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1. Introduction and results

Consider the zeros of solutions of linear differential equations with periodic coefficients,
for the second-order equation

f ′′ +A(z) f = 0, (1.1)

where A is entire and nonconstant with period ω; a number of results have been obtained
in [1, 2]. For the higher-order differential equation

f (k) +Ak−2 f (k−2) + ···+A0 f = 0. (1.2)

Bank and Langley proved the following theorems in [3].

Theorem 1.1. Let k ≥ 2 be an integer, A0, . . . ,Ak−2 be entire periodic functions with period
2πi, such that A0 is transcendental in ez with

lim
r→∞

loglogM
(
r,A0

)

r
= c <

1
2
, (1.3)



2 Journal of Inequalities and Applications

and for each j with 1≤ j ≤ k− 2, the coefficient Aj either is rational in ez or satisfies

lim
r→∞

loglogM
(
r,Aj

)

r
< c. (1.4)

Then (1.2) cannot have linearly independent solutions f1, f2 satisfying

log+N
(
r,

1
f1 f2

)
=O(r). (1.5)

Theorem 1.2. Suppose that k ≥ 2 and A0, . . . ,Ak−2 are entire functions of period 2πi, and
that f is a nontrivial solution of a differential equation (1.2). Suppose further that f satisfies

log+N
(
r,
1
f

)
= o(r), (1.6)

A0 is nonconstant and rational in ez, and if k ≥ 3 then A1, . . . ,Ak−2 are constants. Then there
exists an integer q with 1≤ q ≤ k, such that f (z) and f (z+ q2πi) are linearly dependent.

The same conclusion holds if A0 is transcendental in ez and f satisfies

log+N
(
r,
1
f

)
=O(r), (1.7)

and if k ≥ 3, then as r → +∞ through a set L1 of infinite linear measure, we have

T
(
r,Aj

)= o
(
T
(
r,A0

))
( j = 1, . . . ,k− 2). (1.8)

In this paper, we will assume that the reader is familiar with the fundamental results
and the standard notations of Nevanlinna’s value distribution theory of meromorphic
functions (e.g., see [4, 5]). In addition, we will use σ( f ) and μ( f ) to denote, respectively,
the order and the lower order of meromorphic function f (z), λ( f ) to denote the conver-
gence exponent of zeros of f (z).

Let A(z) be an entire function. We define

σe(A)= lim
r→∞

logT(r,A)
r

(1.9)

to be the e-type order of A(z). Clearly,

σe(A)= lim
r→∞

loglogM(r,A)
r

. (1.10)

The main aim of this paper is to improve the result of Theorem 1.1. In the following
theorem (Theorem 1.3), we weaken the conditions (1.3) and (1.4) of Theorem 1.1. In par-
ticular, in Corollary 1.4, the condition σ(G0) < 1/2, σ(gj) <max{σ(G0), σ(g0)}, is weaker
than that of Theorem 1.1, by Remark 2.3, we see that this condition in Corollary 1.4
shows that σe(A0) may be arbitrary, that is, in Corollary 1.4, the restriction “c < 1/2” of
Theorem 1.1 is redundant. Thus, Theorem 1.3 and Corollary 1.4 improve essentially the
result of Theorem 1.1.
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The other aim of this paper is to consider what condition will guarantee that every
solution f �≡ 0 of (1.2) satisfies λ( f ) =∞. In Theorem 1.6 and Corollaries 1.7 and 1.8,
we prove that under certain hypotheses, every solution f ( �≡ 0) of (1.2) satisfies (1.14), so
λ( f )=∞.

Theorem 1.3. Let k ≥ 2 and Aj(z)= Bj(ez)= Bj(ζ), ζ = ez, Bj(ζ)= Gj(ζ) + gj(1/ζ), j =
0,1, . . . ,k− 2, where Gj(t) and gj(t) are entire functions. Suppose the following:

(i) G0(t) is transcendental and σ(G0) <∞ if σ(G0) > 0, then G0 also satisfies that for
any τ satisfying 0 < τ < σ(G0), there exists a subset H ⊂ (1,+∞) with infinite loga-
rithmic measure, such that when |t| = r ∈H ,

log
∣
∣G0(t)

∣
∣ > rτ ; (1.11)

(ii) for j > 0,Gj(t) either is a polynomial or σ(Gj) < σ(G0);
(iii) for j > 0,gj(t) either is a polynomial or σ(gj) <max{σ(G0), σ(g0)}, where g0(t) is

arbitrary entire function.
Then (1.2) cannot have linearly independent solutions f1, f2 satisfying (1.5).
The same conclusion remains valid if Gj(t) and gj(t) ( j = 0, . . . ,k− 2) are transposed in

the hypotheses (i)–(iii) above.

