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1. Introduction
In the year 1960, Opial [1] established the following integral inequality.

TueOREM 1.1. Suppose f € C'[0,h] satisfies f(0) = f(h) =0 and f(x) >0 for all x €
(0,h). Then the integral inequality holds

h(t,

ZJ (f' () dx, (L.1)

0

h
L | o) f (%) | dx <

where this constant h/4 is best possible.

Opial’s inequality and its generalizations, extensions, and discretizations play a fun-
damental role in establishing the existence and uniqueness of initial and boundary value
problems for ordinary and partial differential equations as well as difference equations
[2-6]. The inequality (1.1) has received considerable attention and a large number of pa-
pers dealing with new proofs, extensions, generalizations, variants, and discrete analogs
of Opial’s inequality have appeared in some literature [7-22]. For an extensive survey on
these inequalities, see [2, 6]. The main purpose of the present paper is to establish some
new Opial-type inequalities involving functions of two and many independent variables.
Our results in special cases yield some of the recent results on Opial’s inequality and pro-
vide some new estimates on such types of inequalities.
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2. Main results
Our main results are given in the following theorems.

THEOREM 2.1. Let ui(s,t), vi(s,t), i = 1,...,n, be real-valued absolutely continuous func-
tions defined on [a,b] X [c,d] and a,b,c,d € [0,00) with u(s,c) = ui(a,t) = ui(a,c) =0,
vi(s,¢) = vi(a,t) = vi(a,c) =0, i=1,...,n. Let F, G be real-valued nonnegative continuous
and nondecreasing functions on [0,0)" with F(0,...,0) = 0, G(0,...,0) = 0 such that all
their partial derivatives 0*F/0|u;|?, OF/d|u;|, *G/d|v;|?, 0G/d|vil, i = 1,...,n are nonneg-
ative continuous and nondecreasing functions on [0,00)". Let d|u;|/9s, d|u;|/0t, 0*|u;|/dsot,
0|vil/ds, dlvil/dt, 9*|v;|/dsot, i = 1,...,n, be nonnegative continuous and nondecreasing
functions on [a,b] X [¢,d]. Then

bd ?G  dlvi| 9wl 3G alvl
LL [F(|u1(s,t)|,...,|un(s,t)| Z(aw 5 3 +a|v,~|'asat>

i=1

" ( PF 0wl dlw|  OF 9w
G([vi(s,t)[5..., | va(s,1) Z<a|u1| ot  0s +8\ui|- 0sot

i=1

+S(s,t)]dsdt
b rd 82u1 b rd aZun
= F(Iu Jc 8581‘ det"“’Ja Jc asat det>

b rd 82V1 b rd azvn
G(J J en dsdt,...,L J — dsdt),
(2.1)
where
L Z9F olu] & 3G alv| & oF dlw| <& 3G alw
S(S’t)‘§a|ui| 3 §8|vi| o §a|u,«| o ;8|v,~| s - @Y
Proof. From the hypotheses on u;(s,t), vi(s,t), i = 1,...,n, we have
i(s,t |<JJ (a‘r )| dodr,
(2.3)
02v;
|vi(s,1) |<JJ' (O'T dodr,

fors e [a,b], t € [c,d].
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From (2.3) and in view of the hypotheses on all partial derivatives, and by letting

