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1. Introduction

Let C be a closed convex subset of a Banach space E. A mapping T of C into itself is called
nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. We denote by F(T) the set of fixed
points of T . Let T1,T2, . . . ,Tr be a finite family of nonexpansive mappings satisfying that
the set F =⋂r

i=1F(Ti) of common fixed points of T1,T2, . . . ,Tr is nonempty. The problem
of finding a common fixed point has been investigated by many researchers; see, for ex-
ample, Atsushiba and Takahashi [1], Bauschke [2], Lions [3], Shimizu and Takahashi [4],
Takahashi et al. [5], Zeng et al. [6]. To solve this problem, the iterative scheme x1 ∈ C and

xn+1 = αnx1 +
(
1−αn

)
Tnxn, n∈N, (1.1)

where Tn+r = Tn and 0 < αn, is used. Wittmann [7] dealt with the iterative scheme for the
case r = 1; see originally Halpern [8]. Bauschke [2] dealt with the iterative scheme for a
finite family of nonexpansive mappings under the restriction that

F = F
(
TrTr−1 ···T1

)= F
(
T1Tr ···T2

)= ··· = F
(
Tr−1 ···T1Tr

)
. (1.2)
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Recently, Kimura et al. [9] dealt with an iteration scheme which is more general than
that of Wittmann’s result. They proved the following theorems.

Theorem 1.1 (see [9, Theorem 4]). Let E be a uniformly convex Banach space whose norm
is uniformly Gâteaux differentiable and let C be a closed convex subset of E. Let T1,T2, . . . ,Tr

be nonexpansive mappings of C into itself such that the set F =⋂r
i=1F(Ti) of common fixed

points of T1,T2, . . . ,Tr is nonempty. Let {αn} and {βn} be two sequences in [0,1] which
satisfy the following control conditions:
(C1) limn→∞αn = 0;
(C2)

∑∞
n=1αn =∞;

(C3)
∑∞

n=1 |αn+1−αn| <∞;
(C4) limn→∞βin = βi and

∑r
i=1βin = 1, n∈N for some βi ∈ (0,1);

(C5)
∑∞

n=1
∑r

i=1 |βin+1−βin| <∞.
Let x ∈ C and define a sequence {xn} by x1 ∈ C and

xn+1 = αnx+
(
1−αn

) r∑

i=1
βinTixn, n∈N. (1.3)

Then {xn} converges strongly to the point Px, where P is a sunny nonexpansive retraction of
C onto F.

Theorem 1.2 (see [9, Theorem 5]). Let E be a uniformly convex Banach space whose norm
is uniformly Gâteaux differentiable and let C be a closed convex subset of E. Let S, T be
nonexpansive mappings of C into itself such that the set F(S)∩F(T) of common fixed points
of S and T is nonempty. Let x ∈ C and let {xn} be a sequence generated by

xn+1 = αnx+
(
1−αn

)(
βnSxn +

(
1−βn

)
Txn

)
, n∈N. (1.4)

Assume (C1) and (C2) hold and the following conditions are satisfied:
(C3′) limn→∞(αn/αn+1)= 1;
(C4′) limn→∞βn = β ∈ (0,1);
(C5′)

∑∞
n=1 |βn+1−βn| <∞.

Then {xn} converges strongly to the point Px, where P is a sunny nonexpansive retraction
of C onto F(S)∩F(T).

We remark that the control conditions (C3) and (C3′) were introduced initially by
Wittmann [7] and Xu [10], respectively. On the other hand, we have to remark that con-
ditions (C1) and (C2) are necessary for the strong convergence of algorithms (1.3) and
(1.4) for nonexpansive mappings. It is unclear if they are sufficient.

The objective of this paper is to show another generalization of Mann and Halpern
iterative algorithm to a setting of a finite family of nonexpansive mappings. We deal with
the iterative scheme x0 ∈ C and

xn+1 = αn f
(
xn
)
+βnxn + γn

r∑

i=1
τinTixn, n∈N. (1.5)
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Using this iterative scheme, we can find a common fixed point of a finite family of non-
expansive mappings under some type of control conditions.

