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1. Introduction

In 1940, Ulam [1] raised a question concerning the stability of group homomorphisms:
“Let f be a mapping from a group Gy to a metric group G, with metric d(-,-) such that

d(f(xy), f(x)f(y)) <e. (1.1)

Then does there exist a group homomorphism L : Gy — G, and 8¢ > 0 such that
d(f(x),L(x)) < & (1.2)

forallx € G,?”

The case of approximately additive mappings was solved by Hyers [2] under the as-
sumption that G; and G, are Banach spaces. In 1978, Rassias [3] firstly generalized Hyers’
result to the unbounded Cauchy difference. During the last decades, the stability prob-
lems of several functional equations have been extensively investigated by a number of
authors (see [4-12]). The terminology Hyers-Ulam-Rassias stability originates from these
historical backgrounds and this terminology is also applied to the case of other functional
equations.
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Let both E; and E, be real vector spaces. Jun and Kim [13] proved that a function
f: E1 — E, satisfies the functional equation

fQx+y)+ fx—y)=2f(x+y)+2f(x—y)+12f(x) (1.3)

if and only if there exists a mapping B : E; X E; X E; — E; such that f(x) = B(x,x,x) for
all x € E;, where B is symmetric for each fixed one variable and additive for each fixed
two variables. The mapping B is given by

Blv,y2) = 5 ([t y+2)+ flx=y=2) = flx+y-2) - fx=y+2)] (14

for all x, y,z € E;. It is natural that (1.3) is called a cubic functional equation because the
mapping f(x) = ax> satisfies (1.3). Also Jun et al. generalized cubic functional equation,
which is equivalent to (1.3),

flax+y)+ flax—y) =af(x+y)+af(x—y)+2a(a*— 1) f(x) (1.5)

for fixed integer a with a # 0, +1 (see [14]).

In this paper, we consider the general solution of (1.5) and prove the stability theorem
of this equation in the space ¥’ (R") of Schwartz tempered distributions and the space
J'(R") of Fourier hyperfunctions. Following the notations as in [15, 16] we reformulate
(1.5) and related inequality as

uoAj+uoA;=auoB;+auoB;+2a(a*—1)uoP, (1.6)
lluo Ay +uoA; —auoB; —auoB, —2a(a*— 1)uoP|| < e(Ix|? +|y|7), (1.7)

respectively, where A, A, By, B,, and P are the functions defined by

Ai(x,y) =ax+y, Ay(x,y) =ax—y,

1.8
Bi(x,y) =x+y, By(x,y) =x—y, P(x,y) = x, (18)

and p, q are nonnegative real numbers with p,q # 3. We note that p need not be equal
to q. Here o Ay, uoA,, uo By, uoB,, and u o P are the pullbacks of u in ¥ (R") or
F'(R") by Ay, Ay, By, By, and P, respectively. Also | - | denotes the Euclidean norm, and
the inequality [|v]l < w(x, y) in (1.7) means that [{v,@)| < |[yell;: for all test functions
¢(x,y) defined on R".

If p <0 or g <0, the right-hand side of (1.7) does not define a distribution and so
inequality (1.7) makes no sense. If p,q = 3, it is not guaranteed whether Hyers-Ulam-
Rassias stability of (1.5) is hold even in classical case (see [13, 14]). Thus we consider only
the case 0 < p, g <3, or p,q > 3.

We prove as results that every solution u in ¥ (R") or &'(R") of inequality (1.7) can
be written uniquely in the form

u= Z aijpxixjxg + h(x), aijjx € C, (1.9)

1<i<j<k=<n
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where h(x) is a measurable function such that

€
< -
2]lal® - |al?|

[h(x)] |x|P. (1.10)

2. Preliminaries

We first introduce briefly spaces of some generalized functions such as Schwartz tempered
distributions and Fourier hyperfunctions. Here we use the multi-index notations, |«a| =
-t al =l x% =X, and 0% = 97 - - - 9y for x = (x1,...,%,) €
R", & = (a1,...,an) € Ng, where Ny is the set of nonnegative integers and d; = 0/0x;.

