We establish Schur-convexities of two types of one-parameter mean values in \(n \) variables. As applications, Schur-convexities of some well-known functions involving the complete elementary symmetric functions are obtained.

Copyright © 2007 Ning-Guo Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Throughout the paper, \(\mathbb{R} \) denotes the set of real numbers and \(\mathbb{R}_+ \) denotes the set of strictly positive real numbers. Let \(n \geq 2, n \in \mathbb{N}, x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}_n^n \), and \(x^{1/r} = (x_1^{1/r}, x_2^{1/r}, \ldots, x_n^{1/r}) \), where \(r \in \mathbb{R}, r \neq 0 \); let \(E_{n-1} \subset \mathbb{R}_{n-1}^{n-1} \) be the simplex

\[
E_{n-1} = \left\{ (u_1, \ldots, u_{n-1}) : u_i > 0 (1 \leq i \leq n-1), \sum_{i=1}^{n-1} u_i \leq 1 \right\},
\]

and let \(d\mu = du_1, \ldots, du_{n-1} \) be the differential of the volume in \(E_{n-1} \).

The weighted arithmetic mean \(A(x, u) \) and the power mean \(M_r(x, u) \) of order \(r \) with respect to the numbers \(x_1, x_2, \ldots, x_n \) and the positive weights \(u_1, u_2, \ldots, u_n \) with \(\sum_{i=1}^{n} u_i = 1 \) are defined, respectively, as \(A(x, u) = \sum_{i=1}^{n} u_i x_i, M_r(x, u) = (\sum_{i=1}^{n} u_i x_i^r)^{1/r} \) for \(r \neq 0 \), and \(M_0(x, u) = \prod_{i=1}^{n} x_i^{u_i} \). For \(u = (1/n, 1/n, \ldots, 1/n) \), we denote \(A(x, u) \overset{\Delta}{=} A(x), M_r(x, u) \overset{\Delta}{=} M_r(x) \).

The well-known logarithmic mean \(L(x_1, x_2) \) of two positive numbers \(x_1 \) and \(x_2 \) is

\[
L(x_1, x_2) = \begin{cases}
\frac{x_1 - x_2}{\ln x_1 - \ln x_2}, & x_1 \neq x_2, \\
x_1, & x_1 = x_2.
\end{cases}
\]
As further generalization of $L(x_1, x_2)$, Stolarsky [1] studied the one-parameter mean, that is,

$$
L_r(x_1, x_2) = \begin{cases}
\left(\frac{x_1^{r+1} - x_2^{r+1}}{(r + 1)(x_1 - x_2)} \right)^{1/r}, & r \neq -1, 0, x_1 \neq x_2, \\
\frac{x_1 - x_2}{\ln x_1 - \ln x_2}, & r = -1, x_1 \neq x_2, \\
\frac{1}{e} \left(\frac{x_1}{x_2} \right)^{1/(x_1 - x_2)}, & r = 0, x_1 \neq x_2, \\
x_1, & x_1 = x_2.
\end{cases}
$$

(1.3)

Alzer [2, 3] obtained another form of one-parameter mean, that is,

$$
F_r(x_1, x_2) = \begin{cases}
\frac{r}{r + 1} \cdot \frac{x_1^{r+1} - x_2^{r+1}}{x_1^{r} - x_2^{r}}, & r \neq -1, 0, x_1 \neq x_2, \\
x_1 x_2 \cdot \frac{\ln x_1 - \ln x_2}{x_1 - x_2}, & r = -1, x_1 \neq x_2, \\
\frac{x_1 - x_2}{\ln x_1 - \ln x_2}, & r = 0, x_1 \neq x_2, \\
x_1, & x_1 = x_2.
\end{cases}
$$

(1.4)

These two means can be written also as

$$
L_r(x_1, x_2) = \begin{cases}
\left(\int_0^1 (x_1 u + x_2 (1 - u))^r du \right)^{1/r}, & r \neq 0, \\
\exp \left(\int_0^1 \ln(x_1 u + x_2 (1 - u)) du \right), & r = 0,
\end{cases}
$$

(1.5)

$$
F_r(x_1, x_2) = \begin{cases}
\int_0^1 (x_1^r u + x_2^r (1 - u))^{1/r} du, & r \neq 0, \\
\int_0^1 x_1^{r-1} u du, & r = 0.
\end{cases}
$$

Correspondingly, Pittenger [4] and Pearce et al. [5] investigated the means above in n variables, respectively,

$$
L_r(x) = \begin{cases}
\left((n - 1)! \int_{E_{n-1}} (A(x, u))^r d\mu \right)^{1/r}, & r \neq 0, \\
\exp \left((n - 1)! \int_{E_{n-1}} \ln A(x, u) d\mu \right), & r = 0,
\end{cases}
$$

(1.6)

$$
F_r(x) = (n - 1)! \int_{E_{n-1}} M_r(x, u) d\mu,
$$

where $u_n = 1 - \sum_{i=1}^{n-1} u_i$.
In this paper, we establish the Schur-convexities of two types of one-parameter mean.