Corollary 1.4. Let k ≥ 2 and Aj(z) = Bj(ez) = Bj(ζ), ζ = ez, Bj(ζ) = Gj(ζ) + gj(1/ζ),
j = 0,1, . . . ,k− 2, where Gj(t) and gj(t) are entire functions. Suppose the following:

(i)∗ G0(t) is transcendental with σ(G0) < 1/2;
(ii)∗ for j > 0,Gj(t) either is a polynomial or σ(Gj) < σ(G0);
(iii)∗ for j > 0,gj(t) either is a polynomial or σ(gj) <max{σ(G0), σ(g0)}.
Then (1.2) cannot have linearly independent solutions f1, f2 satisfying (1.5).
The same conclusion remains valid if Gj(t) and gj(t) ( j = 0, . . . ,k− 2) are transposed in

the hypotheses (i)∗–(iii)∗ above.

We introduce the concept of gap power series before we state Corollary 1.5. An entire
function f is said to be a gap power series if f (z)=∑∞

n=0 anzλn , where {λn} is a increasing
sequence of positive integers, f is said to have a Fabry gap if

lim
n→∞

n

λn
= 0. (1.12)

Corollary 1.5. Assume that the hypotheses of Corollary 1.4 are satisfied but the statements
(i)∗ and (ii)∗ are replaced, respectively, by the following:

(i)∗∗ G0(t) is an entire function with Fabry gap with σ(G0) < +∞;
(ii)∗∗ for j > 0, either Gj(t) is a polynomial or σ(Gj) < μ(G0).
Then the conclusion of Corollary 1.4 remains valid.

Theorem 1.6. Let k ≥ 2 and Aj(z)= Bj(ez)= Bj(ζ), ζ = ez, Bj(ζ)= Gj(ζ) + gj(1/ζ), j =
0,1, . . . ,k− 2, where Gj(t) and gj(t) are entire functions. Suppose the following:

(1) g0(t) is transcendental and σ(g0) <∞, if σ(g0) > 0, then for any τ satisfying 0 <
τ < σ(g0), there exists a subsetH ⊂ (1,+∞) with infinite logarithmic measure, such
that when |t| = r ∈H ,

log
∣
∣g0(t)

∣
∣ > rτ ; (1.13)
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(2) for j > 0, either gj(t) is a polynomial or σ(gj) < σ(g0);
(3) for j ≥ 0,Gj(t) is polynomial of degree pj such that 0 ≤ ps <min{k− s, p0} (s =

1, . . . ,k− 2) and p0 is not divisible by k.
Then every nontrivial solution f of (1.2) must have λ( f ) =∞, and in fact, the stronger

conclusion

log+N
(
r,
1
f

)
�= o(r) (r −→∞) (1.14)

holds.
The same conclusion remains valid if Gj(t) and gj(t) ( j = 0, . . . ,k− 2) are transposed in

the hypotheses (1)–(3) above.

Corollary 1.7. Let k ≥ 2 and Aj(z) = Bj(ez) = Bj(ζ), ζ = ez, Bj(ζ) = Gj(ζ) + gj(1/ζ),
j = 0,1, . . . ,k− 2, where Gj(t) and gj(t) are entire functions. Suppose the following:

(1)∗ g0(t) is transcendental and σ(g0) < 1/2;
(2)∗ for j > 0, either gj(t) is a polynomial or σ(gj) < σ(g0);
(3)∗ for j ≥ 0, Gj(t) is a polynomial of degree pj such that 0≤ ps <min{k− s, p0} (s=

1, . . . ,k− 2) and p0 is not divisible by k.
Then every nontrivial solution f of (1.2) must have λ( f ) =∞, and in fact, the stronger

conclusion (1.14) holds.
The same conclusion remains valid if Gj(t) and gj(t) ( j = 0, . . . ,k− 2) are transposed in

the hypotheses (1)∗–(3)∗ above.