Definition 2.1 [17, 18]. Denote by ¥(R") the Schwartz space of all infinitely differentiable
functions ¢ in R” satisfying

9llag = sup [x*Pp(x)| < oo (2.1)
xeR"
for all o, f € N, equipped with the topology defined by the seminorms || - [|os. A linear
form u on F(R") is said to be Schwartz tempered distribution if there is a constant C = 0
and a nonnegative integer N such that

[ (u,9)| <C Z sup |x*0Po| (2.2)
lal,|fl<N X<R”

for all ¢ € F(R"). The set of all Schwartz tempered distributions is denoted by &' (R").

Imposing growth conditions on || - [|o in (2.1), Sato and Kawai introduced the space
F of test functions for the Fourier hyperfunctions.

Definition 2.2 [19]. Denote by %(R") the Sato space of all infinitely differentiable func-
tions ¢ in R" such that

|x*0Pp(x) |

—————— 2.3
v AT BTl 23)

lollas =

for some positive constants A, B depending only on ¢. We say that ¢; — 0 as j — oo if
l@illap — 0as j — oo for some A, B >0, and denote by F’(R") the strong dual of F(R")
and call its elements Fourier hyperfunctions.

It can be verified that the seminorms (2.3) are equivalent to

|0°9(x) | expklxl _

lollpe = sup (2.4)

xeR"aeNj h‘a‘(x!
for some constants i,k > 0. It is easy to see the following topological inclusion:

F(R") = & (R"), ¥ (R") &= %" (R"). (2.5)
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In order to solve (1.6), we employ the n-dimensional heat kernel, that is, the fundamental
solution E;(x) of the heat operator d; — A, in R? X R} given by

_ |x|?

4grt)—"2 (——) t>0,

E(x) = 1@ exp (- g (2.6)
0, t<0.

Since for each t > 0, E,(-) belongs to ¥(R"), the convolution
u(x,t) = (u* E;)(x) = (uy, E(x - y)), x€R", t>0, (2.7)

is well defined for each u € ¥'(R") and u € &' (R"), which is called the Gauss transform
of u. Also we use the following result which is called the heat kernel method (see [20]).
Let u € ' (R"). Then its Gauss transform (x,t) is a C*-solution of the heat equation

(% - A) et =0 (2.8)

satisfying the following.
(i) There exist positive constants C, M, and N such that
)N

[2i(x,t)] < CtM(1+ |x] in R" x (0,9). (2.9)

(ii) t(x,t) — was t — 0" in the sense that for every ¢ € F(R"),

(u,9) = lim J u(x, 1) p(x)dx. (2.10)

Conversely, every C*-solution U(x,t) of the heat equation satisfying the growth condi-
tion (2.9) can be uniquely expressed as U(x, t) = ti(x, t) for some u € ¥’ (R").

Similarly, we can represent Fourier hyperfunctions as initial values of solutions of the
heat equation as a special case of the results (see [21]). In this case, the estimate (2.9) is
replaced by the following.

For every € > 0 there exists a positive constant C, such that

50, 1)| < Cexp (e(lxl +%)) in R x (0,9). (2.11)

We refer to [17, Chapter VI] for pullbacks and to [16, 18, 20] for more details of ¥ (R")
and ¥’ (R").

3. General solution in ¥’ (R") and &' (R")

Jun and Kim (see [22]) showed that every continuous solution of (1.5) in R is a cubic
function f(x) = f(1)x> for all x € R. Using induction argument on the dimension n, it
is easy to see that every continuous solution of (1.5) in R" is a cubic form

f(x) = z AijkXiXjXk>  Aijk e C. (31)

1<i<j<k=n
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In this section, we consider the general solution of the cubic functional equation in the
spaces of ¥'(R") and &' (R"). It is well known that the semigroup property of the heat
kernel

(E; * Eq)(x) = Epy(x) (3.2)
holds for convolution. Semigroup property will be useful to convert (1.6) into the classical
functional equation defined on upper-half plane.

Convolving the tensor product E;(£)E;(n) of n-dimensional heat kernels in both sides
of (1.6), we have

[(uoAy) * (E(&)Es(n))](x,y)
= (wo AL E(x—EE(y—n)) = <ug,a-"jEt(x— f%)&(y—n)dq}

- <ug,a‘”JEt(W)Es(q)dn> = <u5,JEaz,(ax+y -&- n)Es(q)d;y>

= (ug, (Bt % E)(ax+ y — &) = (ug, Eprrslax+y — &)) = U(ax+ y,a’t +5s),
(3.3)

and similarly we get

ax—y,a’t+s),

(3.4)

(

(x+y,t+s),
(x—y,t+s),
(

S |2 |2 w2

x,1).
Thus (1.6) is converted into the classical functional equation

U(ax+y,a’t+s) +u(ax — y,a’t+s)
3.5
=all(x+ y,t+s)+au(x— y,t+s)+2a(a* — 1)ui(x,t) (3:5)

forallx,y € R", t,s > 0.