s rt aZui
Ui(s,t) = L L ‘ TUBT(U,T) dodr,
(2.4)
Vi(s,t) = IJ ‘— 0,7)|dodr,
we obtain
: 2*G 8|v,~| a|v,~| oG 82|v,»|
JJ[ (hals O] fun(s,) ;(aw o ds | 9lw| osot
" azF 8|u,~| 8|ui| oF 82|ui|
GllnD]-os Prnls0)]) ;<8| 1| ot  0s +8|ui|- Jsot
u aF a|u,‘| u E)G a|V,‘|
+l=218|u,»|. 3s '§a|vi|' ot
= OF  Odlu| <« oG 9|v|
+1§8|u,~|' ot .;8|v,~|' 0s dsdt
b d " (G 9V, aV:i oG &V,
SL I [F(Ul(s’t)"“’U”(s’t))';<avf' ot 0s +avi'asat>
" (PE 9U; 9U; OF o*U;
G<V1“’”’--~’V”<S’”>E(au,z o e o asat)
u ". 9G 2 oF 9U; aGaV
Zla s g_V zlaU,» ot ]det
j aat F(UL (5,5, Un(5,D) - G(Vi(5,8),.., Vils, ) | dsdlt
=F(Ui(b,d),...,Un(b,d)) - G(Vi(b,d),..., Vu(b,d))
_F ﬁ Pl s If Sy ddt)
“ e ). | osor asat | ¥
b rd 2 b rd 2
([ ] |t I )
(2.5)

This completes the proof of inequality (2.1). O
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Remark 2.2. (i) Taking G = 1 in inequality (2.1), and in view of

2*G .a|V,‘| .a|V,‘|+ 0G 8|vi|

alwmle ot os Tolw asat S(s,1) =0, (2.6)

fori=1,...,n, we have
brd " E)ZF 8|u,| a|1/l,| oF 82|u,~|
L J [Z<a|u,| ot s ' olw| osat ) dsdt

b
_F(J J dsdt,. J J dsdt),
fori=1,...,n

Let u;(s, t) reduce to u;(t), where i = 1,...,n and with suitable modifications, then (2.7)
becomes the following inequality:

b n b b
J [ZF;(|u1(t)|,...,|un(t)|)|u;(t)|]dtsF(J |u;(t)|dt,...,J |u;(t)|dt>.
a |l a a

(2.7)
821/{1
950t

0%u,
dsot

(2.8)
This is a recent inequality which was given by Pecari¢ and Brneti¢ [18, 19].
Taking n = 1, inequality (2.7) reduces to
b rd 2 2
*F  dlul dlul ai 0 |u|>
L J (8|u|2 ot as ol asar JBIE ( det) (29)

Let u(s,t) reduce to u(t) and with suitable modifications, then the above inequality
becomes the following inequality:

LbF'(|f(t)|) |f’(t)|dtsF<Lb |f’(x)|dt>. (2.10)

This is an inequality which was given by Godunova and Levin [12].
(ii) Taking G = F and u;(s,t) = vi(s,t), i = 1,...,n, in inequality (2.1), we have

bd " 2G  d|lu| 9lw| G 9|ul
JJ [F””‘(s’t)"'“’|””(s’t)|)z<a|ui|2' o os ' olw] asat)

i=1

" OF Ju; oF ou;
P gau, at]det

1 b rd b rd
32-F2<J J dsdt,...,J J

Pur
dsot

%u,
Jsot

dsdt).

(2.11)
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Taking n = 1, (2.11) reduces to

[ [/ etruteon (26 .2 2l 36 duiy  oFdudr o),
dlul? ot os  O|u| dsot ou 0s du ot
e([ ]
S pa———
z (

Let u(s,t) reduce to u(t) and with suitable modifications, then (2.12) becomes the
following inequality:

(2.12)

3591 dsdt)

J o) F o) o< 1o ([ wola). e

a

This is an inequality given by Pachpatte in [15].
Inequality (2.12) is also a similar form of the following inequality which was given by
Yang [22]:

I Ll

(iii) Let u;(s, t) and v;(s, t) reduce to u;(s) and v;(s), respectively, and with suitable mod-
ifications (where i = 1,...,n), then inequality (2.1) changes to the following inequality:

e [ (21,
tl,tz atlatz dt;dt; < ETETR tl,tz) dtidt.
(2.14)

b n
J; [FUmO 1 0D S G 9O s D 00

a

n

G |...s [ va(®) Z (lur(®)],.. Iun(t)l)lu,‘(t)l]dt

b b b b
SF(L |u'1(t)|dt,...,L |u;(t)|dt) .G<L |u'1(t)|dt,...,L |u;(t)|dt>,

(2.15)
This is an inequality given by Agarwal and Pang in [2].
Takingn =1, G= 1, F(u) = u?, (2.15) changes to
b 1 2
J ()| | (0)]dt < S(b- 0| dt. (2.16)

This is another version of the Opial’s inequality, (see [13]).

