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We describe a semigroup of abstract semilinear functional differential equations with
infinite delay by the use of the Crandall Liggett theorem. We suppose that the linear part
is not necessarily densely defined but satisfies the resolvent estimates of the Hille-Yosida
theorem. We clarify the properties of the phase space ensuring equivalence between the
equation under investigation and the nonlinear semigroup.
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1. Introduction

Most of the existing results about functional differential equations with finite delay have
been recently under verification in the case of infinite delay. Our objective in this paper is
to study the solution semigroup generated by the following partial functional differential
equation with infinite delay:

ix(t) =Arx(t)+F(x;), t=0,

dt (1.1)
Xy = ¢) (S %,

where At is a nondensely defined linear operator on a Banach space (E,| - |). The phase
space % can be the space C,, y being a positive real constant, of all continuous functions
¢ : (—00,0] — E such that limp_._ eV9¢(9) exists in E, endowed with the norm [|ll, :=
SUPg<g 679|¢(9) |, ¢ € C,. For every t > 0, the function x; € B is defined by

x(0) =x(t+0), for0e (—o,0]. (1.2)
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We assume the following.

(H1) F : B — E is globally Lipschitz continuous; that is, there exists a positive constant
L such that |F(y1) — F(y2)| < Lllyy — wallg for all vy, y, € B.

A typical example that can be transformed into (1.1) is the following:

5D = S +bw(tE) +e | GOw(t+0,6)d0

+f(w(t-1¢8), t=0,0=<¢<m, (1.3)

w(t,0) =w(t,m) =0, t=>0,

w(0,E) =w(0,E), —-0<0<0,0<é<m,

where a, b, ¢, and 7 are positive constants, f : R — R is a continuous function, G is a
positive integrable function on (—0,0], and wy : (—,0] X [0,77] — R is an appropriate
continuous function.

Effectively, in [1], an abstract treatment of (1.3) as (1.1) leads to a characterization of
exponential asymptotic stability near an equilibrium of (1.3) provided that the associated
linearized semigroup is exponentially stable.

For many quantitative studies of any problem of type (1.1) in a concrete space of func-
tions mapping (—,0] into E, one should choose a space that verifies at least the fun-
damental axioms first introduced in [2]. That is, (%, ]| - |l3) is a (semi)normed abstract
linear space of functions mapping (—,0] into E, which satisfies the following.

(A) There is a positive constant H and functions K(-),M(-) : R — R*, with K con-
tinuous and M locally bounded, such that for any 0 € R, a >0, if x: (—c0,0 +a] — E,
X, € B, and x(-) is continuous on [0,0 + a], then for every ¢ in [0,0 + a] the following
conditions hold:

(i) x: € B;
(ii) [x(¢)| < Hllx¢ll, which is equivalent to
(ii)" for each ¢ € B, [9(0)| < Hll @l z;
(iii) llx¢llgy < K(t — o) supy oo, 1%(s)| + M(t — 0) |l x4 1155

(A1) For the function x(-) in (A), t — x; is a B-valued continuous function for ¢ in
[0,0+al.

(B) The space % or the space of equivalence classes B =B/ - llp = {p:9 B} is
complete.

However, to obtain interesting qualitative results, a concrete choice should be made on
a space that verifies additional properties which are essential to investigate the equation.
A class of employed spaces is called uniform fading memory spaces. They verify that the
function K(-) is constant, lim;_.,. M(t) = 0, and the following extra property.

(C) If {¢n}u=0 is a Cauchy sequence in % with respect to the (semi)norm and if ¢,
converges compactly to ¢ on (—00,0], then ¢ is in B and ||¢,, — ¢llgs — 0 as n — +oo.

There are many examples of concrete spaces that verify the above properties. In [3],
it was proved, for instance, that if y > 0, the above-defined space C, is a uniform fading
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memory space. Another example is given by

— B) L 12O _
Cy:= {¢€C((—m,0],E).91jr}1m 2(0) _o}, (1.4)
equipped with the norm
. $(0)|
Il := 7:}:530 g0) ° (1.5)

where g : (—,0] — [1,+00) is a continuous function such that (gl): g is nonincreasing
and g(0) = 1, and (g2): the function G : [0,+00) — [0,+c) defined by G(t) :=
SUP_ g (g(t+0)/g(0)) tends to 0 as ¢ tends to co.