Let $\Omega \subset \mathbb{R}^n$. A function $\varphi : \Omega \rightarrow \mathbb{R}$ is said to be a Schur-convex (Schur-concave) function if $u \prec v$ implies $\varphi(u) \leq (\geq) \varphi(v)$.

Expressions (1.3) and (1.4) can be also written by using 2-order determinants, that is,

\[
L_r(x_1, x_2) = \left(\begin{array}{c|c}
1 & x_2^r \\
1 & x_1^r \\
\end{array} \right)^{1/r}, \quad r \neq -1, 0, x_1 \neq x_2,
\]

\[
\exp \left\{ \left(\begin{array}{c|c}
1 & x_2 \\
1 & x_1 \\
\end{array} \right) \ln \left(\begin{array}{c|c}
1 & x_2 \\
1 & x_1 \\
\end{array} \right) - 1 \right\}, \quad r = 0, x_1 \neq x_2,
\]

\[
F_r(x_1, x_2) = \left(\begin{array}{c|c}
1 & x_2 \\
1 & x_1 \\
\end{array} \right)^{(r+1)1/r} \left(\begin{array}{c|c}
1 & x_2^r \\
1 & x_1^r \\
\end{array} \right), \quad r \neq -1, 0, x_1 \neq x_2,
\]

\[
\exp \left(\begin{array}{c|c}
1 & x_2 \\
1 & x_1 \\
\end{array} \right) \ln \left(\begin{array}{c|c}
1 & x_2 \\
1 & x_1 \\
\end{array} \right), \quad r = 0, x_1 \neq x_2,
\]

Utilizing higher-order generalized Vandermonde determinants, Xiao et al. [8, 7, 6, 9] gave the analogous definitions of $L_r(x)$ and $F_r(x)$.

Obviously, $L_r(x)$ and $F_r(x)$ are symmetric with respect to x_1, x_2, \ldots, x_n, $r \rightarrow L_r(x)$ and $r \rightarrow F_r(x)$ are continuous for any $x \in \mathbb{R}^n$.

In [4, 5, 10, 11], the authors studied the Schur-convexities of $L_r(x_1, x_2)$ and $F_r(x_1, x_2)$. In this paper, we establish the Schur-convexities of two types of one-parameter mean values $L_r(x)$ and $F_r(x)$ for several positive numbers. As applications, Schur-convexities of some well-known functions involving the complete elementary symmetric functions are obtained.

2. Some definitions and lemmas

The Schur-convex function was introduced by Schur [12] in 1923, and has many important applications in analytic inequalities. The following definitions can be found in many references such as [12–17].

Definition 2.1. For $u = (u_1, u_2, \ldots, u_n), v = (v_1, v_2, \ldots, v_n) \in \mathbb{R}^n$, without loss of generality, it is assumed that $u_1 \geq u_2 \geq \cdots \geq u_n$ and $v_1 \geq v_2 \geq \cdots \geq v_n$. Then u is said to be majorized by v (in symbols $u \prec v$) if $\sum_{i=1}^{k} u_i \leq \sum_{i=1}^{k} v_i$ for $k = 1, 2, \ldots, n - 1$ and $\sum_{i=1}^{n} u_i = \sum_{i=1}^{n} v_i$.

Definition 2.2. Let $\Omega \subset \mathbb{R}^n$. A function $\varphi : \Omega \rightarrow \mathbb{R}$ is said to be a Schur-convex (Schur-concave) function if $u \prec v$ implies $\varphi(u) \leq (\geq) \varphi(v)$.
Every Schur-convex function is a symmetric function [18]. But it is not hard to see that not every symmetric function can be a Schur-convex function [15, page 258]. However, we have the following so-called Schur condition.