LemMMA 3.1. Let f : R" X (0,00) — C be a continuous function satisfying

flax+y,a*t+s) + f(ax — y,a’t +5)
=af(x+yt+s)+af(x—yt+s)+2a(a*—1)f(x1) (36)

for fixed integer a with a # 0, +1. Then the solution is of the form

f(x, ) = Z AijkXiXj Xk +t z bix;, a,'jk,bi e C. (3.7)

I<i<j<k<n I<i<n
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Proof. In view of (3.6) and given the continuity, f(x,0%) := lim,_¢+ f(x,¢) exists. Define
h(x,t):= f(x,t) — f(x,0%), then h(x,0") = 0 and

h(ax+ y,a’t+s) +h(ax — y,a*t+s)

=ah(x+ y,t+s)+ah(x— y,t+s)+2a(a® — 1)h(x,t) (38)
forall x, y € R",t,s > 0. Setting y = 0, s — 0* in (3.8), we have
h(ax,a’t) = a®h(x,t). (3.9)
Putting y = 0, s = a’s in (3.8), and using (3.9), we get
a*h(x,t+5s) = h(x,t+a*s) + (a®> — 1)h(x,t). (3.10)
Letting t — 0* in (3.10), we obtain
a*h(x,s) = h(x,a’s). (3.11)
Replacing t by a?t in (3.10) and using (3.11), we have
h(x,a*t+s) = h(x,t+s) + (a* — 1) h(x,1). (3.12)
Switching ¢ with s in (3.12), we get
h(x,t+a’s) = h(x,t+s) + (a* — 1) h(x,s). (3.13)
Adding (3.10) to (3.13), we obtain
h(x,t+s) = h(x,t) + h(x,s), (3.14)
which shows that
h(x,t) = h(x,1)t. (3.15)
Letting t — 0%, s = 1 in (3.8), we have
h(ax+y,1)+h(ax — y,1) = ah(x+ y,1) + ah(x — y,1). (3.16)

Also letting t = 1, s — 0" in (3.8), and using (3.11), we get
a*h(ax+ y,1) +a*h(ax — y,1) = ah(x+ y,1) + ah(x — y,1) + 2a(a® — 1)h(x,1).  (3.17)
Now taking (3.16) into (3.17), we obtain

h(x+y,1)+h(x—y,1) = 2h(x,1). (3.18)
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Replacing x, y by (x+ )/2, y = (x — y)/2 in (3.18), respectively, we see that h(x, 1) satis-
fies Jensen functional equation

2h(“Ty,1) — h(x, 1)+ h(y, 1). (3.19)
Putting x = y = 0in (3.16), we get h(0,1) = 0. This shows that h(x,1) is additive.

On the other hand, letting t = s — 0" in (3.6), we can see that f(x,0%) satisfies (1.5).
Given the continuity, the solution f(x,t) is of the form

flx,t) = Z aijkXiXjxp +1t Z bixi, ai]‘k,bi eC, (3.20)

l<i<j<k=<n I<i<n
which completes the proof. O

As a direct consequence of the above lemma, we present the general solution of the
cubic functional equation in the spaces of ¥'(R”) and &’ (R").

THEOREM 3.2. Suppose that uin ' (R") or F' (R") satisfies the equation
uoA +uoA; =auoB+auoB,+2a(a*—1)uoP (3.21)
for fixed integer a with a # 0,+1. Then the solution is the cubic form

u= Z AijkXiXjX>  Aijk e C. (3.22)

l<i<j<k<n

Proof. Convolving the tensor product E;(&)Es(#) of n-dimensional heat kernels in both
sides of (3.21), we have the classical functional equation

U(ax+y,a’t+s) +u(ax — y,a’t+s)
- N . (3.23)
=au(x+y,t+s)+at(x— y,t+s)+2a(a* — 1)u(x,t)

for all x,y € R", t,s > 0, where # is the Gauss transform of u. By Lemma 3.1, the solution
u is of the form

u(x,t) = Z AjjkXixXjxx + 1 z bixi, aijk,bi € C. (3.24)