In general, set for any positive continuous function g on (—,0],

Cy:= SL¢ € C((~,0];E) : M is bounded},

g(0)
LCq:= {gb €Cy: 91}1}100 (tl:((z))‘) exists in E}, (1.6)
[¢(0) |

UG, := {(/) €Cy: is uniformly continuous on (—co,0] },

g(0)

such that (g3): G is locally bounded for ¢ > 0, (g4): g(0) tends to o as 0 tends to —o, and
(g2) are satisfied. Then LC; is a uniform fading memory space; the additional condition
(g5): logg(0) is uniformly continuous on (—00,0], ensuring that UC, is a uniform fading
memory space. Precisely, K(t) = sup_,_4.,(1/g(0)) and M(t) = G(t). Note that for the
space Cy, as defined above, g(0) = e 9,

On the contrary, despite its consideration in some recent separate publications con-
cerned with abstract stability investigations, unfortunately, the space Cy := {¢ € C((—o0,
0];E) : limg__ ¢(8) = 0} is not a uniform fading memory space. In [4] for instance,
some restrictive results about asymptotic behavior of solutions were obtained in the lin-
ear positive case on Cp. The followed method uses evolution semigroups, extrapolation
spaces, and critical spectrum on Banach lattices spaces. For the basic discussion about
the general phase space B, we refer the reader to [3, especially Chapter 1] and [5, pages
401-406].

Although many authors have avoided repetitions by working on the abstract space %,
the delicacy of some investigations restricts their work on a class of concrete spaces that
verify many properties such as C, with y > 0. In [1, 6-8], we have considered (1.1) with
Ar being nondensely defined and satisfying the Hille-Yosida condition. Precisely, since
D(Ar) is not densely defined, we have addressed the problems of existence, uniqueness,
regularity, existence of global attractor, existence of periodic solutions, and local stability
by means of the integrated semigroups theory. In this article, we use the Crandall Liggett
approach. We show the relation between a nonlinear semigroup and integral solutions to
(1.1).
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Notice that the most general results about functional differential equations with in-
finite delay are obtained notably in [9-15] and in [16] also in the situation where At
depends on t. Our results extend earlier ones which require the delay to be finite and Ay
to have a dense domain in E.

In this paper, we proceed as follows. In Section 2, we recall some basic results on ex-
istence, uniqueness, and properties of integral solutions to (1.1). Then, in Section 3, we
establish properties of the solution operator in nonlinear case. Next, we rely upon the
well-known Crandall and Liggett theorem in order to compute the nonlinear solution
semigroup by an exponential formula. Finally, we give the link between the semigroup
given by the Crandall and Liggett theorem and the integral solution to (1.1).

2. Basic results

Throughout, we assume that Ay satisfies the Hille-Yosida condition:
(H2) there exist two constants # > 1 and wy € R with (wg,+0) C p(Ar) and
sup{ll(A — wo)"RIAAT)"| : A > wy, n €N} <3,
where p(Ar) is the resolvent set of A and R(A, A1) = (Al — Ar) L.

Definition 2.1. A function x : (—o0,a] — E, a > 0, is an integral solution of (1.1) in (— 0, a]
if the following conditions hold:
(i) x is continuous on [0,a];
(i) [3x(s)ds € D(Ar), for t € [0,al;
(iii)

t t
X(t) = {gb(O) +Ar Jo x(s)ds + Jo F(s,x)ds, 0<t<a, 1)

(1), —00<t<0.

It follows from (ii) of the above definition that for an integral solution x, one has
x(t) € D(Ar) for all t = 0. In particular, ¢(0) € D(Ar).
Define the part Ay of A7 in D(Ar) by

D(Ag) = {x€ D(Ar) : Arx € D(Ar)}, )
Aox = Arx, forx e D(Ay). .

