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We consider the oscillatory property of the following p(t)-Laplacian equations
−(|u′|p(t)−2u′)′ = 1/tθ(t)g(t,u), t > 0. Since there is no Picone-type identity for p(t)-
Laplacian equations, it is an unsolved problem that whether the Sturmian comparison
theorems for p(x)-Laplacian equations are valid or not. We obtain sufficient conditions
of the oscillatory of solutions for p(t)-Laplacian equations.
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1. Introduction

In recent years, the study of differential equations and variational problems with non-
standard p(x)-growth conditions have been an interesting topic (see [1–6]). The study of
such problems arise from nonlinear elasticity theory, electrorheological fluids (see [3, 6]).
On the asymptotic behavior of solutions of p(x)-Laplacian equations on unbounded do-
main, we refer to [5].

In this paper, we consider the oscillation problem

−�p(t) u :=−
(|u′|p(t)−2u′)′ = 1

tθ(t)
g(t,u), t > 0, (1.1)

where p :R→ (1,∞) is a function, and −�p(t) is called p(t)-Laplacian.
By an oscillatory solution we mean one having an infinite number of zeros on

0 < t <∞. Otherwise, the solution is said to be nonoscillatory. Hence, a nonoscillatory
solution eventually keeps either positive or negative. It is called a positive (or negative)
solution.

If p(t)≡ p is a constant, then −�p(t) is the well-known p-Laplacian, and (1.1) is the
usual p-Laplacian equation. But if p(t) is a function, the −�p(t) is more complicated
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than −�p, since it represents a nonhomogeneity and possesses more nonlinearity; for
example, if Ω is bounded, the Rayleigh quotient

λp(t) = inf
u∈W1,p(t)

0 (Ω)\{0}

∫
Ω

(
1/p(t)

)|∇u|p(t)dt
∫
Ω

(
1/p(t)

)|u|p(t)dt , (1.2)

is zero in general, and only under some special conditions λp(t) > 0 (see [2]), but the fact
that λp > 0 is very important in the study of p-Laplacian problems.

It is well known that, there exists Picone-type identity for p-Laplacian equations, and
then it is easy to obtain Sturmian comparison theorems for p-Laplacian equations, which
is very important in the study of the oscillation of the solutions of p-Laplacian equations.
There are many papers about the oscillation problem of p-Laplacian equations (see [7–
10]). On the typical p-Laplacian problem

−�p u= λ

tp
|u|p−2u, t > 0, (1.3)

when λ > ((p− 1)/p)p, then all the solutions oscillation, but when λ≤ ((p− 1)/p)p, then
all the solutions are nonoscillation (see [10]). But there is no Picone-type identity for
p(t)-Laplacian equations, it is an unsolved problem that whether the Sturmian compari-
son theorems for p(x)-Laplacian equations are valid or not. The results on the oscillation
problem of p(t)-Laplacian equations are rare.

We say a function f : R→ R possesses property (H) if it is continuous and satisfies
limt→∞ f (t)= f∞, and t| f (t)− f∞| ≤M∗ for t > 0.

Throughout the paper, we always assume that
(A1) θ ∈ C(R+,R), p ∈ C1(R, (1,∞)) and satisfies

1 < inf
x∈R

p(x)≤ sup
x∈R

p(x) < +∞; (1.4)

(A2) g is continuous on R+×R, g(t,·) is increasing for any fixed t > 0, g(t,u)u > 0 for
any u �= 0 and satisfies

0 < lim
t→+∞

g(t,u)u≤ lim
t→+∞g(t,u)u < +∞, ∀u∈R\{0}. (1.5)

The main results of this paper are as follows.

Theorem 1.1. Assume that limt→+∞θ(t) < limt→+∞p(t), suppose that (1.1) has a positive
solution u, then u is increasing for t sufficiently large, and u tends to +∞ as t→ +∞.