I<i<js<ksn 1<i<n
Thus we get
(U, @) = < > ajrxixixett bixi,<p> (3.25)
I<i<j<k=n I<i<n
for all test functions ¢. Now letting t — 0%, it follows from the heat kernel method that
() = < > aijkxixjxk)(l)> (3.26)
I<i<j<k<n

for all test functions ¢. This completes the proof. O
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4. Stability in ¥'(R") and F' (R")

We are going to prove the stability theorem of the cubic functional equation in the spaces
of ¥'(R™) and &' (R").
We note that the Gauss transform

vo(xt) 1:J|E\PEz(x—f)df (4.1)

is well defined and v, (x,t) — |x|? locally uniformly as t — 0*. Also y,(x, t) satisfies semi-
homogeneous property

vy (rx,17t) = rPy,(x, 1) (4.2)
forall r = 0.
We are now in a position to state and prove the main result of this paper.

THEOREM 4.1. Let a be fixed integer with a # 0,+1 and let €, p, q be real numbers such
that € =2 0 and 0 < p, q < 3, or p,q > 3. Suppose that u in &' (R") or F'(R") satisfy the
inequality

lluoA; —uoA;—auoB; —auoB, —2a(a*>— 1)uoP|| < e(|x|? +|y|1). (4.3)
Then there exists a unique cubic form

cx) = D> aixixix (4.4)

I<i<j<ks<n

such that

€

e |x|%. 4.5
2Mlap—lal?| (45)

[lu—clx)|| <

Proof. Letv:i=uoA; —uoA; —auoB; —auo B, —2a(a’> — 1)u o P. Convolving the ten-
sor product E;(&)E,(y) of n-dimensional heat kernels in v, we have

| [V * (Et(f)Es(’/l))](xiy” = | <V>Et(x_ f)Es()’ - ’I)) |
< €|[(1€17+ 7|1 E(x — E)E(y — )| (4.6)
= €(yp(x,1) +yg(y,9)).

Also we see that, as in Theorem 3.2,

[v* (E(&)Es(n)) ] (x,y) = ti(ax+ y,a*t+s) + u(ax — y,a’t +s)

—ati(x+y,t+s) —ati(x — y,t+s) — 2a(a® — 1)u(x, 1),
(4.7)
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where # is the Gauss transform of u. Thus inequality (4.3) is converted into the classical
functional inequality

|ti(ax+y,a’t+s)+i(ax—y,a*t+s) —au(x+ y,t+s)—ati(x — y,t+s)—2a(a* — 1)u(x,1t) |
< €(yp(6 1) +94(y,9))
(4.8)

forall x,y € R",t,5 > 0.
We first prove for 0 < p, g < 3. Letting y = 0, s — 0" in (4.8) and dividing the result by
2|al’, we get

ti(ax,a’t)
pe

Bi(x, 1) ' =y (xt). (4.9)

2| |
By virtue of the semihomogeneous property of y,, substituting x, t by ax, a?t, respec-
tively, in (4.9) and dividing the result by |a|*, we obtain

u(a’x,a*t)  u(ax,a’t)

ab a3 ‘ 2| B

lalP 3y, (x, 1), (4.10)

Using induction argument and triangle inequality, we have

u(a"x,a®"t) . € = (p-3)j
L) smwp(x,t)%w (4.11)
pa

forall n € N, x € R", t >0. Let us prove the sequence {a=3"#i(a"x,a>"t)} is convergent

for all x € R", ¢ > 0. Replacing x, t by a™x, a*"t, respectively, in (4.11) and dividing the
result by |a|*™ we see that

ﬁ(aernx)aZ(mﬂt)t) ﬁ(amx’ ath) n-1 3
a3(m+n) o a3m 2| |3 ll/p X, t) Z |a| (p= (412)
j=m

Letting m — oo, we have {a—>"#i(a"x,a*"t)} is a Cauchy sequence. Therefore, we may de-
fine