Corollary 1.8. Assume that the hypotheses of Corollary 1.7 are satisfied but the statements
(1)∗ and (2)∗ are replaced, respectively, by the following:
(1)∗∗ G0(t) is an entire function with Fabry gap with σ(G0) < +∞;
(2)∗∗ for j > 0, either Gj(t) is a polynomial or σ(Gj) < μ(G0).
Then the conclusion of Corollary 1.7 remains valid.

2. Lemmas for the proof of Theorem 1.3

Lemma 2.1 (see [6]). Let f be a transcendental meromorphic function with σ( f )= σ <∞.
Let H = {(k1, j1),(k2, j2), . . . , (kq, jq)} be a finite set of distinct pairs of integers that satisfy
ki > ji ≥ 0 for i = 1, . . . ,q. Also let ε > 0 be a given constant. Then there exists a set E1 ⊂
(1,∞) with finite logarithmic measure such that for all z satisfying |z| /∈ [0,1]∪E and for
all (k, j)∈H one has

∣
∣
∣
∣
f (k)(z)
f ( j)(z)

∣
∣
∣
∣≤ |z|(k− j)(σ−1+ε). (2.1)

Remark 2.2. Let g(ζ) be a function analytic in R0 < |ζ| <∞. By [7, page 15], g(ζ) can be
represented as

g(ζ)= ζmψ(ζ)F(ζ), (2.2)
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where ψ(ζ) is analytic and does not vanish in R0 < |ζ| ≤ ∞ and ψ(∞)= 1, F is an entire
function and

F(ζ)= u(ζ)eh(ζ), (2.3)

where the function u(ζ) is a Weierstrass product formed by the zeros of g(ζ) in R0 < |ζ| <
∞, h(ζ) is an entire function. If u(ζ) is of finite order of growth, set W(ζ) = ψ(ζ)u(ζ),
since as ζ →∞, ψ( j)(ζ)/ψ(ζ) = o(1), by Lemma 2.1, it is easy to see that there exists a
subset E1 ⊂ (0,∞) having finite logarithmic measure and a constant M1(> 0), such that
for all ζ satisfying |ζ| �∈ E1,

∣
∣
∣
∣
W ( j)(ζ)
W(ζ)

∣
∣
∣
∣≤ |ζ|M1 . (2.4)

Remark 2.3. By [8, page 276], we know that if A(z) is an entire function and A(z) =
B(ez)= B(ζ)=G(ζ) + g(1/ζ), where G(t) and g(t) are entire functions, then

σe(A)=max
{
σ(G),σ(g)

}
. (2.5)

Lemma 2.4 (see [3]). Let A(z) be a nonconstant entire function with period 2πi. Then

c = lim
r→∞

T(r,A)
r

> 0. (2.6)

If c is finite, then A(z) is rational in ez.

We easily prove the following lemma.

Lemma 2.5. Let Aj(z) ( j = 1,2) be entire functions with Aj(z)= Bj(ez)= Bj(t), t = ez. If
B1(t) is transcendental (i.e., Laurent’s expansion of B1(t) is of infinitely many terms) and
B2(t) is rational, then

T
(
r,A2

)= o
{
T
(
r,A1

)}
. (2.7)

Lemma 2.6. Suppose that Aj , Bj , Gj , gj ( j = 0, . . . ,k− 2) satisfy the hypotheses of Theorem
1.3. If f (z)( �≡ 0) is a solution of (1.2) and satisfies (1.7), then in 1 < |ξ| <∞, f (z) can be
represented as

f (z)= ξdψ(ξ)u(ξ)eh(ξ), (2.8)

where ξ = ez/q, q is an integer and satisfies 1 ≤ q ≤ k, d is some constant, ψ(ξ) is analytic
and does not vanish in 1 < |ξ| ≤ ∞ and ψ(∞)= 1, both u(ξ) and h(ξ) are entire functions
of finite order.

If Gj(t) and gj(t) ( j = 0, . . . ,k− 2) are transposed in (i)–(iii), then the same conclusion
still holds with ξ = e−z/q.