Theorem 1.2. Assume that p possesses property (H) and g(t,u)= |u|q(t)−2u, where θ sat-
isfies

lim
t→+∞θ(t) < lim

t→+∞
q(t), (1.6)

where q satisfies

1 < lim
t→+∞q(t) < lim

t→+∞
p(t), (1.7)
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or limt→+∞ q(t) = limt→+∞ p(t) and q(t) possesses property (H), then all the solutions of
(1.1) are oscillatory.

2. Proofs of main results

In the following, we denote −(ϕ(t,u′))′ = −(|u′|p(t)−2u′)′, and use Ci and ci to denote
positive constants.

Proof of Theorem 1.1. Let u(t) be a positive solution of (1.1) , then there exists a T > 0
such that u(t) > 0 for t ≥ T . Hence, by (A2), we have

(
ϕ(t,u′)

)′ = − 1
tθ(t)

g(t,u) < 0 for t > T. (2.1)

We first show that u′ > 0 for t > T . If it is false, we suppose that there exists a t1 ≥ T
such that u′(t1)≤ 0. Since ug(t,u) > 0 when u �= 0, by (2.1), we have

ϕ
(
t,u′(t)

)
< ϕ
(
t1,u′

(
t1
))≤ 0 for t > t1. (2.2)

Hence we can find a t2 > t1 such that u′(t2) < 0. Integrating both sides of (2.1) from t2
to t, we get ϕ(t,u′(t))≤ ϕ(t2,u′(t2)) < 0 for t > t2, and therefore

u′(t)≤−∣∣u′(t2
)∣∣(p(t2)−1)/(p(t)−1) ≤−min

t≥t2
∣
∣u′
(
t2
)∣∣(p(t2)−1)/(p(t)−1) :=−a < 0. (2.3)

Integrate this inequality to obtain u(t) ≤ −a(t− t2) + u(t2)→−∞, as t → +∞. It is a
contradiction. Thus, u(t) is increasing for t ≥ T .

We next suppose that there exists a K > 0 such that u(t) ≤ K for t ≥ T . Since u(t) is
increasing, then u(t)≥ u(T) for t ≥ T . From (2.1), we have

0 < ϕ
(
t,u′(t)

)= ϕ
(
T ,u′(T)

)−
∫ t

T

1
tθ(t)

g(t,u)dt. (2.4)

Since u is a bounded positive solution, then it is easy to see that

0= lim
t→+∞ϕ

(
t,u′(t)

)= ϕ
(
T ,u′(T)

)− lim
t→+∞

∫ t

T

1
tθ(t)

g(t,u)dt,

ϕ
(
t,u′(t)

)=
∫ +∞

t

1
tθ(t)

g(t,u)dt.
(2.5)

Denote θ∗ = {limt→+∞p(t) +max{1, limt→+∞θ(t)}}/2, when t is large enough, we have
u′(t)≥ ϕ−1(t,

∫ +∞
t (1/tθ∗)cdt), then

u(t)−u(T)≥
∫ t

T
ϕ−1

(
t,
∫ +∞

t

1
tθ∗

cdt
)
dt −→ +∞. (2.6)

It is a contradiction, thereby completing the proof. �
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Proof of Theorem 1.2. If it is false, then wemay assume that (1.1) has a positive solution u.
From Theorem 1.1, we can see that u is increasing, then

0≤ lim
t→+∞ϕ

(
t,u′(t)

)= ϕ
(
T ,u′(T)

)− lim
t→+∞

∫ t

T

1
tθ(t)

g(t,u)dt. (2.7)

If limt→+∞ϕ(t,u′(t)) > 0, then there exists a positive constant a such that

ϕ
(
t,u′(t)

)= ϕ
(
T ,u′(T)

)−
∫ t

T

1
tθ(t)

g(t,u)dt = a+
∫ +∞

t

1
tθ(t)

g(t,u)dt, (2.8)

then there exists a positive constant k such that u(t)≥ kt for t ≥ T . From (1.6), when t is
large enough, we have

ϕ
(
T ,u′(T)

)≥ ϕ
(
t,u′(t)

)= a+
∫ +∞

t

1
tθ(t)

(kt)q(t)−1dt = +∞. (2.9)