Recall (cf. [17]) that Ay generates a Cy-semigroup (1o ())¢=0 on D(Ar).
It is known (see [1, 6]) that under (H1) and (H2), for ¢ € % such that ¢(0) € D(Ar),
(1.1) admits a unique integral solution x(-,¢) given by the following formula:

t
x(64) = <|T0(t)(/>(0) +)qu1r:1oo L To(t = s)BAF(xs(+,9))ds, fort=0, (23)

(1), for t € (—0,0],

where By = AR(A,A7).
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Set

X:={pecB:9(0)eD(Ar)}. (2.4)
Define U(t) on & for ¢ > 0 by

U(t)p = x:(+, ), (2.5)

where x(-,¢) is the integral solution of (1.1). The point of departure for our results is [1]
where we have proved that (U(¢));~ is a strongly continuous semigroup satisfying the
following properties:

(1) (WU(¢))s=0 satisties, for t > 0 and 0 € (—0,0], the following translation property

(W(t+60)p)(0), ift+60=0,

" o — 2.6
(U(t)ep) (0) L,,(He), ift+6 <0, o

(ii) there exist two positive locally bounded functions m(-),n(-) : R* — R* such that,
forall 91,9, € X,and t > 0,

U1 = W) p2llz, < m()e" o1 — g2l (2.7)

Moreover, if F is a bounded linear operator and & is a subspace of C((—0,0]; E) satisfying
axioms (A1), (A2), (B) and the following axiom which was introduced in [13]:
(D) for a sequence (@) =0 in B, if [, lla — 0, then [¢,(s)| — 0 for each s € (—o0,0],

then Aq, : D(Aq) € & — & such that Aq,¢ = ¢’ for any ¢ € D(Aq,), where

D(Aq) = {p € X : ¢ is continuously differentiable, ¢(0) € D(Ar),

2.8
o €%, ¢'(0) = Arg(0) +F(g)}, 28)

is the infinitesimal generator of (U(#))¢o.

3. Main results

Our first main result can be considered as an extension of the above result to the case
where F is nonlinear. The concrete choice of %R (LC;.’, LG, or UCg) seems to be best
adapted to obtain our results. Here, we suppose sufficient conditions on g. The proof
combines the ideas of [1, 18] or [19].

ProproOSITION 3.1. Let P = LCE, B = LC, (with (g1)), or B = UC, (with (g5)). Then Con-
ditions (H1) and (H2) imply that A is the infinitesimal generator of (WU(t))s=o.
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Proof. Let ¢ € & be continuously differentiable such that
¢' €&, 9(0) €D(Ar),  ¢'(0) = Arg(0) +F(p). (3.1)

Let x(+,¢) : (—o0,+0c0) — E be the unique integral solution of (1.1). We have to show that
lim;_o+ (1/¢) (U(t)p — @) exists in & and is equal to ¢’. By definition of x¢(-,¢) and AU,

au 0), ift=0,
(o :{( (1)) (0) 1 t 32)
o(1), if t € (—00,0],
then
1 %(x(f+9,¢)—<p(9))(0), t+0>0,
;(Ou(tw—gv)(ﬂ) =11 (3.3)
S (9t +6) = 9(8)), t+6 € (—,0].

Ift+0 <0, (1/t)(WU(t)p — ¢)(0) tends to D*(0) as t — 0F, where D" ¢(6) is the right
derivative of ¢ in 6.
Ift+0 >0, we have

%(Ou(t)w - 9)(6) - ¢'(0)
t+6 (3‘4)
= %[To(tJrG)(P(O) +%an0 . To(t+06 — s)ByF (x)ds — ‘P(e)] ().

Let S(t), t = 0, be the integrated semigroup associated with Ty(t), t = 0. We obtain
from the last equality

HUGIENIORAG

t+6
= %[QD(O) +S8(t+0)Ar¢(0) +){£11c>10 . To(t+0 —s)By(F(xs) —F(¢))ds  (3.5)

t+6

+ lim To(t+60 —s)ByF(¢)ds — (p(@)] —¢'(0).