G(x,t) = lim a i (a"x,a*'t) (4.13)

n— o0

forall x € R", t > 0.
Now we verify that the given mapping G satisfies (3.6). Replacing x, y, t, sby a"x, a"y,
a’"t, a®"s in (4.8), respectively, and then dividing the result by |a|®", we get
lal 7" | U(a"(ax + y),a*" (a*t+s)) + U(a" (ax — y),a*" (a*t+5))
—aii(a"(x+y),a*"(t+s)) —ati(a"(x+y),a*"(t+s)) —2a(a® — 1)u(a"x,a*"t) |
<lal7"(y,(a"x,a*"t) + yq(a"y,a*"s))

= (1al® "y, (x, 1) + a7y, (y,5)).
(4.14)



10 Journal of Inequalities and Applications

Now letting n — oo, we see by definition of G that G satisfies

Glax+ y,a*t+s) +G(ax — y,a*t+s)

, (4.15)
=aG(x+y,t+s) +aG(x — y,t+s) +2a(a* — 1) G(x,1)

for all x, y € R",t,s > 0. By Lemma 3.1, G(x, ) is of the form

G(x,t) = z QijkXiXj Xk +t z bix;, a,'jk,bi e C. (4.16)
I<i<j<k<n l<i<n
Letting n — co in (4.11) yields
~ €
G(x,t) — W) < ,1). 4.17

| ('x ) u(x )| <2(|a|3_|a|p)1//p(x ) ( )

To prove the uniqueness of G(x,t), we assume that H(x,t) is another function satisfying
(4.15) and (4.17). Setting y = 0 and s — 0" in (4.15), we have

G(ax,a’t) = a’G(x,1). (4.18)
Then it follows from (4.15), (4.17), and (4.18) that

| G(x,t) — H(x,t) |

= |a|™"| G(a"x,a*"t) — H(a"x,a*"t) | < lal™"|G(a"x,a*"t) — ti(a"x,a*"t) |
€

+|a|73n u a”x,az”t - H a”x,aznt <— vy, (x,1)

i ) H N = (aBial —Taiy V7

(4.19)

forallm e N, x € R", t > 0. Letting n — co, we have G(x,t) = H(x,t) for all x € R", t > 0.
This proves the uniqueness.
It follows from the inequality (4.17) that

| (G(x,t) —ti(x,1),9) | < m(%(% £),9) (4.20)

for all test functions ¢. Letting t — 0%, we have the inequality

€
u-— Z AijkXiXjXk || = m (4.21)

I<i<j<k=<n

Now we consider the case p,q > 3. For this case, replacing x, y, t by x/a, 0, t/a* in
(4.8), respectively, and letting s — 0* and then multiplying the result by |a|?, we have

~ s Xt € 3
e - ai( % 5| < S lal Py (4.22)

Substituting x, t by x/a, t/a?, respectively, in (4.22) and multiplying the result by |a|® we
get

~fx ~f X € -
“3”(;’5) ‘“6”(;’;) ’ = 51ap Al Py (). (4.23)
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Using induction argument and triangle inequality, we obtain

N anf Xt € $ e
H(x,t) —a® u(a— ) ‘ < W%(x’t) z |a|G-P)i (4.24)
j=1

n’ g2n

foralln € N, x € R”, t > 0. Following the same method as in the case 0 < p, g < 3, we see
that

G(x,t) := lim a3”17<%, i) (4.25)

nooo azn

is the unique function satisfying (4.15). Letting n — oo in (4.24), we get

| ﬁ(x’t) - C(x’t) | = m%(% t)~ (4.26)

Now letting t — 0* in (4.26), we have the inequality

€
- e | I — 427
u 1<'<Z;k< al]szxj-xk 2| |a|p_ |a|3| ( )
<i<j<k<n
This completes the proof. O
Remark 4.2. The above norm inequality
€
[lu—cx)|| <

——|x|? 4.28
2Nl = jal| (4.28)

implies that u — c¢(x) is a measurable function. Thus all the solution u in " (R") or &' (R")
can be written uniquely in the form

u=c(x)+h(x), (4.29)

where |h(x)| < (€/(2lal? - |al*]))|x|?.
CoROLLARY 4.3. Let a be fixed integer with a # 0,+1 and € > 0. Suppose that u in &' (R")
or F'(R") satisfy the inequality

|luoA; —uoAy—auoB; —auoB,—2a(a*>—1)uoP|| <e. (4.30)

Then there exists a unique cubic form

c(x) = Z Qi jkXiX X (4.31)

l<i<j<k<n

such that

€

|lu—c@)|| < 2 - 1)

(4.32)
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