2. Preliminaries

Let E be a Banach space with norm ‖ · ‖ and let E∗ be the dual of E. Denote by 〈·,·〉 the
duality product. The normalized duality mapping J from E to E∗ is defined by

J(x)= {x∗ ∈ E∗ :
〈
x,x∗

〉= ‖x‖2 = ∥∥x∗∥∥2} (2.1)

for x ∈ E.
A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E with

‖x‖ = ‖y‖ = 1 and x �= y. It is also said to be uniformly convex if limn→∞‖xn− yn‖ = 0 for
any two sequences {xn}, {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞‖(xn + yn)/2‖ =
1. Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space E is said to
be smooth provided that

lim
t→0

‖x+ ty‖−‖x‖
t

(2.2)

exists for each x, y ∈U . In this case, the norm of E is said to be Gâteaux differentiable. It
is said to be uniformly smooth if the limit is attained uniformly for x, y ∈U . The norm of
E is said to be uniformly Gâteaux differentiable if for any y ∈U the limit exists uniformly
for all x ∈U . It is known that if the norm of E is uniformly Gâteaux differentiable, then
the normalized duality mapping J is norm to weak star uniformly continuous on any
bounded subsets of E.

Let C be a closed convex subset of a Banach space E and let D be a subset of C. Recall
that a self-mapping f : C → C is a contraction on C if there exists a constant α ∈ (0,1)
such that ‖ f (x)− f (y)‖ ≤ α‖x− y‖, x, y ∈ C. A mapping P : C→ D is said to be sunny
if P(Px + t(x− Px)) = Px whenever Px + t(x− Px) ∈ C for x ∈ C and t ≥ 0. If P2 = P,
then P is called a retraction. We know that a retraction P of C onto D is sunny and
nonexpansive if and only if 〈x− Px, J(y − Px)〉 ≤ 0 for all y ∈ D. From this inequality,
it is easy to show that there exists at most one sunny nonexpansive retraction of C onto
D. If there is a sunny nonexpansive retraction of C onto D, then D is said to be a sunny
nonexpansive retraction of C.

Now, we introduce several lemmas for our main results in this paper.

Lemma 2.1 (see [11]). Let C be a nonempty closed convex subset of a strictly convex Banach
space. For each r ∈N, let Tr be a nonexpansive mapping of C into E. Let {τr} be a sequence
of positive real numbers such that

∑∞
r=1 τr = 1. If

⋂∞
r=1F(Tr) is nonempty, then the mapping

T =∑∞
r=1 τrTr is well-defined and F(T)=

⋂∞
r=1F(Tr).

Lemma 2.2 (see [12]). Let {xn} and {yn} be bounded sequences in a Banach space X and
let {βn} be a sequence in [0,1] with 0 < liminfn→∞βn ≤ limsupn→∞βn < 1. Suppose xn+1 =
(1− βn)yn + βnxn for all integers n ≥ 0 and limsupn→∞(‖yn+1 − yn‖− ‖xn+1 − xn‖) ≤ 0.
Then, limn→∞‖yn− xn‖ = 0.
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Lemma 2.3 (see [10]). Assume {an} is a sequence of nonnegative real numbers such that
an+1 ≤ (1− γn)an + δn, where {γn} is a sequence in (0,1) and {δn} is a sequence such that

(1)
∑∞

n=1 γn =∞;
(2) limsupn→∞ δn/γn ≤ 0 or

∑∞
n=1 |δn| <∞.

Then limn→∞ an = 0.

3. Main results

First, we consider the following iterative scheme:

xn+1 = αn f
(
xn
)
+βnxn + γn

(
τnSxn +

(
1− τn

)
Txn

)
, n≥ 0, (3.1)

where {αn}, {βn}, {γn}, and {τn} are sequences in [0,1].

Theorem 3.1. Let E be a strictly convex Banach space whose norm is uniformly Gâteaux
differentiable and let C be a closed convex subset of E. Let S and T be nonexpansive mappings
of C into itself such that F(S)∩ F(T) �= ∅. Let f : C → C be a fixed contractive mapping.
Assume that {zt} converges strongly to a fixed point z of U as t→ 0, where zt is the unique
element of C which satisfies zt = t f (zt) + (1− t)Uzt,U = τS+ (1− τ)T , 0 < τ < 1. Let {αn},
{βn}, {γn}, and {τn} be four real sequences in [0,1] such that αn +βn + γn = 1. Assume {αn}
satisfies conditions (C1) and (C2) and assume the following control conditions hold:
(D3) 0 < liminfn→∞βn ≤ limsupn→∞βn < 1;
(D4) limn→∞ τn = τ.
For arbitrary x0 ∈ C, then the sequence {xn} defined by (3.1) converges strongly to a

common fixed point of S and T .

