t− s)

]
F(0)w′(s)ds

∥
∥
∥
∥

= 0
(
ε, [0,T]

)
,

(3.18)

and from (2.3) and (2.4), we obtain

∥
∥
∥
∥
∥

∫ t

0
G′(t− s;ε)ε2F(0)

[
u′(s;ε)−w′(s)

]
ds

∥
∥
∥
∥
∥≤ (const)

∫ t

0

∥
∥u′(s;ε)−w′(s)

∥
∥ds. (3.19)

Therefore, from (3.17)–(3.19), we obtain

∥
∥
∥
∥
∥

∫ t

0
G′(t− s;ε)ε2F(0)u′(s;ε)ds

∥
∥
∥
∥
∥≤ 0

(
ε, [0,T]

)
+ (const)

∫ t

0

∥
∥u′(s;ε)−w′(s)

∥
∥ds. (3.20)

Next,

∫ t

0
G′(t− s;ε)

[
f̂ (s;ε)− f̂ (s) + ε2F(0)u′(s;ε)

]
ds

=G(t;ε)
[
f (0;ε)− f (0)+ ε2F(0)u1(ε)

]

+
∫ t

0
G(t− s;ε)

[
f̂ (s;ε)− f̂ (s) + ε2F(0)u′(s;ε)

]′
ds,

(3.21)
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and from (2.4), (A6), and (A7),

∥
∥G(t;ε)

[
f (0;ε)− f (0)+ ε2F(0)u1(ε)

]∥∥= 0
(
ε, [0,T]

)
. (3.22)

Moreover,
∫ t

0
G(t− s;ε)

[
f̂ (s;ε)− f̂ (s) + ε2F(0)u′(s;ε)

]′
ds

=
∫ t

0
G(t− s;ε)

{
[
f (s;ε)− f (s)

]
+
∫ s

0
F(s−h)

[
f (h;ε)− f (h)

]
dh

−
∫ s

0
F′(s−h)

[
u(h;ε)−w(h)

]
dh

− [ε2F′(0)+F(0)
][
u(s;ε)−w(s)

]− ε2F′(0)w(s)

− ε2
∫ s

0
F′′(s−h)

[
u(h;ε)−w(h)

]
dh− ε2

∫ s

0
F′′(s−h)w(h)dh

+F(s)
[
u0(ε)−w0

]
+ ε2F′(s)u0(ε) + ε2F(s)u1(ε)

}′
ds

=
∫ t

0
G(t− s;ε)

{
[
f ′(s;ε)− f ′(s)

]
+F(0)

[
f (s;ε)− f (s)

]

+
∫ s

0
F′(s−h)

[
f (h;ε)− f (h)

]
dh−F′(0)

[
u(s;ε)−w(s)

]

−
∫ s

0
F′′(s−h)

[
u(h;ε)−w(h)

]
dh

− [ε2F′(0)+F(0)
][
u′(s;ε)−w′(s)

]

− ε2F′(0)w′(s)− ε2
∫ s

0
F′′(s−h)

[
u′(h;ε)−w′(h)

]
dh

− ε2
∫ s

0
F′′(s−h)w′(h)dh+F′(s)

[
u0(ε)−w0

]

+ ε2F′′(s)u0(ε) + ε2F′(s)u1(ε)

}

ds.

(3.23)

Note that it is proved in [4] that u(t;ε)→w(t) uniformly for t ∈ [0,T] as ε→ 0, there-
fore, from (3.23), (A6), and (A7), we obtain

∥
∥
∥
∥
∥

∫ t

0
G(t− s;ε)

[
f̂ (s;ε)− f̂ (s) + ε2F(0)u′(s;ε)

]′
ds

∥
∥
∥
∥
∥

≤ 0
(
ε, [0,T]

)
+ (const)

∫ t

0

∥
∥u′(s;ε)−w′(s)

∥
∥ds, t ∈ [0,T].

(3.24)
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Now, from (3.11)–(3.16), (3.20)–(3.22), and (3.24), we obtain

∥
∥u′(t;ε)−w′(t)

∥
∥≤ 0

(
ε, [0,T]

)
+ (const)

∫ t

0

∥
∥u′(s;ε)−w′(s)

∥
∥ds, t ∈ [0,T]. (3.25)

Therefore, from Gronwall’s inequality, we obtain

∥
∥u′(t;ε)−w′(t)

∥
∥≤ 0

(
ε, [0,T]

)
, t ∈ [0,T]. (3.26)

This completes the proof. �

Theorem 3.2. Let T > 0 be fixed, and let (A1), (A2), (A5), (A6), and (A7) hold. Also,
assume that B generates a strongly continuous semigroup on X and D(A)∩D(B) is a core of
B. Let u(t;ε) and w(t) be the solutions of (1.1) and (1.2) on [0,T], respectively. Then

u′(t;ε)−→w′(t) uniformly for t ∈ [0,T] as ε −→ 0. (3.27)

Proof. Since B generates a strongly continuous semigroup on X , and D(A)∩D(B) is a
core of B, we see that (A3) and (A4) hold. Thus, we get the conclusion by Theorem 3.1.

�

In the case that the assumption (A4) is not satisfied, then instead of (1.2), we can
consider

w′(t)= B0w(t) +
∫ t

0
K(t− s)B0w(s)ds+ f (t), t ≥ 0,

w(0)=w0,
(3.28)

whose solution is defined in a way similar to that of (1.2). Now, under the assumption
(A3), we know from [1] that B0 generates a semigroup {S(t)}t≥0 satisfying (2.5)–(2.7),
and the solutions of (3.28) are given by

w(t)= S(t)w0 +
∫ t

0
S(t− s) f (s)ds, w0 ∈D

(
B0
)
. (3.29)

That is, we have the same settings as before, thus, the arguments made above for solutions
of (1.1) and (1.2) can also be made for solutions of (1.1) and (3.28). Therefore, we have
the following.

Theorem 3.3. Let T > 0 be fixed, and (A1), (A2), (A3), (A5), (A6), and (A7) hold. Let
u(t;ε) and w(t) be the solutions of (1.1) and (3.28) on [0,T], respectively. Then,

u′(t;ε)−→w′(t) uniformly for t ∈ [0,T] as ε −→ 0. (3.30)

Remark 3.4. Clearly, if K(·) ≡ 0, then F(·) ≡ 0, and hence f̂ (t;ε) = f (t;ε), f̂ (t) = f (t).
Therefore, whenK(·)≡ 0, Theorem 3.3 goes back to [1, Theorem 3.4] for equations with-
out the integral term. Furthermore, it is easy to see that if A= 0, then D(A)= X , so that
B0 = B. Thus, (A1) implies (A3) and (A4), therefore, Theorems 3.1 and 3.3 cover [2, The-
orem 2.1].
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Remark 3.5. It is pointed out in [3] (for equations without the integral term) that f (0)=
0 is almost necessary to obtain the convergence in derivative at t = 0. For equations with
the integral term, we also need this condition in [2] and here. If f (0) 
= 0, then, from
(3.13) and

[
G(t;ε)− S(t)

]
f (0)= [G(t;ε) + e−t/ε

2
I − S(t)

]
f (0)− e−t/ε

2
f (0), (3.31)

we can obtain the convergence in derivatives for t > 0.
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