Proof. By Remark 2.3 we see that

σe
(
Aj
)=max

{
σ
(
Gj
)
, σ
(
gj
)}
. (2.9)
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By the hypotheses (i)–(iii) of Theorem 1.3, we easily see that if σe(A0) > 0, then there
exists a set H ⊂ (0,∞) of infinite linear measure, such that

T
(
r,Aj

)= o
{
T
(
r,A0

)}
, r ∈H ; (2.10)

if σe(A0)= 0, then by Lemma 2.5,

T
(
r,Aj

)= o
{
T
(
r,A0

)}
( j = 1, . . . ,k− 2). (2.11)

Now suppose that f ( �≡ 0) is solution of (1.2) and satisfies (1.7). By (2.10), (2.11), and
Theorem 1.2, we see that there exists an integer q : 1 ≤ q ≤ k such that f (z) and f (z +
q2πi) are linearly dependent. By [9, page 382], we see that f (z) can be represented as

f (z)= ed1zG
(
ez/q
)
, (2.12)

where G(ξ) is analytic in 0 < |ξ| <∞, ξ = ez/q. By Remark 2.2, we see that in 1 < |ξ| <∞,
G(ξ) may be represented as

G(ξ)= ξmψ(ξ)u(ξ)eh(ξ), (2.13)

where m is an integer, ψ(ξ) is analytic and does not vanish in 1 < |ξ| ≤∞ and ψ(∞)= 1,
u(ξ) is a Weierstrass product formed by the zeros of G(ξ) in 1 < |ξ| <∞, h(ξ) is an entire
function, hence (2.8) holds.

Firstly, we prove that u(ξ) is of finite order of growth. By the transformation ξ = ez/q

and (1.7), the counting functionN1(ρ,1/G) ofG(ξ) in 1 < |ξ| <∞ satisfies log+N1(ρ,1/G)
=O(logρ). So that u(ξ) is an entire function of finite order.

Secondly, we prove that h(ξ) is of finite order of growth. SetW(ξ)= ψ(ξ)u(ξ), then

f (z)= ξdW(ξ)eh(ξ). (2.14)

Substituting (2.14) into (1.2), we obtain

(h′)k +Pk−1(h′)= 0, (2.15)

where Pk−1(h′) is a differential polynomial in h′ of total degree k− 1, its coefficients are
polynomials inW (s)/W (s= 1, . . . ,k), 1ξm (m= 1, . . . ,k− 1), Aj(z) ( j = 0, . . . ,k− 2).

By Remark 2.2, we see that there exists a subset E1 ⊂ (0,∞) with finite logarithmic
measure and a constant M1, such that for all ξ satisfying |ξ| �∈ E1, and for s = 1, . . . ,k,
m= 1, . . . ,k− 1,

∣
∣
∣
∣
1
ξm

W (s)(ξ)
W(ξ)

∣
∣
∣
∣≤ |ξ|M1 . (2.16)

By (2.15) and (2.16), we obtain

m(ρ,h′)≤M
{
m
(
ρ,G0

(
ξq
))

+ logm(ρ,h′) + logρ
}
, (2.17)

where ρ �∈ E2, E2 ⊂ [0,∞) is a set of finite linear measure, M(> 0) is a constant. Since
G0(t) is of finite order, by (2.17), we see that h(ξ) is of finite order.
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If Gj(t) and gj(t) ( j = 0, . . . ,k− 2) are transposed in (i)–(iii), we can still deduce the
same conclusion by setting ζ = 1/η, G∗j (η) = gj(η) = gj(1/ζ), g∗j (η) = Gj(1/η) = Gj(ζ)
( j = 0, . . . ,k− 2), and noting that G∗j (η) and g∗j (η) satisfy (i), (ii), and (iii), respectively,
Aj(z) = Bj(ζ) = Bj(1/η) = G∗j (η) + g∗j (1/η). In the previous argument, Gj(t) and gj(t)
are replaced, respectively, by G∗j (t) and g∗j (t). Thus, Lemma 2.6 is proved. �

Remark 2.7 (see [10, 11]). Let h(z) be a transcendental entire function with order σ(h)=
σ < 1/2. Then there exists a subset H ⊂ (1,∞) having infinite logarithmic measure, such
that if σ = 0, then

min
{
log
∣
∣h(z)