Lemma 2.3 [12, page 57]. Suppose that $\Omega \subset \mathbb{R}^n$ is symmetric with respect to permutations and convexset, and has a nonempty interior set Ω^0. Let $\phi : \Omega \to \mathbb{R}$ be continuous on Ω and continuously differentiable in Ω^0. Then, ϕ is a Schur-convex (Schur-concave) function if and only if it is symmetric and if

$$
(u_1 - u_2) \left(\frac{\partial \phi}{\partial u_1} - \frac{\partial \phi}{\partial u_2} \right) \geq (\leq) 0
$$

holds for any $u = (u_1, u_2, \ldots, u_n) \in \Omega^0$.

Lemma 2.4. Let $m \geq 1, n \geq 2, m, n \in \mathbb{N}$, $\Lambda \subset \mathbb{R}^m$, $\Omega \subset \mathbb{R}^n$, $\phi : \Lambda \times \Omega \to \mathbb{R}$, $\phi(v, x)$ be continuous with respect to $v \in \Lambda$ for any $x \in \Omega$. Let Δ be a set of all $v \in \Lambda$ such that the function $x \mapsto \phi(v, x)$ is a Schur-convex (Schur-concave) function. Then Δ is a closed set of Λ.

Proof. Let $l \geq 1$, $l \in \mathbb{N}$, $v_1 \in \Delta$, $v_0 \in \Lambda$, $v_1 \rightarrow v_0$ if $l \rightarrow +\infty$. According to Definition 2.2, $\phi(v_i, y) \geq (\leq) \phi(v_i, z)$ holds for any $y, z \in \Omega$ and $y > z$. Let $l \rightarrow +\infty$, then we have $\phi(v_0, y) \geq (\leq) \phi(v_0, z)$. Hence $v_0 \in \Delta$, so Δ is a closed set of Λ. □

3. Main results

Theorem 3.1. Given $r \in \mathbb{R}$, $L_r(x)$ is Schur-convex if $r \geq 1$ and Schur-concave if $r \leq 1$.

Proof. Denote $\tilde{u} = (u_2, u_1, u_3, \ldots, u_n)$.

If $r \neq 0$, owing to the symmetry of $L_r(x)$ with respect to x_1, x_2, \ldots, x_n, we have

$$
g_r(x) \triangleq \int_{E_{n-1}} (A(x, u))^r \, d\mu = \int_{E_{n-1}} (A(x, \tilde{u}))^r \, d\mu. \tag{3.1}
$$

Therefore,

$$
\frac{\partial g_r}{\partial x_1} = r \int_{E_{n-1}} u_1 (A(x, u))^{r-1} \, d\mu = r \int_{E_{n-1}} u_2 (A(x, \tilde{u}))^{r-1} \, d\mu,
$$

$$
\frac{\partial g_r}{\partial x_2} = r \int_{E_{n-1}} u_1 (A(x, \tilde{u}))^{r-1} \, d\mu = r \int_{E_{n-1}} u_2 (A(x, u))^{r-1} \, d\mu. \tag{3.2}
$$

It follows that

$$
\frac{\partial g_r}{\partial x_1} - \frac{\partial g_r}{\partial x_2} = r \int_{E_{n-1}} u_1 \left[(A(x, u))^{r-1} - (A(x, \tilde{u}))^{r-1} \right] \, d\mu, \tag{3.3}
$$

$$
\frac{\partial g_r}{\partial x_1} - \frac{\partial g_r}{\partial x_2} = r \int_{E_{n-1}} u_2 \left[(A(x, \tilde{u}))^{r-1} - (A(x, u))^{r-1} \right] \, d\mu.
$$

By combining (3.3) with (3.2), we have

$$
\frac{\partial g_r}{\partial x_1} - \frac{\partial g_r}{\partial x_2} = r \int_{E_{n-1}} (u_1 - u_2) \left[(A(x, u))^{r-1} - (A(x, \tilde{u}))^{r-1} \right] \, d\mu. \tag{3.4}
$$
By Lagrange’s mean value theorem, we find that

\[
(A(x, u))^{r-1} - (A(x, \tilde{u}))^{r-1} = (r - 1)(x_1u_1 + x_2u_2 - x_1u_2 - x_2u_1) \left(\xi + \sum_{i=3}^{n} u_i x_i \right)^{r-2}
\]

\[
= (r - 1)(u_1 - u_2)(x_1 - x_2) \left(\xi + \sum_{i=3}^{n} u_i x_i \right)^{r-2},
\]

where \(\xi\) is between \(x_1u_1 + x_2u_2\) and \(x_2u_1 + x_1u_2\).