(iv) Taking G = 1, F = (|us|,..., lun 1) =TT, fillwil),i=1,...,n,in (2.1), (2.1) changes
to a general form of the inequality which was given by Pachpatte [16], where the functions
fi must satisfy some suitable conditions, (see [16]).
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THEOREM 2.3. Let u;(s,t), vi(s,t), F, G, 0*F/0|u;|?, 0F/0|u;|, 0|u;|/0s, 0| u;|/0t, 9*|u;|/0sot,
02G/9|vi|?, 0G/d|vi|, d|vi|/ds, d|vi|/ot, *|vi|/0sdt, i = 1,...,n, be as in Theorem 2.1. Let
pi(s,1), qi(s,t), i = 1,...,n, be real-valued positive functions defined on [a,b] X [c,d] satis-
fring

Lb Ldpi(s, t)dsdt = 1, Lb qu,-(s,t)dsdt =1 (i=1,...,n). (2.17)

Let hi, wi, i = 1,...,n, be real-valued positive convex and increasing functions on (0,00)2,
Then the following integral inequality holds:

b od (G d|vi| o|lwi|  9G o*|w]
LL [F(|u1(s,t)|,...,|un(st Z(8|v,| ot 0Os +3|Vi| 858t>

i=1

L 82F d Ui 0 Ui oF 82 u;
G(|vi(s,t) |5..s [va(s,t)]) Z(aw |at|_ |85|+a|u4| a|Sat|>

i=1

+S(s,t)}dsdt

ol ([ oo 25 ) ...

STt )]
o ([ fatsom (2285 ...
([ 22 1)) |

(2.18)
where
_ " oF a|u,| " aG a|V,'| " oF 8|u,| " G 8|v,-|
Sts:) ‘;a|u,-| 3 ;am ot lzzla|ui| a ;8|vi| s
(2.19)
Proof. From the hypotheses, we have
21 pils,t) | 9ut/asdt | [ pils, t)dsdt
1219 pi(s, t)dsdt
(2.20)

2
il ds dt_f I qils,t) |9v}/osdt] /qi(s,t dsdt,

f f qi(s,t)dsdt

fori=1,...,n



From (2.20), the hypotheses on h;, wi, i = 1,...

we obtain

ou?
0s0

(L |2 o) < [
([0 13

dsdt) J J qi(s,t)
fori=1,...,n
From (2.21), we observe that

JJ dsdt<h,)n<JJp5,
j J dsdt_W(z (J J qils,t) - w

fori=1,...,n
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,1, and in view of Jensen’s inequality,

| 9?u;/9s0t |
( e )dsdt,
(2.21)
| 0%v,/0s0t |
( o )dsdt,
[ |0%ui/9sot |
( e )dsdt),
(2.22)

2
( | 9%vi/ st | )dsdt),
qi(s,t)

From (2.22) and in view of inequality (2.1), we get inequality (2.18) and the proof is

complete. O
Remark 2.4. (i) Taking G = 1 in inequality (2.18), and in view of
82G 8|v,<| 8|vi| oG a|Vi| _
o> ot os Talw| asat (2.23)
fori=1,...,n,and
S(s,t) =0, (2.24)
(2.18) becomes
=( 0*F O|ui| 9lui| oF 9% u
J J [§<a|ul| ot os 9lwm| asot dsdt
b d | 0?u1/0s0t |
7! —_— 2.25
sF[hl (J I pl(s,t)h1< en )dsdt), : (2.25)

A G )dsdt)},

fori=1,...,n
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Let u(s,t), hi(s,t), and p;(s,t) change to fi(t), hi(t), and p;(t), respectively, where i =
1,...,n, then (2.25) reduces to the following 1nequa11ty

Lb(liD,-F(lﬁ(t)l,..,, |fn(t)|)|ﬁ’(t)|>dt

([ oo (90 )a)o ([ o (591 a) )

(2.26)

where D;F is as in [18]. This is an inequality given by Pecari¢ in [18].