∣
∣ : |z| = r

}

logr
−→∞ (|z| = r ∈H , r −→∞); (2.18)

if σ > 0, then for any α (0 < α < σ),

log
∣
∣h(z)

∣
∣ > rα

(|z| = r ∈H , r −→∞). (2.19)

3. Proof of Theorem 1.3

Suppose that (1.2) has two linearly independent solutions f1(z) and f2(z) that satisfy
(1.5), then both f1, f2 satisfy (1.7). We deduce immediately from Lemma 2.6 that both
f1(z) and f2(z) have representations in the form (2.15). In particular, we can choose an
integer q : 1≤ q ≤ k2, according to (2.14) the representations can be written as

f1(z)= ξd1W1(ξ)eh1(ξ), f2(z)= ξd2W2(ξ)eh2(ξ), (3.1)

where dj ( j = 1,2) are two constants, ξ = ez/q, Wj(ξ) = ψj(ξ)uj(ξ) ( j = 1,2), ψj(ξ) is
analytic in 1 < |ξ| ≤∞, and ψj(ξ) �= 0, ψj(∞) �= 0, uj(ξ), and hj(ξ) are all entire functions
of finite order. By Remark 2.2, there exists a subset E1 ⊂ (0,∞) having finite logarithmic
measure and a constantM (0 <M <∞,M is not necessarily the same at each occurrence),
such that for all ξ satisfying |ξ| �∈ E1, and for s= 1, . . . ,k,m= 1, . . . ,k,

∣
∣
∣
∣ξ

sW
(m)
1 (ξ)

W1(ξ)

∣
∣
∣
∣+

∣
∣
∣
∣ξ

sW
(m)
2 (ξ)

W2(ξ)

∣
∣
∣
∣+

∣
∣
∣
∣ξ

s h
(m)
1 (ξ)
h′1(ξ)

∣
∣
∣
∣+

∣
∣
∣
∣ξ

s h
(m)
2 (ξ)
h′2(ξ)

∣
∣
∣
∣≤ |ξ|M. (3.2)

If σ(G0) = 0, then by Remark 2.7 we see that there exists a subset H ⊂ (1,∞) having
infinite logarithmic measure, such that

min
{
log
∣
∣G0(t)

∣
∣ : |t| = r

}

logr
−→∞ (r ∈H , r −→∞), (3.3)

and Gj(t) ( j = 1, . . . ,k− 2) are polynomials on t, hence there is a constantM that satisfies

∣
∣Gj(t)

∣
∣≤ rM

(|t| = r −→∞). (3.4)

If σ(G0) > 0, then by the hypothesis (i), we see that there exists a subsetH ⊂ (1,∞) having
infinite logarithmicmeasure (for convenience, we still assume that the subset with infinite
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logarithmic measure in the hypothesis (i) is H), and δ, τ > 0, such that for j > 0,

σ
(
Gj
)
< δ < τ < σ

(
G0
)
,

log
∣
∣Gj(t)

∣
∣ < rδ < rτ < log

∣
∣G0(t)

∣
∣,

(|t| = r ∈H
)
.

(3.5)

Thus, we can find a sequence {ρn}, ρ1 < ρ2 < ··· ,ρn →∞, such that for ξ lying on |ξ| =
ρn, we have, respectively, that as ρn→∞,

∣
∣Bj

(
ξq
)∣∣≤ ρMn ( j = 1, . . . ,k− 2), (3.6)

log
∣
∣B0

(
ξq
)∣∣

logρn
−→∞ (

σ
(
G0
)= 0

)
, (3.7)

log
∣
∣Bj

(
ξq
)∣∣ < ρ

qδ
n < ρ

qτ
n < log

∣
∣B0

(
ξq
)∣∣,

(
j = 1, . . . ,k− 2, σ

(
G0
)
> 0
)
. (3.8)

For convenience, when σ(G0) = 0, we let δ = 0. Thus, by (3.7) and (3.8) we have for
j = 1, . . . ,k− 2 that

Bj
(
ξq
)= {ρMn exp

(
ρ
qδ
n
)} (|ξ| = ρn

)
. (3.9)

We now estimate h′1 on |ξ| = ρn. Substituting f1 in (3.1) into (1.2), we deduce that