It is a contradiction. Then we have

lim
t→+∞ϕ

(
t,u′(t)

)= 0, (2.10)

ϕ
(
t,u′(t)

)=
∫ +∞

t

1
tθ(t)

g(t,u)dt. (2.11)

There are two cases.
(i) Equation (1.7) is satisfied. From (1.6) and (1.7), there exists a T1 > T which is large

enough such that

θ+ := sup
t≥T1

θ(t) < q− := inf
t≥T1

q(t),

q+ := sup
t≥T1

q(t) < p− := inf
t≥T1

p(t).
(2.12)

If θ+ ≤ 1, since u is increasing, then

ϕ
(
t,u′(t)

)=
∫ +∞

t

1
tθ(t)

g(t,u)dt ≥
∫ +∞

t

1
tθ+

c1dt = +∞, ∀t ≥ T1. (2.13)

It is a contradiction to (2.10). Thus 1 < θ+ < p−. Since u is increasing, then

ϕ
(
t,u′(t)

)=
∫ +∞

t

1
tθ(t)

g(t,u)dt ≥
∫ +∞

t

1
tθ+

c1dt = c1
θ+− 1

1
tθ+−1

, ∀t ≥ T1, (2.14)

u′(t)≥ ϕ−1
(
t,

c1
θ+− 1

1
tθ+−1

)
, ∀t ≥ T1. (2.15)
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Thus, there exist T2 > T1 and positive constants C1 and c2 such that

u′(t)≥ c2

(
1

tθ+−1

)1/(p−−1)
, u(t)≥ C1t

−((θ+−1)/(p−−1))+1 = C1t
(p−−θ+)/(p−−1), ∀t > T2.

(2.16)

From (2.11), when t > T2, we have

ϕ
(
t,u′(t)

)≥
∫ +∞

t

1
tθ+
(
C1t

(p−−θ+)/(p−−1))(q−−1)dt =
∫ +∞

t

(
C1
)(q−−1)

tθ+−((p−−θ+)/(p−−1))(q−−1)
dt.

(2.17)

Denote θ0 = θ+, θ1 = θ+− ((p− − θ0)/(p− − 1))(q− − 1). If θ1 ≤ 1, then we have

ϕ
(
t,u′(t)

)≥
∫ +∞

t

(
C1
)(q−−1)

tθ1
dt = +∞. (2.18)

It is a contradiction to (2.10). Thus 1 < θ1 < p−, and we have

u′(t)≥ ϕ−1
(

t,
(C1)(q

−−1)

θ1− 1
1

tθ1−1

)

, ∀t > T2, (2.19)

then, there exists T3 > T2 and positive constant c3 and C2 such that

u′(t)≥ c3

(
1

tθ1−1

)1/(p−−1)
, u(t)≥ C2t

−((θ1−1)/(p−−1))+1 = C2t
(p−−θ1)/(p−−1), ∀t > T3.

(2.20)

Thus

ϕ
(
t,u′(t)

)=
∫ +∞

t

1
tθ(t)

g(t,u)dt ≥
∫ +∞

t

(
c2
)(q−−1)

tθ+−((p−−θ1)/(p−−1))(q−−1)
dt. (2.21)

Denote θ2 = θ+− ((p− − θ1)/(p− − 1))(q− − 1). If θ2 ≤ 1, then

ϕ
(
t,u′(t)

)≥
∫ +∞

t

(
c3
)(q−−1)

tθ2
dt = +∞. (2.22)

It is a contradiction to (2.10). Thus 1 < θ2 < p−. So, we get a sequence θn > 1 and satisfy
θn+1 = θ+− ((p− − θn)/(p− − 1))(q− − 1), n= 0,1,2, . . .. Then

θn+1 = θ0 +
n∑

k=0

(
q− − 1
p− − 1

)k(
θ1− θ0

)
, n= 1,2, . . . . (2.23)

Since (1.7) is valid, then q− < p−, thus

lim
n→+∞θn+1 = θ0− p− − θ0

p− − q−
(
q− − 1

)≤ θ0−
(
q− − 1

)
< 1. (2.24)