Taking F(x1,...,x,) = [ 1) Fi(x:), i = 1,...,n, (2.25) changes to a general form of the
inequality which was given by Pachpatte [16]. Taking n = 1, (2.25) reduces to a general
form of the inequality which was given by Godunova and Levin [12].

On the other hand, inequality (2.18) is also a general form of another inequality in
Pecari¢ and Brneti¢ [20, Theorem 1].

(ii) Taking G = F and u;(s,t) = vi(s,t), i = 1,...,n, in inequality (2.18), we have

bd L[PG 9lw| dlui| , 9G oluil
LL [F(|u1(s,t)|,...,|un(s,t)| Z(am 5o 3wl asar

i=1

. OF Ju; oF du;
;a—a— lla—uig]dsdt

< % P [hll (LbJ'cdpl(S,t)hl<|az+a:$t|>dsdt),...,
h! (Lbfpn(s)t)hn<W)dsdt)].

(2.27)
Taking n = 1, (2.27) reduces to
[ [Funn (26, 2w 2, 26 duly oFousk o),
dlul? ot os  J|u| osot ou 0s du ot
(2.28)

5 (L] reon( 5 aa)

This is a general form of the inequality which was given by Pachpatte [14].
(iii) Let u;(s, 1), vi(s,t), hi(s,t), wi(s,t), pi(s,t), and g;i(s,t) reduce to u;(t), vi(t), hi(t),
wi(t), pi(t), and gi(t), respectively, and with suitable modifications (where i = 1,...,n),
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then inequality (2.18) changes to the following inequality:

b n
[, [0 L 300 S G0 [0 ) )

G(Ivl(t)l,---,Ivn(t)l)iF{(lul(t)l,.--,Iun(t)l)lu,‘(t)l]dt

i=1

oo om0 2501
o om0 o 420

(2.29)

This is just an inequality given by Agarwal and Pang in [2].

THEOREM 2.5. Let u;(s,t), vi(s,t), F, G, be as in Theorem 2.1. Let ¢;, y;, i = 1,...,n, be real-
valued positive convex and increasing functions on (0,00)2. Let r;(s,t) > 0, 0*r;/dsot > 0,
ri(s,c) = ri(a,t) = ri(a,c) = 0, 9%e;/9s0t > 0, e;(s,c) = ei(a,t) = ei(a,c) =0,i=1,...,n Let
82F/8Mf, oF/0M;, 32G/8N?, 0G/0N,, i = 1,...,n, be nonnegative continuous and nonde-
creasing functions on [0,00)". Let dM;/ds, dM;/dt, 0*M;/dsdt, dN;0s, N ,/dt, 3*N,/dsot,
i=1,...,n, be nonnegative continuous and nondecreasing functions on [a,b] X [c,d]. Then
the following inequality holds:

. 0’G ON; OoN; 0G d’N;
JJ[ (M (s,1),. Mn(s,t))-Z(W'W s +aN asat>

— — o (*F oM; oM; OF O&M;\ -
+G(N1(S,t),...,Nn(S,t)) Z (ﬁ? : Tﬁ'aﬁ : 350t )+S(S,t)]d$dt

o’y | 0%uy/0s0t | JJ 2*ry | 0%u,/9sot |
‘FU J st 1( 3tr,/dsot )d dheos) ). san ¢”( 3r,/asot )d“it