(
h′1
)k
+Pk−1(ξ)

(
h′1
)k−1

+
k−2∑

j=0
Pj(ξ)

(
h′1
) j
+
qk

ξk

[
g0

(
1
ξq

)
+G0

(
ξq
)
]
= 0, (3.10)

where Pk−1(ξ) is only polynomial in W (m)
1 /(ξ)W1(ξ), h

(m)
1 (ξ)/h′1(ξ), 1/ξs (1 ≤ s ≤ k −

1, 1 ≤ m ≤ k) with constant coefficients; Pj(ξ) ( j = 0, . . . ,k − 2) are polynomials in

W (m)
1 (ξ)/W1(ξ), h

(m)
1 (ξ)/h′1(ξ), 1/ξs (1 ≤ s ≤ k− 1, 1 ≤m ≤ k), and B1(ξq), . . . ,Bk−2(ξq)

with constant coefficients. Set

D(ξ)= qk

ξk

[
g0

(
1
ξq

)
+G0

(
ξq
)]= qk

ξk
B0
(
ξq
)
. (3.11)

On the circle Sn = {ξ : |ξ| = ρn, 0 < argξ < 2π}, we define a single valued branch of
D(ξ)1/k. By (3.10), we have

(
h′1
D1/k

)k
+
(
Pk−1
D1/k

)(
h′1
D1/k

)k−1
+

k−2∑

k=0

(
Pj

D(k− j)/k

)(
h′1
D1/k

) j

+1= 0. (3.12)

By (3.7)–(3.9) and (3.12), we can deduce, on Sn,

∣
∣h′1(ξ)− cnD

1/k(ξ)
∣
∣≤ ρMn

(|ξ| = ρn, ckn =−1
)
. (3.13)

Substituting f2(z) in (3.1) into (1.2), using a similar argument as above, for h′2, we can
get the same estimation, that is, h′2 satisfies (3.13), so that by (3.13) we can deduce that
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for every sufficiently large n there existM and an such that akn = 1, and, on |ξ| = ρn,

∣
∣h′2(ξ)− anh

′
1(ξ)

∣
∣≤ ρMn . (3.14)

Since kth root of unity has only k roots, we see that there must exist infinite many nj such
that these anj in (3.14) are all the same, say anj = a. By (3.14), we see that h′2(ξ)− ah′1(ξ)
must be a polynomial and so is h2(ξ)− ah1(ξ). Set h2(ξ)− ah1(ξ)= P. The polynomial P
and eP may be incorporated into the factorsW1 andW2, so that, without loss of general-
ity, we may further assume that h2(ξ)≡ ah1(ξ).

Now prove a= 1. Since f ′j / f j = (1/q)(dj + ξ(W ′
j /Wj) + ξh′j) ( j = 1,2) and ak = 1, we

see that for sufficiently large n, on |ξ| = ρn,

a
[
2k

W ′
1

W1
+ k(k− 1)

h′′1
h′1

]
= 2k

W ′
2

W2
+ k(k− 1)

h′′1
h′1

+ o
(
1
ρ2n

)
. (3.15)

Set

F1 =W2k
1

(
h′1
)k(k−1)

, F2 =W2k
2

(
h′1
)k(k−1)

, (3.16)

then F1 and F2 are the analytic functions in {ξ : 1 < |ξ| <∞}. Without loss of generality,
wemay assume that the entire function h′1 has infinite many zeros, otherwise, wemay take
a non-Picard exceptional value c of h′1, and replace h1(ξ) by h1(ξ)− cξ. ecξ is incorporated
into W1. Here above deduction remains unchanged, yet h′1− c is of infinite many zeros.
Denote by n1(ρn,1/F1) and n1(ρn,1/F2), respectively, zeros of F1 and F2 in annulus ρ1 <
|ξ| < ρn. Since

n1

(
ρn,

1
Fj

)
= 1

2πi

∫

sn+s−1

F′j
F j

dξ = 1
2πi

∫

sn+s−1

[
2k

W ′
j

Wj
+ k(k− 1)

h′′1
h′1

]
dξ, (3.17)

by (3.15), we get

an1

(
ρn,

1
F1

)
= n1

(
ρn,

1
F2

)
+O(1), (3.18)

combining this with ak = 1, we get a= 1.
Lastly, we easily prove that f1 and f2 are linearly dependent.
We remark that the above proof remains valid if we interchange the roles of Gj and gj

as at the end of the proof of Lemma 2.6. The proof of Theorem 1.3 is completed.