A=c0 Jo
Since To(t)9(0) = ¢(0) + A7S(t)9(0) and

t+6

}im To(t+0 —s)ByF(¢)ds = %im S(t+0)B)F(9)
—o00 J0 — 00
= lim ByS(t + 0)F(9) (3.6)

=S(t+0)F(¢),
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we deduce that

+(Ut)p = )(6) - ¢/(0)

r +0
= 1|90 +50+0)9'©) + lim Ot To(t+68 - 9By (F(x) — Fg))ds — 9(0)|
—¢'(0)
1T t+0 t+0 -
=; S(t+6)¢p I @' ( ds+hmJ To(t+0 —s)By(F(x;) — F(¢))ds

+ ;sv(O) + T"’ "(0) - —90(6) —¢'(0)
t+0

t+0 _
_1 jo (To(s)¢' (0) — go<o>)ds+hmj To(t+6 - 5)By(F(x) - F())ds

100, , , )
+;L<P(S)ds—¢ 0)+¢ (0)—;L¢ (0)ds
t+0

t+6
= *U (To(s)g'(0) — ¢’ (0))ds+ lim
0 A—o0 Jo

; To(t+0 — 5)By (F(x,) —F((p))ds]

0
1], (96— ¢ O)ds+9'(©) - g'(B)
(3.7)

Hence

1 1 t+6
HUGENIOEOIE ;j | Tols)g'(0) — ¢'(0) | ds
0

t+6

J To(t+6—5)Bi(F(x;) —F(¢)) |ds (3.8)

= hm

+ ;L ¢/ - ¢/ O)|ds+|¢'(0) - 9'(6)].

Let ¢ > 0 and choose a > 0 small enough such thatif 0<t<a, —c0o <0 <0,and t+6 >
0, then

1 t+60 €
?J | To(s)g"(0) — ' (0) | ds < v
0

- hm

t Ao

+6
Jt To(t+6 —s)By(F(xs) — F(¢))ds <i, (3.9)

1o -0 lds 190 g/ 0)] < &

andif0<t<a, —0<0<0,and t+6 <0, then

gw)‘ 09 =9)(6)=¢'(0 >\ i (W(r)g -~ 9)(6) - ¢(e)‘

.|

(3.10)

~ = | =

(p(t+8) - p(6)) - e>'<f
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Consequently, if 0 < t < «, then

1 1 , 1 '
@ |1 WDe-0)O) -9 <e>\ < \;(%(t)w—so)(e)—q) 0)] <e. (3.11)

Hence
1 ,
H;(Ou(t)(p—go)—go H <e. (3.12)
R

This proves that lim;—o+ (1/¢)(WU(¢)¢p — ¢) exists and is equal to ¢’. Then, ¢ € D(Aqy).
Conversely, let ¢ € & such that

lim — (Ou(t)(p 9) = hm ( 1(,0) — @) =y =Aqe existsin¥. (3.13)

-0t f

We can easily see that axiom (D) is verified by C,, LC,, and UC, which implies that

hm (xt(H ®) —¢(0)) exists for all 6 < 0 and is equal to /(). (3.14)

Then, for 6 € (—,0), we have

1
¥(6) = lim - (g(t+6) - 9(6)) = D" (0); (3.15)
that is, D*¢ = y in (—c0,0). Since v is continuous, D*¢ is also continuous in (—,0).
Let us recall the following result.

LEmMa 3.2 [20]. Let ¢ be continuous and differentiable on the right on [a,b). If D" ¢ is
continuous on [a,b), then ¢ is continuously differentiable on [a,b).