J < | 0?v1/9s0t | ) I ( | 92,/ 050t | )dsdt
aJe 858t Y1\ S2er/as0t aJe asat Y\ e, 50t ’
(2.30)
where
_. — 4 . | ui(s) t) | )
Mz(sat) - rl(s) t) ) ¢1< f’l‘(S, t) >
(2.31)

Ni(s,t) = ei(s,t) - 1/’1'(
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fori=1,...,n, and

L. OF oM, < oN; <& "
S(s,1) _,zzl?mi = lzla . 218 ; zl (2.32)
fori=1,...,n
Proof. From the hypotheses on u;(s,t), vi(s,t), ri(s,t), ei(s, 1), i = 1,...,n, we have
|ui(s, 1) | _J J ' o, —(0,7) |dodr,
|vi(s,t) |_JJ (ar )| dodr,
(2.33)

0| ) 2o

st
ei(s,t) = J aagg; (0,7)dodr,

fors € [a,b], t € [¢,d].

From (2.33) and using the hypotheses on ¢;, y;, i = 1

,...,n, and Jensen’s inequality, we
have

o%r; | azui/aaar)(a,rﬂ)
(50) < L L 9001 '( (0%r;i/9007) (0, 7) dodr,

(2.34)
d%e; [ ( azvi/aaar)(a,r)|>
Nils1) < L L 900t 1( (02e;/0007) (0, 1) dodr,
fors e [a,b], t € [c,d].
From (2.34), using the hopytheses on all partial derivatives and in view of
2%r; | 0*u;/d007 |
L J door ( 2r/d0dT )dadT’

(2.35)

) J (|32v,-/aaar| ) Jodz
i< ale 8081 Vi 0%e;/000T ’
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we have

2G aN aN aG 82
85 ON; asat

PG
oN
(W_ami_ami+ OF oM

aﬁz ot 0s aMl Osot > +§(5;t):|d5dt

3 (PG N 9N G PN,
oNZ ot " as TN, osar

n > ‘ 4 .
+G(N1(s,t),...,Nn(s,t)).Z(aF oM; oM; & oF E)M,)
i=1

M2 ot os oM, osot

}d dt

L e [F Mi(s0),.. ,Mn(s,t))-G(Nl(s,t),...,Nn(s,t))]dsdt

n a n n
+izzla, 3s ;aN 3 za

n
tZ
i=1

= F(My(byd),..., Ma(byd)) - Gy (b, d), ..., No(b,d))
B o’ | 92141/0s0t | ) J’ ( | 0?u,/dsot | )
F(J J asor 9 1( injasor )9Sdb ] ] i Siryasor )t
ey ( | 9?v1/0s0t | ) J ( | 92v,/9s0t | )
(J J asot '\ ey msar )b FTRAL Se,asor )|
(2.36)

This completes the proof. O

Remark 2.6. (i) Taking n = 1, (2.30) changes to a general form of the inequality which
was given by Pachpatte [17].

(ii) Taking G = 1, (2.30) changes to a general form of the inequality which was given
by Pecari¢ and Brneti¢ [19].

(iii) Taking n = 1, G = 1, (2.30) changes to the following inequality:

J”J (82F .aM_aM OF o*M )d it < J (|82u/858t|)dsdt
a Jc aMZ at aM asat B a Jc asat azr/asat ’

(2.37)

which is a general form of the follwing inequality established by Rozanova [21]:

pr'(r(t)qs(%))r(t)¢(|{((tt)|)dt<F(Lr(t)¢<|f(f))|)dt) (2.38)
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(iv) Let ui(s,t), vi(s, ), ri(s,t), and e;(s, t) reduce to u;(t), vi(t), ri(t), and e;(t), respec-
tively, and with suitable modifications (where i = 1,...,n), the inequality in Theorem 2.5
changes to the inequality in Agarwal and Pang [2, Theorem 3, page 305].