4. Lemma for the proof of Theorem 1.6

Lemma 4.1. Let k ≥ 2 and Aj(z) = Bj(ez) = Bj(ζ), ζ = ez, Bj(ζ) = Gj(ζ) + gj(1/ζ), j =
0,1, . . . ,k− 2, where Gj(t) and gj(t) are entire functions. Suppose the following:

(i) g0(t) is transcendental and σ(g0) <∞;
(ii) for j > 0, either gj(t) is a polynomial or σ(gj) < σ(g0);
(iii) for j ≥ 0,Gj(t) is polynomial.
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If f (z)( �≡ 0) is a solution of (1.2) and satisfies (1.7), then in 1 < |ξ| <∞, f (z) can be
represented as

f (z)= ξd0ψ0(ξ)u0(ξ)eh0(ξ), (4.1)

where ξ = ez/q, q is an integer and satisfies 1 ≤ q ≤ k, d0 is some constant, ψ0(ξ) is ana-
lytic and does not vanish in 1 < |ξ| ≤ ∞, and ψ0(∞) = 1, both u0(ξ) and h0(ξ) are entire
functions, and h0(ξ) and u0(ξ) also satisfy the following:

(a) h0(ξ) is a polynomial;
(b) if the condition (1.7) is replaced by (1.6), then u0(ξ) is a polynomial.

If Gj(t) and gj(t) ( j = 0, . . . ,k− 2) are transposed in (i)–(iii), then the same conclusion
still holds with ξ = e−z/q.

We give the following two remarks in order to prove Lemma 4.1.

Remark 4.2. Under the hypotheses of Lemma 4.1, in (2.8) of Lemma 2.6, ξ = e−z/q. But
in Lemma 4.1, we do not proceed transformation ζ = 1/η, so, in (4.1), ξ = ez/q.

Remark 4.3. Wiman-Valiron theory and its applications to differential equations (see [1,
pages 5-6] or [12, pages 71-72]).

Consider the linear differential equation

ak f
(k) + ak−1 f (k−1) + ···+ a0 f = 0, (4.2)

if a0, . . . ,ak are polynomials, f (z) is an entire transcendental function, then we have the
following:

(a) M(r, f ) satisfies the relation

logM(r, f )= c1r
σ + o

(
rσ
)

as r −→∞ (4.3)

for some positive real constant c1;
(b) σ is a positive rational number.

The same conclusion holds to the differential equation of the form (4.2) whose coeffi-
cients are analytic in a neighborhood of z =∞ and have at most a pole at z =∞.

Proof of Lemma 4.1. Using a method similar to the proof of Lemma 2.6, combining Re-
marks 4.2 and 4.3, we can prove Lemma 4.1. �

5. Proof of Theorem 1.6

Suppose that f is a nontrivial solution of (1.2) and satisfies (1.6). Then Theorem 1.3
implies that f (z) and f (z + 2πi) must be linearly dependent. On the other hand, by
Lemma 4.1, f (z) has the representation in 1 < |ξ| <∞,

f (z)= ζdψ(ζ)u(ζ)eh(ζ) = ζdW(ζ)eh(ζ), (5.1)

where ζ = ez, d is some constant, ψ(ζ) is analytic and does not vanish in 1 < |ζ| ≤∞, and
ψ(∞) = 1, both u(ζ) and h(ζ) are entire functions and have at most a pole at ζ =∞, as
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ζ →∞, set

W(ζ)= αζs
(
1+ o(1)

)
, h(ζ)= βζv

(
1+ o(1)

)
, αβ �= 0. (5.2)

Substituting (5.1) into (1.2), we get

(ζh′)k +Qk−1(ζ)(ζh′)k−1 +
k−2∑

j=0
Qj(ζ)(ζh′) j = 0, (5.3)

where Qk−1(ζ) is a polynomial in ζm(W (m)/W), ζm−1(h(m)/h′), 1/ζm with constant coef-
ficients; Qj(ζ) ( j = 0, . . . ,k− 2) are polynomials in Bj , Bj+1, . . . ,Bk−2 and ζm(W (m)/W),
ζm−1(h(m)/h′), 1/ζm with constant coefficients, every Qj(ζ) is linear in Bj , Bj+1, . . . ,Bk−2
and the coefficient of Bj is 1. Substituting (5.2) into (5.3), we get, as ζ →∞,