From the above lemma, we deduce that the function ¢ is continuously differentiable in
(—0,0) and ¢" = y. On the other hand, for 8 = 0, one has limg_.¢- ¢’ (6) exists and equals
y(0). From this we infer that the function ¢ is continuously differentiable in (—o0,0] and
¢' =y € X. We also deduce that t — U(t)¢ is continuously differentiable. On the other
hand, we have

(1) = p(0) +AT<th(s)ds) ; L:F(xs)ds. (3.16)

This implies that lim;.q A7[((1/) fo (1/t) fo (x,)ds] exists and hence
lims_o- Ar((1/t) fo (s)ds) exists. From the closedness of Ar and the fact that (1/¢) fO x(s)ds
€ D(Ar) for t >0, we deduce that lim;_o+(1/t) jox )ds exists in D(Ar) and is equal to

¢(0). Consequently, ¢(0) € D(Ar) and ¢'(0) = Ar@(0) + F(¢). This completes the proof
of the proposition. O

The next result may be considered as an extension of a similar one in [19]. Our goal is
to establish the Crandall and Liggett exponential formula

lim (1 - %Am) 9 =U(N)p, VoL, t=0, (3.17)

n—+oo
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We restrict our choice to &, := {¢ € C, : ¢(0) € D(Ar)} with y > 0. Recall that this
specified space is a uniform fading memory one.

ProprosiTION 3.3. Let B = C, with y > 0. Suppose that (H1) and (H2) are satisfied. Then,
the operator Aqy given by Proposition 3.1 satisfies the following Crandall Liggett conditions.
(a) Im(I = AAq) =&, for all A € (0,1/(L+ wy)).
(b) For all y1,y, € X, and A € (0,1/(L + wy)),

-1 -1 1
(I =2Ax) g1 — (I - AAq) WZHVSTHWHWI_%”V' (3.18)

(c) D(A«) is dense in X,

Proof. (a) It is well known that one can suppose without loss of generality that wy >
—L and [|To(t)]l < e!. To prove (a), it is clear from the definition of Aq that (I —
AAwq)(D(Aq;)) € &, for A > 0. On the other hand, for y € &, and A > 0, let us solve the
following equation:

(I-2Aw)p=v, ¢e€D(Aq). (3.19)

Recall that with y >0 and A > 0, the function W (1/1)(0) : 0 — eM0y(0), 6 < 0, belongs
to &, . Also, the fact that €, with y > 0 is a uniform fading memory space implies that the

function Myy : 6 — (1/A) [y e VMO (s)ds, 6 < 0, belongs to %, (see [21, 22]). More-
over, we can see that the solution of (3.19) is

0(6) = (W(%)q)m)) (0)+ (M) (6) = e p(0) + 1 J: Oy (9)ds.  (3.20)

Next, we suppose that 0 < Awg < 1. From (3.19) evaluated at 0 and the definition of Aq,
we get

9(0) = (I —2A7) " (y(0) +AF(9)). (3.21)

Introduce the following mapping G{}, : E — E defined by

Gh(x) = (I-AA7)" (1//(0) +/\F(W(%>x+Mu//) Vx L. (3.22)

For x,y € E, we have

1G4 = Gy | = [R(poar) [F(w (3 vy - F(w(5) e v |

AL 1 1
v
AL ’
V0| (/N8
< I—Awosgg)e | eV Mo (x — )|
AL

= 1—Aw0|x_y|.
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Next, we suppose that A € (0,1/(L+wp)). Then, G{‘V is a strict contraction and it has a
unique fixed point x in E. Knowing that (I — AAr) ' (E) = D(Ar), we deduce that this
fixed point belongs to D(Ar). Consequently, Im(I —AAq,) = &, forall A € (0,1/(L+ w)).
(b) Let A € (0,1/(L + wp)) be fixed. Set $) := (I — AAq)~' which is well defined from
%, to D(Aq,). We prove that $, is Lipschitz continuous with Lipschitz constant less
than (1 —Awg)/(1 — ML+ wy)). In fact, let A >0 with A € (0,1/(L+wy)) and $ry; := ¢,
Prvs = @, for y1, v, € &, Given € > 0, by definition, there exists 6 € (—o0,0] such that

e 191(0) = 92(0)| > llor — g2l —&. (3.24)