Proof. We show first that {xn} is bounded. To end this, by taking a fixed element p ∈
F(S)∩F(T) and using (3.1), we have
∥
∥xn+1− p

∥
∥≤ αn

∥
∥ f
(
xn
)− p

∥
∥+βn

∥
∥xn− p

∥
∥+ γn

(
τn
∥
∥Sxn− p

∥
∥+

(
1− τn

)∥
∥Txn− p

∥
∥
)

≤ αnα
∥
∥xn− p

∥
∥+αn

∥
∥ f (p)− p

∥
∥+

(
βn + γn

)∥
∥xn− p

∥
∥

= (1−αn +ααn
)∥
∥xn− p

∥
∥+αn

∥
∥ f (p)− p

∥
∥

≤max
{
∥
∥xn− p

∥
∥,

1
1−α

∥
∥ f (p)− p

∥
∥
}

.

(3.2)

By induction, we get

∥
∥xn− p

∥
∥≤max

{
∥
∥x0− p

∥
∥,

1
1−α

∥
∥ f (p)− p

∥
∥
}

(3.3)

for all n≥ 0. This shows that {xn} is bounded, so are {Txn}, {Sxn}, and { f (xn)}.
We show then that ‖xn+1− xn‖→ 0(n→∞).
Define a sequence {yn} which satisfies

xn+1 =
(
1−βn

)
yn +βnxn. (3.4)
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Observe that

yn+1− yn = αn+1
1−βn+1

(
f
(
xn+1

)− f
(
xn
))

+
(

αn+1
1−βn+1

− αn
1−βn

)

f
(
xn
)

+
γn+1τn+1
1−βn+1

(
Sxn+1− Sxn

)
+
(
γn+1τn+1
1−βn+1

− γnτn
1−βn

)

Sxn

+
γn+1

(
1− τn+1)

1−βn+1

(
Txn+1−Txn

)
+
(
γn+1

(
1− τn+1

)

1−βn+1
− γn

(
1− τn

)

1−βn

)

Txn

= αn+1
1−βn+1

(
f
(
xn+1

)− f
(
xn
))

+
(

αn+1
1−βn+1

− αn
1−βn

)

f
(
xn
)

+
γn+1τn+1
1−βn+1

(
Sxn+1− Sxn

)
+
γn+1

(
1− τn+1

)

1−βn+1

(
Txn+1−Txn

)

+
γn+1

1−βn+1

(
τn+1− τn

)
Sxn +

(
γn+1

1−βn+1
− γn
1−βn

)

τnSxn

+
γn+1

1−βn+1

(
τn− τn+1

)
Txn +

(
γn+1

1−βn+1
− γn
1−βn

)
(
1− τn

)
Txn.

(3.5)

It follows that

∥
∥yn+1− yn

∥
∥−∥∥xn+1− xn

∥
∥

≤ ααn+1
1−βn+1

∥
∥xn+1− xn

∥
∥+

∣
∣
∣
∣

αn+1
1−βn+1

− αn
1−βn

∣
∣
∣
∣
∥
∥ f
(
xn
)∥
∥

+
∣
∣
∣
∣

γn+1
1−βn+1

− 1
∣
∣
∣
∣
∥
∥xn+1− xn

∥
∥+ τn

∣
∣
∣
∣

γn+1
1−βn+1

− γn
1−βn

∣
∣
∣
∣
∥
∥Sxn

∥
∥

+
(
1− τn

)
∣
∣
∣
∣

γn+1
1−βn+1

− γn
1−βn

∣
∣
∣
∣
∥
∥Txn

∥
∥

+
γn+1

1−βn+1

∣
∣τn− τn+1

∣
∣
(∥
∥Sxn

∥
∥+

∥
∥Txn

∥
∥
)

≤ (1+α)αn+1
1−βn+1

∥
∥xn+1− xn

∥
∥+

γn+1
1−βn+1

∣
∣τn− τn+1

∣
∣
(∥
∥Sxn

∥
∥+

∥
∥Txn

∥
∥
)

+
∣
∣
∣
∣

αn+1
1−βn+1

− αn
1−βn

∣
∣
∣
∣
(∥
∥ f
(
xn
)∥
∥+ τn

∥
∥Sxn

∥
∥+

(
1− τn

)∥
∥Txn

∥
∥
)
.