From (3.4) and (3.5), we have

\[
(x_1 - x_2) \left(\frac{\partial g_r}{\partial x_1} - \frac{\partial g_r}{\partial x_2} \right) = \frac{r(r-1)}{2} (x_1 - x_2)^2 S_r(x),
\]

where

\[
S_r(x) = \int_{E_{n-1}} (u_1 - u_2)^2 \left(\xi + \sum_{i=3}^{n} u_i x_i \right)^{r-2} \, d\mu \geq 0.
\]

Hence, for \(r \neq 0\), we get

\[
(x_1 - x_2) \left(\frac{\partial L_r}{\partial x_1} - \frac{\partial L_r}{\partial x_2} \right) = (n - 1)! \cdot \frac{1}{r} \cdot (L_r)^{1-r} \cdot (x_1 - x_2) \left(\frac{\partial g_r}{\partial x_1} - \frac{\partial g_r}{\partial x_2} \right)
\]

\[
= (n - 1)! \cdot \frac{r-1}{2} \cdot (L_r)^{1-r} \cdot (x_1 - x_2)^2 S_r(x).
\]

From Lemma 2.3, it is clear that \(L_r\) is Schur-convex for \(r > 1\) and Schur-concave for \(r < 1\) and \(r \neq 0\).

According to Lemma 2.4 and the continuity of \(r \mapsto L_r(x)\), let \(r \to 0, 1-, \) or \(1+ \) in \(L_r(x)\), we know that \(L_0(x)\) is a Schur-concave function, and \(L_1(x)\) is both a Schur-concave function and a Schur-convex function.

\[\square\]

Theorem 3.2. Given \(r \in \mathbb{R}\), \(F_r(x)\) is Schur-convex if \(r \geq 1\) and Schur-concave if \(r \leq 1\).

Proof. Denote \(\tilde{u} = (u_2, u_1, u_3, \ldots, u_n)\). For \(r \neq 0\),

\[
F_r(x) = (n - 1)! \int_{E_{n-1}} M_r(x, u) \, d\mu = (n - 1)! \int_{E_{n-1}} M_r(x, \tilde{u}) \, d\mu,
\]

\[
\frac{\partial F_r}{\partial x_1} = (n - 1)! \int_{E_{n-1}} x_1^{r-1} u_1 (M_r(x, u))^{1-r} \, d\mu = (n - 1)! \int_{E_{n-1}} u_1 \left[\frac{M_r(x, u)}{x_1} \right]^{1-r} \, d\mu,
\]

\[
\frac{\partial F_r}{\partial x_2} = (n - 1)! \int_{E_{n-1}} x_2^{r-1} u_1 (M_r(x, \tilde{u}))^{1-r} \, d\mu = (n - 1)! \int_{E_{n-1}} u_1 \left[\frac{M_r(x, \tilde{u})}{x_2} \right]^{1-r} \, d\mu.
\]
Combination of (3.10) with (3.11) yields

\[
\frac{\partial F_r}{\partial x_1} - \frac{\partial F_r}{\partial x_2} = (n-1)! \int_{E_{n-1}} u_1 \left\{ \left(\frac{M_r(x, u)}{x_1} \right)^{1-r} - \left(\frac{M_r(x, \hat{u})}{x_2} \right)^{1-r} \right\} d\mu. \tag{3.12}
\]

By using the mean value theorem, we find

\[
\left(\frac{M_r(x, u)}{x_1} \right)^{1-r} - \left(\frac{M_r(x, \hat{u})}{x_2} \right)^{1-r} = \\
\left(u_1 + \frac{u_2 x_2^r + \sum_{i=3}^{n} u_i x_i^r}{x_1^r} \right)^{(1-r)/r} - \left(u_1 + \frac{u_2 x_1^r + \sum_{i=3}^{n} u_i x_i^r}{x_2^r} \right)^{(1-r)/r} \\
= \frac{1-r}{r} \left(\frac{u_2 x_2^r + \sum_{i=3}^{n} u_i x_i^r}{x_1^r} - \frac{u_2 x_1^r + \sum_{i=3}^{n} u_i x_i^r}{x_2^r} \right) (u_1 + \theta_1)^{(1-2r)/r} \\
= \frac{1-r}{r} \frac{u_2 x_2^r + \sum_{i=3}^{n} u_i x_i^r}{x_1^r} - \frac{u_2 x_1^r + \sum_{i=3}^{n} u_i x_i^r}{x_2^r} (u_1 + \theta_1)^{(1-2r)/r} \\
= (1-r)(x_2-x_1) (u_1 + \theta_1)^{(1-2r)/r} T(x, u; \theta_2),
\tag{3.13}
\]

where \(\theta_1 \) is between \((u_2 x_2^r + \sum_{i=3}^{n} u_i x_i^r)/x_1^r \) and \((u_2 x_1^r + \sum_{i=3}^{n} u_i x_i^r)/x_2^r \), \(\theta_2 \) is between \(x_1 \) and \(x_2 \), and \(T(x, u; \theta_2) = (2u_2 \theta_2^{2r-1} + \theta_2^{r-1} \sum_{i=3}^{n} u_i x_i^r)/x_1^r x_2^r \geq 0 \).