Using (3.21) and (H2), we get

DR(1ar ) [ ((0) = 92(0) + (Fln) ~ Flg2) ]|

|

1
10
< {e(l/ ) ey (||1P1 - ll/2||y+M~||‘P1 _‘P2||y>

0
. ’ le(m)oj ROSUIER
A 9

ewwwm—WWstﬁ

L7 ame-s
# |3 [0 (9 ya(o)as

Hw—wn}

e(vs (1718
<(1—Aw0+(1‘e )>||1//1 yoll, + ||<P1 ¢all,
(3.25)
which implies that
1 — Awy — ALeV/V? (/)8
10—/\6()0 H¢1_¢2||yss+<l—la)o+(l UA )”1//1 V/2||y,
1-dwy (V041 — Dy — eVV0 4 Lyl /M0 (3.26)
llgr = g2l < 1—Aw0—AL( v )||1//1_1//2||y

1
Sm”%-‘lﬁﬂy

To prove (c), using similar arguments as in [23, the proof of Proposition 3.5], we can
verify that for all A > 0 with A € (0,1/(L + wp)) and y € &,

A A
by = Favlly < =yl + = | F(O)|

+ [l = 9(0) = Ma (y = w()) ||, + | (I = AAr) " y(0) =y (0) .

(3.27)

Since by its definition $,y belongs to D(Aq,), assertion (c) follows from the fact that
limy_o+ [(I —AA7)"'x — x| = 0 for all x € D(A7) (see [24]) and the following result.

Lemma 3.4. Set &) := {¢p € &, such that $(0) = 0}. Then for all A >0 and y € &) the
function Myy tends to y in &) as A tends to zero.
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Proof. Set %g := {¢ € X, such that ¢(0) = 0}. We can see that the operator By : D(B,) <
&) — & such that Byg = ¢’ for any ¢ € D(By) where

D(B,) = {¢ € XY : ¢ is continuously differentiable and ¢’ € 96?,} (3.28)

is the infinitesimal generator of a Cy semigroup on %8 Moreover,

My =(I—-ABy) 'y foranyd>0, y € %) (3.29)

This implies that the assertion of the lemma is a direct consequence of a basic result that
can be found, for instance, in [24, page 248]. O

CoRroLLARY 3.5. Let & = &, with y > 0. Suppose that (H1) and (H2) are satisfied. Then,
forallp € X, andt =0,

lim (1 - %Am) 0 = U(D)g. (3.30)
The proof of the above result is based on the following special case of the well-known
Crandall and Liggett theorem (see [25]).

THEOREM 3.6 [25]. Let (Y, || - |I) be a Banach space and B a nonlinear operator with dense
domain D(B) in Y. Suppose that there exists a positive real constant w such that

(a) Im(I-AB) =Y forallA € (0,1/w),

(b) forall y1,y, € Y and A € (0,1/w),

1
1-Aw

[I=AB)~'y1 = (I-AB)'y,|| < lly1 = 2l (3.31)

Then for all y € Y, the limit

Wo(t)y:= lim (1 - %B) y (3.32)

exists in Y. Moreover, the family of operators (Wo(t))e=o satisfies
(i) Wo(0) =1,
(i) Wo(t1 + 1) = W()(tl)W()(tz)fOT allt;,t, =0,
(i) 1Wo(t)y1 — Wo(t)y2ll < e“liyr = y2ll forall y1,y, € Y and t > 0.

Let us now give the link between the semigroup given by the Crandall and Liggett
theorem and the integral solution to (1.1). The proof will be omitted because it is very
similar to the case of finite delay (see [18] or [19]).

ProrosITION 3.7. Let X = &, with y > 0. Suppose that (H1) and (H2) are satisfied and the
operator A: D(A) € &y — &, such that Ag = ¢’ for any ¢ € D(A), where
D(A) = {9 € X, : ¢ is continuously differentiable, p(0) € D(Ar),

3.33
¢ €%y, ¢'(0) = Arg(0) + F(p)}, (3:33)
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satisfies the hypotheses of Crandall and Liggett theorem in &,,. Let (U(t))s=o be the nonlinear
semigroup given by

U(t)p = lim (I - %A) ¢ Voed,, t=0. (3.34)

n—+oo

Then for all ¢ € &y, the function y := y(-,¢) : (—00,+00) — R defined by

(U)e)(0), t=0,

y(te) = {q)(t)’ (<0, (3.35)

is an integral solution of (1.1).
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