(3.6)

Since {xn}, {Txn}, {Sxn}, and { f (xn)} are bounded, we obtain

limsup
n→∞

(∥
∥yn+1− yn

∥
∥−∥∥xn+1− xn

∥
∥
)≤ 0. (3.7)
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Hence, by Lemma 2.2 we know that ‖yn− xn‖→ 0 as n→∞. Consequently, limn→∞‖xn+1
− xn‖ = limn→∞(1−βn)‖yn− xn‖ = 0.

Define U = τS+ (1− τ)T . Then, by Lemma 2.1, F(U)= F(S)∩F(T).
Observing that

∥
∥xn−Uxn

∥
∥≤ ∥∥xn+1− xn

∥
∥+

∥
∥xn+1−Uxn

∥
∥

≤ ∥∥xn+1− xn
∥
∥+αn

∥
∥ f
(
xn
)−Uxn

∥
∥+βn

∥
∥xn−Uxn

∥
∥

+ γn
∣
∣τ − τn

∣
∣
(∥
∥Sxn

∥
∥+

∥
∥Txn

∥
∥
)

(3.8)

and using control conditions (C1), (D3), and (D4) on {αn}, {βn}, and {τn}, we conclude
that limn→∞‖Uxn− xn‖ = 0.

We next show that

limsup
n→∞

〈
z− f (z), j

(
z− xn

)〉≤ 0. (3.9)

Let xt be the unique fixed point of the contraction mapping Ut given by

Utx = t f (x) + (1− t)Ux. (3.10)

Then

xt − xn = t
(
f
(
xt
)− xn

)
+ (1− t)

(
Uxt − xn

)
. (3.11)

We compute as follows:

∥
∥xt − xn

∥
∥2 ≤ (1− t)2

∥
∥Uxt − xn

∥
∥2 + 2t

〈
f
(
xt
)− xn, j

(
xt − xn

)〉

≤ (1− t)2
(∥
∥Uxt −Uxn

∥
∥+

∥
∥Uxn− xn

∥
∥
)2

+ 2t
〈
f
(
xt
)− xt, j

(
xt − xn

)〉
+2t

∥
∥xt − xn

∥
∥2

≤ (1− t)2
∥
∥xt − xn

∥
∥2 + an(t) + 2t

∥
∥xt − xn

∥
∥2

+ 2t
〈
f
(
xt
)− xt, j

(
xt − xn

)〉
,

(3.12)

where an(t)= ‖Uxn− xn‖(2‖xt − xn‖+‖Uxn− xn‖)→ 0 as n→∞.
The last inequality implies

〈
xt − f

(
xt
)
, j
(
xt − xn

)〉≤ t

2

∥
∥xt − xn

∥
∥2 +

1
2t
an(t). (3.13)

It follows that

limsup
n→∞

〈
xt − f

(
xt
)
, j
(
xt − xn

)〉≤ t

2
M2. (3.14)
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Letting t→ 0, we obtain

limsup
t→0

limsup
n→∞

〈
xt − f

(
xt
)
, j
(
xt − xn

)〉≤ 0. (3.15)

Moreover, we have

〈
z− f (z), j

(
z− xn

)〉= 〈z− f (z), j
(
z− xn

)〉− 〈z− f (z), j
(
xt − xn

)〉

+
〈
z− f (z), j

(
xt − xn

)〉− 〈xt − f (z), j
(
xt − xn

)〉

+
〈
xt − f (z), j

(
xt − xn

)〉− 〈xt − f
(
xt
)
, j
(
xt − xn

)〉

+
〈
xt − f

(
xt
)
, j
(
xt − xn

)〉

= 〈z− f (z), j
(
z− xn

)− j
(
xt − xn

)〉

+
〈
z− xt, j

(
xt − xn

)〉
+
〈
f
(
xt
)− f (z), j

(
xt − xn

)〉

+
〈
xt − f

(
xt
)
, j
(
xt − xn

)〉
.