(βv)kζkv
(
1+ o(1)

)
+O

(|ζ|(k−1)v)

+
k−2∑

j=0

[
bjζ

pj+ jv
(
1+ o(1)

)
+C

j
j+1bj+1ζ

pj+1+ jv
(
1+ o(1)

)

+ ···+C
j
k−2bk−2ζ

pk−2+ jv
(
1+ o(1)

)]
(βv) j = 0.

(5.4)

If v ≥ 1, from the hypotheses pj <min{k− j, p0} ( j = 1, . . . ,k− 2), we see that for j ≥ 1,
when j ≤m ≤ k− 2, pm + jv < k−m+ jv ≤ (k− j)v + jv = kv; for j = 0, when 1 ≤ n ≤
k− 2, pn < p0. Thus, when v ≥ 1, (5.4) can be written as

(βv)kζkv
(
1+ o(1)

)
+ b0ζ

p0
(
1+ o(1)

)= 0. (5.5)

But p0 is not divisible by k, hence (5.5) is a contradiction.
If v = 0, then h(ζ) and eh(ζ) are constants, by Lemma 4.1 and (5.2) we see that f (z)=

ζdW(ζ)eh(ζ) has at most a pole at ζ =∞, but the coefficients Bk−2(ζ), . . . ,B0(ζ) of (1.2) are
analytic in a neighborhood of ζ =∞ and have at most a pole at ζ =∞, and the order of
pole of B0(ζ) at ζ =∞ is the highest, this is impossible.

Thus, (1.2) cannot admit a solution that satisfies (1.6), hence every solution f �≡ 0 of
(1.2) satisfies (1.14). This completes the proof of Theorem 1.6.

6. Proofs of corollaries

Proof of Corollary 1.4. By Remark 2.7, we see that the hypotheses of Theorem 1.3 are sat-
isfied. This completes the proof. �

To prove Corollary 1.5, we need the following lemma that can be deduced from [13,
Theorem 4].

Lemma 6.1. Let A(z) be an entire function with Fabry gap, and

logM(r,A) < rλ (6.1)

for some sufficiently large r > 0, where λ > 0 is a fixed constant. Let η1,η2 ∈ (0,1) be two
constants, then there exists a set E ⊂ (0,∞), such that the logarithmic measure of E∩ [1,r]
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is at least (1−η1) logr +O(1); as r → +∞ through values satisfying (6.1) and for r ∈ E, one
has

logL(r,A) >
(
1−η2

)
logM(r,A), (6.2)

where L(r,A)=min|z|=r{|A(z)|},M(r,A)=max|z|=r{|A(z)|}.
Proof of Corollary 1.5. Let μ(G0)= τ0. According to the definition, we have, for infinitely
many r with r →∞,

logM
(
r,G0

)
< rτ0+1, (6.3)

thus (6.1) holds. We deduce from Lemma 6.1 that there exists a set H0 ⊂ (1,+∞) with
infinite logarithmic measure, and when |t| = r ∈H0, we have

log
∣
∣G0(t)

∣
∣ >

(
1−η2

)
logM

(
r,G0

)
. (6.4)

When μ(G0) > 0, for j > 0 we choose σ(Gj) < τ < μ(G0). We deduce from the definition
that there exists r0 > 0, such that for all r > r0, logM(r,G0) > (1/(1−η2))rτ . Thus, when
r ∈H =H0∩ (r0,+∞), condition (i) of Theorem 1.3 holds. Clearly, H has infinite loga-
rithmic measure. Thus, Corollary 1.5 follows from Theorem 1.3. �

Proofs of Corollaries 1.7 and 1.8. Using a similar argument as in proof of Corollaries 1.4
and 1.5, respectively, we see that the conditions of Corollaries 1.7 and 1.8 satisfy the hy-
potheses of Theorem 1.6, respectively. Thus, by Theorem 1.6, we see that Corollaries 1.7
and 1.8 hold. �
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