It is a contradiction to θn > 1.
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(ii) Equation (1.7) is not satisfied. Then limt→+∞ q(t)= limt→+∞ p(t) and q(t) possesses
property (H). From (2.15), we can see that

u′(t)≥
(

c1
θ+− 1

1
tθ+−1

)1/(p(t)−1)
, ∀t ≥ T1. (2.25)

Since p possesses property (H), then, there exist T2 > T1 and positive constants C1 and
c2 such that

u′(t)≥ c2

(
1

tθ+−1

)1/(p∞−1)
, u(t)≥ C1t

−((θ+−1)/(p∞−1))+1 = C1t
(p∞−θ+)/(p∞−1), ∀t > T2.

(2.26)

Since limt→+∞ q(t) = limt→+∞ p(t) and q(t) possesses property (H), then q∞ = p∞.
From (2.26), when t > T2, we have

ϕ
(
t,u′(t)

)=
∫ +∞

t

1
tθ(t)

g(t,u)dt ≥
∫ +∞

t

(
C1
)(q(t)−1)

tθ+−(p∞−θ+)C
dt. (2.27)

Denote θ0 = θ+, θ1 = θ+− (p∞ − θ0). If θ1 ≤ 1, then we have

ϕ
(
t,u′(t)

)≥
∫ +∞

t

(
C1
)(q(t)−1)

tθ1
dt = +∞. (2.28)

It is a contradiction to (2.10). Thus 1 < θ1 < p∞, and there exist T3 > T2 and positive
constant c3 and C2 such that

u′(t)≥ c3

(
1

tθ1−1

)1/(p∞−1)
, u(t)≥ C2t

−((θ1−1)/(p∞−1))+1 = C2t
(p∞−θ1)/(p∞−1), ∀t > T3.

(2.29)

Repeating the above step, we can obtain a sequence {θn} such that

1 < θn+1 = θn−
(
p∞ − θ+

)= θ0−n
(
p∞ − θ+

)
. (2.30)

It is a contradiction to (1.6). �

3. Applications

Let Ω= {x ∈RN | |x| > r0}, p, q, and θ are radial. Let us consider

−div
(|∇u|p(x)−2∇u)= 1

|x|θ(x) |u|
q(x)−2u in Ω. (3.1)

Write t = |x|. If u is a radial solution of (3.1), then (3.1) can be transformed into

−(tN−1|u′|p(t)−2u′)′ = tN−1

tθ(t)
|u|q(t)−2u, t > r0. (3.2)
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Theorem 3.1. Assume that p(t) satisfies N < inf p(x), and limt→+∞ p(t) = p, p(t), q(t),
and θ(t) satisfies the conditions of Theorem 1.2, then every radial solution of (3.1) is oscilla-
tory.

Proof. Denote s= ∫ t0 τ(1−N)/(p(τ)−1)dτ, then ds/dt = t(1−N)/(p(t)−1), and s→ +∞ if and only
if t→ +∞. It is easy to see that (3.2) can be transformed into

− d

ds

(∣∣
∣
∣
d

ds
u
∣
∣
∣
∣

p(s)−2 d
ds
u
)
= t(N−1)/(p(t)−1)

tN−1

tθ(t)
g(t,u), t > r0. (3.3)

It is easy to see that

0 < lim
t→+∞

[
t((N−1)/(p(t)−1))+N−1−θ(t)

s−((p−1)/(p−N))(θ(t)−((N−1)p/(p−1)))

]

≤ lim
t→+∞

[
t((N−1)/(p(t)−1))+N−1−θ(t)

s−((p−1)/(p−N))(θ(t)−((N−1)p/(p−1)))

]

< +∞.

(3.4)

Since limt→+∞θ(t) < limt→+∞q(t), it is easy to see that

p− 1
p−N

(

lim
s→+∞θ(s)−

(N − 1)p
p− 1

)

< lim
s→+∞

q(s). (3.5)

According to Theorem 1.2, then every radial solution of (3.1) is oscillatory. �
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