(3.16)

Then, we obtain

limsup
n→∞

〈
z− f (z), j

(
z− xn

)〉

≤ sup
n∈N

〈
z− f (z), j

(
z− xn

)− j
(
xt − xn

)〉
+
∥
∥z− xt

∥
∥ limsup

n→∞

∥
∥xt − xn

∥
∥

+
∥
∥ f
(
xt
)− f (z)

∥
∥ limsup

n→∞

∥
∥xt − xn

∥
∥+ limsup

n→∞

〈
xt − f

(
xt
)
, j
(
xt − xn

)〉

≤ sup
n∈N

〈
z− f (z), j

(
z− xn

)− j
(
xt − xn

)〉
+ (1+α)

∥
∥z− xt

∥
∥ limsup

n→∞

∥
∥xt − xn

∥
∥

+ limsup
n→∞

〈
xt − f

(
xt
)
, j
(
xt − xn

)〉
.

(3.17)

By hypothesis xt→ z∈F(S)∩F(T) as t→ 0 and j is norm-to-weak∗ uniformly continuous
on bounded subset of E, we obtain

lim
t→0

sup
n∈N

〈
z− f (z), j

(
z− xn

)− j
(
xt − xn

)〉= 0. (3.18)

Therefore, we have

limsup
n→∞

〈
z− f (z), j

(
z− xn

)〉= limsup
t→0

limsup
n→∞

〈
z− f (z), j

(
z− xn

)〉

≤ limsup
t→0

limsup
n→∞

〈
xt − f

(
xt
)
, j
(
xt − xn

)〉≤ 0.
(3.19)
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Finally, we have

∥
∥xn+1− z

∥
∥2 ≤ ∥∥βn

(
xn− z

)
+ γn

(
τnSxn +

(
1− τn

)
Txn− z

)∥
∥2

+ 2αn
〈
f
(
xn
)− z, j

(
xn+1− z

)〉

≤ β2n
∥
∥xn− z

∥
∥2 + γ2n

∥
∥τn
(
Sxn− z

)
+
(
1− τn

)(
Txn− z

)∥
∥2

+ 2βnγn
∥
∥xn− z

∥
∥
∥
∥τn
(
Sxn− z

)
+
(
1− τn

)(
Txn− z

)∥
∥

+2αn
〈
f
(
xn
)− f (z), j

(
xn+1− z

)〉
+2αn

〈
f (z)− z, j

(
xn+1− z

)〉

≤ β2n
∥
∥xn− z

∥
∥2 + γ2n

∥
∥xn− z

∥
∥2 + 2βnγn

∥
∥xn− z

∥
∥
∥
∥xn− z

∥
∥

+2αn
〈
f
(
xn
)− f (z), j

(
xn+1− z

)〉
+2αn

〈
f (z)− z, j

(
xn+1− z

)〉

≤ (1−αn
)2∥∥xn− z

∥
∥2 +ααn

(∥
∥xn− z

∥
∥2 +

∥
∥xn+1− z

∥
∥2
)

+2αn
〈
f (z)− z, j

(
xn+1− z

)〉
.

(3.20)

It follows that

∥
∥xn+1− z

∥
∥2 ≤ 1− (2−α)αn

1−ααn

∥
∥xn− z

∥
∥2 +

2αn
1−ααn

〈
f (z)− z, j

(
xn+1− z

)〉

+
α2n

1−ααn

∥
∥xn− z

∥
∥2 ≤ [1− 2(1−α)αn

]∥
∥xn− z

∥
∥2

+ 2(1−α)αn

{
1

(1−α)
(
1−ααn

)

[
〈
f (z)− z, j

(
xn+1− z

)〉
+
αn
2

∥
∥xn− z

∥
∥2
]}

.