From (3.12) and (3.13), we have

\[
(x_1 - x_2) \left(\frac{\partial F_r}{\partial x_1} - \frac{\partial F_r}{\partial x_2} \right) = (r-1)(x_1 - x_2)^2 (n-1)! \int_{E_{n-1}} u_1 (u_1 + \theta_1)^{(1-2r)/r} T(x, u; \theta_2) d\mu.
\tag{3.14}
\]

It follows that \(F_r \) is Schur-convex for \(r > 1 \) and Schur-concave for \(r < 1 \) and \(r \neq 0 \) by Lemma 2.3.

According to Lemma 2.4 and the continuity of \(r \mapsto F_r(x) \), let \(r \mapsto 0, 1-, \) or \(1+ \) in \(F_r(x) \). We know that \(F_0(x) \) is a Schur-concave function, and \(F_1(x) \) is both a Schur-concave function and a Schur-convex function. \(\square \)

Theorem 3.3. \(L_r(x^{1/r}) \) and \(F_r(x^{1/r}) \) are Schur-concave functions if \(r \geq 1 \), and Schur-convex functions if \(r \leq 1 \) and \(r \neq 0 \).
Proof. We can easily obtain that

\[
L_r(x^{1/r}) = \left[(n-1)! \int_{E_{n-1}} M_{1/r}(x,u)\,d\mu \right]^{1/r} = F_{1/r}^{1/r}(x),
\]

(3.15)

\[
F_r(x^{1/r}) = (n-1)! \int_{E_{n-1}} \left[A(x,u) \right]^{1/r} \,d\mu = L_{1/r}^{1/r}(x),
\]

\[
(x_1 - x_2) \left(\frac{\partial L_r(x^{1/r})}{\partial x_1} - \frac{\partial L_r(x^{1/r})}{\partial x_2} \right) = \frac{1}{r} (x_1 - x_2) \left(\frac{\partial F_{1/r}(x)}{\partial x_1} - \frac{\partial F_{1/r}(x)}{\partial x_2} \right) \cdot F_{1/r}^{(1-r)/r}(x),
\]

(3.15)

\[
(x_1 - x_2) \left(\frac{\partial F_r(x^{1/r})}{\partial x_1} - \frac{\partial F_r(x^{1/r})}{\partial x_2} \right) = r (x_1 - x_2) \left(\frac{\partial L_{1/r}(x)}{\partial x_1} - \frac{\partial L_{1/r}(x)}{\partial x_2} \right) \cdot L_{1/r}^{r-1}(x).
\]

(3.16)

From Theorems 3.1 and 3.2, we know that both \(L_{1/r}(x) \) and \(F_{1/r}(x) \) are Schur-concave functions if \(r \geq 1 \) and Schur-convex functions if \(0 < r \leq 1 \) or \(r < 0 \). According to Lemma 2.3 and (3.16), the required result of Theorem 3.3 is proved. \(\square \)

4. Applications

As applications of the theorems above, we have the following corollaries.

Corollary 4.1 (See [19, Theorem 3.1] and [12, page 82]). For \(r \geq 1, r \in \mathbb{N} \), the complete elementary symmetric function

\[
C_r(x) = \sum_{i_1 + i_2 + \ldots + i_n = r, i_1, \ldots, i_n \geq 0 \text{ are integers}} x_1^{i_1} x_2^{i_2} \ldots x_n^{i_n}
\]

(4.1)

is Schur-convex.