THEOREM 2.7. Let u;(s,t), vi(s,t), F, G, be as in Theorem 2.1. Let p;, qi, hi, wi, i = 1,...,n,
be as in Theorem 2.3. Let S(s,t), M;, Nj, azp/aMf, O0F/0M;, 82G/8Wf, 0G/ON;, i=1,...,n,
OM,/0s, OM;/ot, 9*M;/dsot, ONi/ds, IN;/dt, 0*N/0sot, i = 1,...,n, be as in Theorem 2.5.
Then the following integral inequality holds:

— " (0*G ON; aN 9G  N;
Ml S) > )Mn(s)t)) b Z <_ " + >
J J [ S\oN; ot ON; 0sot

_ _ Y (*F oM; oM; OF o*M;\ -
+G(N1(s,t),...,Nn(s,t))-;(aM T +8M asat>+S(s,t)]dsdt

bd o’r, 0%u,/dsot
sF[h11<L pl(s,t)hl(@ ¢1(|”8145|a at)pl(s, ))dsdt),...,
bd 0’1, | 02u,,/0s0t |
J, ), pteom (53 '¢’“(azrn/asat)f’"“’”)dsdf)
b 02 0%v,/dsot
Jo [t (555 (G o) s

ey | 02,,/ds0t |
dsot "”"( 3e,/dsot )“““’”)ds”’f)}

(2.39)
Proof. From the hypotheses of Theorem 2.7, we have
i | 0?u;/0sot | )
L J R s Fr/asor )
21 pils, D ((((9ri/0sdt) - ) (| Pui/dsdt | /(Pri/9sdt)))/ pils, 1)) dsdt
1218 pis, t)dsdt ’
(2.40)

e | 92v;/dsot |
L J st ( Pe,/os0t )det
21 qils, ) ((((22ei/9s0t) - yi) (| 82vi/sdt |/ (02ei/Dsdt)) ) /qi(s, ) dsdt
ffff (s, t)dsdt ’

fori=1,...,n
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From (2.40) and using the hypotheses on h;, w;, i = 1,...,n, and Jensen’s inequality, we
obtain

b P | 0%u;/9s0t |
h”(L I (asat"bi( r,/dsot ))ds‘“>

(2.41)
b ood 2. ar. 2.
SJ J’ p’(s’t)hi<(a 1i/0sot) - ¢;( | 0*u;i/dsot | /9 r,/858t)>dsdt’
pi(sat)
| 0%vi/9sot | ))
(I J (asat ( Feasor )
(2.42)
P P P
J J G5 W ( (0%ei/9s0t) - y;( | 0*vi/dsot |/ e,/asat))dsdt)
qz(S t)
fori=1,...,n
Then
(]ou ,/858t|>

L 3 ( rasar )5

(2.43)
2 2 2
(J J e ( (0ri/0s0t) - ¢; (| D> ui/dsot | /0 rl/asat))dsdt)
pi(s,t)
| 0%vi/0sot | )

L . 5ot ( revosar )

(2.44)

> 2 P
<wr (J J 45,0 ((E) ei/0sot) - y; |qa(5v/)asat|/a e/E)sE)t))dsdt).

By applying (2.43) and (2.44) to the right-hand side of inequality (2.30), we get the
desired inequality (2.39) and the proof is complete. g

Remark 2.8. (i) Taking n = 1, (2.39) changes to a general form of the inequality which
was given by Pachpatte [17].

(ii) Taking G = 1, (2.39) changes to a general form of the inequality which was given
by Petari¢ and Brneti¢ [19].

(ii1) Let u;(s,t), vi(s,t), hi(s,t), wi(s,t), ri(s,t), and e;(s,t) reduce to u;(t), v;(t), hi(t),
wi(t), ri(t), and e;(t), respectively, and with suitable modifications (where i = 1,...,n),
then inequality (2.39) changes to the inequality in Agarwal and Pang [2, Theorem 4, page
308].
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