(3.21)

Noting that
∑∞

n=0[2(1−α)αn]=∞ and

limsup
n→∞

{
1

(1−α)
(
1−ααn

)

[
〈
f (z)− z, j

(
xn+1− z

)〉
+
αn
2

∥
∥xn− z

∥
∥2
]}

≤ 0. (3.22)

Apply Lemma 2.3 to (3.21) to conclude that xn→ z as n→∞. This completes the proof.
�

Remark 3.2. We note that every uniformly smooth Banach space has a uniformly Gâteaux
differentiable norm. By Xu [13, Theorem 4.1], we know that {zt} converges strongly to a
fixed point of U as t→ 0, where zt is the unique element of C which satisfies zt = t f (zt) +
(1− t)Uzt.

Corollary 3.3. Let E be a strictly convex and uniformly smooth Banach space whose norm
is uniformly Gâteaux differentiable and let C be a closed convex subset of E. Let S and T be
nonexpansive mappings of C into itself such that F(S)∩F(T) �= ∅. Let f : C→ C be a fixed
contractive mapping. Let {αn}, {βn}, {γn}, and {τn} be four real sequences in [0,1] such that
αn +βn + γn = 1. Assume the control conditions (C1), (C2), (D3), and (D4) are satisfied. For
arbitrary x0 ∈ C, then the sequence {xn} defined by (3.1) converges strongly to a common
fixed point of S and T .

We can obtain the following results from Takahashi and Ueda [14] which is related to
the existence of sunny nonexpansive retractions.
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Corollary 3.4. Let E be a uniformly convex Banach space whose norm is uniformly
Gâteaux differentiable and let C be a closed convex subset of E. Let S and T be nonexpansive
mappings of C into itself such that F(S)∩ F(T) �= ∅. Let u∈ C be a given point. Let {αn},
{βn}, {γn}, and {τn} be four real sequences in [0,1] such that αn + βn + γn = 1. Assume the
control conditions (C1), (C2), (D3), and (D4) are satisfied. For arbitrary x0 ∈ C, let the
sequence {xn} be defined by

xn+1 = αnu+βnxn + γn
(
τnSxn +

(
1− τn

)
Txn

)
, n≥ 0. (3.23)

Then {xn} converges strongly to the point Pu, where P is a sunny nonexpansive retraction of
C onto F(S)∩F(T).

We can also obtain the following theorems for a finite family of nonexpansive map-
pings. The proof is similar to that of Theorem 3.1, the details of the proof, therefore, are
omitted.

Theorem 3.5. Let E be a strictly convex Banach space whose norm is uniformly Gâteaux
differentiable and let C be a closed convex subset of E. Let T1,T2, . . . ,Tr be a finite family
of nonexpansive mappings of C into itself such that the set F =⋂r

i=1F(Ti) of common fixed
points of T1,T2, . . . ,Tr is nonempty. Let f : C→ C be a fixed contractive mapping. Assume
that {zt} converges strongly to a fixed point z of U as t→ 0, where zt is the unique element
of C which satisfies zt = t f (zt) + (1− t)Uzt, U =

∑r
i=1 τiTi, 0 < τi < 1, and

∑r
i=1 τin = 1. Let

{αn}, {βn}, {γn}, and {τin} be real sequences in [0,1] such that αn +βn + γn = 1. Assume the
control conditions (C1), (C2), and (D3) hold. Assume {τin} satisfies the condition (D4′):

lim
n→∞τ

i
n = τi, i= 1,2, . . . ,r,

r∑

i=1
τin = 1. (3.24)

For arbitrary x0 ∈ C, let the sequence {xn} be defined by

xn+1 = αn f
(
xn
)
+βnxn + γn

r∑

i=1
τinTixn, n≥ 0. (3.25)

Then {xn} converges strongly to a common fixed point of T1,T2, . . . ,Tr .

Theorem 3.6. Let E be a strictly convex and uniformly smooth Banach space and let C be
a closed convex subset of E. Let T1,T2, . . . ,Tr be a finite family of nonexpansive mappings
of C into itself such that the set F =⋂r

i=1F(Ti) of common fixed points of T1,T2, . . . ,Tr is
nonempty. Let f : C→ C be a fixed contractive mapping. Let {αn}, {βn}, {γn}, and {τin} be
real sequences in [0,1] such that αn +βn + γn = 1. Assume the control conditions (C1), (C2),
(D3), and (D4′) are satisfied. For arbitrary x0 ∈ C, then the sequence {xn} defined by (3.25)
converges strongly to a common fixed point of T1,T2, . . . ,Tr .
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