Proof. If \(r \geq 1, r \in \mathbb{N} \), then (see [20, page 164])

\[
C_r(x) = \binom{n-1+r}{r} L_{1/r}^r(x). \quad (4.2)
\]

By Theorem 3.1 and Lemma 2.3, it is easy to see that \(L_{1/r}^r(x) \) is a Schur-convex function. Therefore, \(C_r(x) \) is a Schur-convex function. \(\square \)

Corollary 4.2. The complete symmetric function of the first degree:

\[
D_r(x) = \sum_{i_1 + i_2 + \ldots + i_n = r, i_1, \ldots, i_n \geq 0 \text{ are integers}} \left(x_1^{i_1} x_2^{i_2} \ldots x_n^{i_n} \right)^{1/r}
\]

(see [6, Theorem 5] and [9]), is Schur-concave for \(r \geq 1, r \in \mathbb{N} \).
Proof. If \(r \geq 1, r \in \mathbb{N} \), then we have (see [6, Theorem 5])

\[
D_r(x) = \left(\frac{n-1+r}{r} \right) F_{1/r}(x). \tag{4.4}
\]

By considering Theorem 3.2, we prove the required result. \qed

Corollary 4.3. Let \(r \neq 0, x, y \in \mathbb{R}^n_+ \), \(x' > y' \). Then \(L_r(x) \leq L_r(y) \) and \(F_r(x) \leq F_r(y) \) if \(r \geq 1 \). They are reversed if \(r \leq 1 \) and \(r \neq 0 \).

Proof. Suppose \(r \geq 1 (r \leq 1, r \neq 0) \). \(L_r(x^{1/r}) \) is a Schur-concave (Schur-convex) function by Theorem 3.3. Then

\[
L_r\left((x')^{1/r} \right) \leq (\geq)L_r\left((y')^{1/r} \right), \quad L_r(x) \leq (\geq)L_r(y). \tag{4.5}
\]

For \(F_r(x^{1/r}) \), the proof is similar; we omit the details. \qed

Corollary 4.4. If \(r \geq 1 \), then

\[
A(x) \leq L_r(x) \leq M_r(x), \\
A(x) \leq F_r(x) \leq M_r(x). \tag{4.6}
\]

Inequalities (4.6) are reversed if \(r \leq 1 \).

Proof. If \(r \geq 1 \), owing to Theorem 3.1 and

\[
(x_1, x_2, \ldots, x_n) \succ (A(x), A(x), \ldots, A(x)) \triangleq \overline{A}(x), \tag{4.7}
\]

we have

\[
L_r(x) \geq L_r(\overline{A}(x)) = \left((n-1)! \int_{E_{n-1}} \left(\sum_{i=1}^{n} A(x) u_i \right)^r d\mu \right)^{1/r} = A(x) \left((n-1)! \int_{E_{n-1}} \left(\sum_{i=1}^{n} u_i \right)^r d\mu \right)^{1/r} = A(x). \tag{4.8}
\]

Obviously, if \(r \leq 1, r \neq 0 \), inequality (4.8) is reversed by Theorem 3.1. For \(r = 0 \), because of the continuity of \(r \mapsto L_r(x) \), we have \(L_0(x) \leq A(x) \).

By the same way, we find that \(F_r(x) \geq A(x) \) if \(r \geq 1 \), and \(F_r(x) \leq A(x) \) if \(r \leq 1 \). In addition,

\[
x' = (x'_1, x'_2, \ldots, x'_n) \succ (M'_r(x), M'_r(x), \ldots, M'_r(x)) \triangleq (M_r(x))^r, \tag{4.9}
\]
If $r \geq 1$, according to Corollary 4.3, we get

$$L_r(x) \leq L_r(\mathcal{M}_r(x)) = \left((n-1)! \int_{E_{n-1}} \left(\sum_{i=1}^{n} M_r(x) u_i \right)^r d\mu \right)^{1/r} = M_r(x). \quad (4.10)$$

If $r \leq 1$, inequality (4.10) is obviously reversed by Corollary 4.3 again.

Similarly, we have $F_r(x) \leq M_r(x)$ if $r \geq 1$, and $F_r(x) \geq M_r(x)$ if $r \leq 1$. □

Acknowledgments

This work was supported by the NSF of Zhejiang Broadcast and TV University under Grant no. XKT-07G19. The authors are grateful to the referees for their valuable suggestions.

References

10 Journal of Inequalities and Applications

Ning-Guo Zheng: Huzhou Broadcast and TV University, Huzhou, Zhejiang 313000, China

Email address: yczng@hzvtc.net

Zhi-Hua Zhang: Zixing Educational Research Section, Chenzhou, Hunan 423400, China

Email address: zxzh1234@163.com

Xiao-Ming Zhang: Haining College, Zhejiang Broadcast and TV University, Haining, Zhejiang 314400, China

Email address: zjzxm79@tom.com