Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2007, Article ID 36503, 8 pages
doi:10.1155/2007/36503

Research Article
On the (p,q)-Boundedness of Nonisotropic Spherical
Riesz Potentials

Mehmet Zeki Sarikaya and Hiiseyin Yildirim
Received 20 November 2006; Accepted 1 March 2007

Recommended by Shusen Ding

We introduced the concept of nonisotropic spherical Riesz potential operators generated
by the A-distance of variable order on A-sphere and its (p,q)-boundedness were investi-
gated.

Copyright © 2007 M. Z. Sarikaya and H. Yildirim. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Let
R" = {x = (x1,%2,...,%,) :xi ER, 1 <i<n}. (1.1)

In R" spaces, L, and L, are defined as follows:

Ly=Lp(Quy) = {f(x): I fllp, = (JQ lf(x)|de)l/p< 00}, l<p<o

A

(1.2)
Lo =Lo(Quy) = {f(x) N fllo =esssup| f(x)] < 00},

XEQ,M

where ), is the n-dimensional unite A-sphere of R” which is dependent on the A-
distance. The A-distance between points x = (x1,...,%,) and y = (y1,..., y») is defined
by the following formula given in [1-10]:

[Al/n

1//l2+..-+|x,1—y,,|l/)l") , (1.3)

= ylai= (Jxr =1 " + [ = 2
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where x,y € Qup, A = (A1,A2,..544), A >0, k= 1,2,...,n, [A| = A1 + A, + - - - + 1,,. Note
that this distance has the following properties of homogeneity for any positive ¢,

[Al/n

(|t)tlxl|1//\1+_ i |t,\nxn|1//1n) :t‘M/”IxI;L. (14)
This equality give us that nonisotropic A-distance is the order of a homogeneous function
[A|/n. So the nonisotropic A-distance has the following properties:
(D) lxh=0ex=0,
(2) 1ty = [t/ x]y,
(3) I+ yly < 20 A M/n( x|y + | y[2).
Here we consider A-spherical coordinates by the following formulas:

)2)L]

x1 = (pcos0;)™,...,x, = (psin6; sin6, - - -sin@n_l)u". (1.5)

We obtained that | x|, = pzw/ ", It can be seen that the Jacobian ] (p, ¢) of this transforma-
tion is Jy(p,0) = p>M =1 W, (), where W, (0) is the bounded function, which only depends

on angles 0,,6,,...,0,_;. It is clear that if Ay = A, = - - - = A, = 1/2, then the A-distance is
the Fuclidean distance.
We define angle
coslx—ylh=x"-y, (1.6)

where x and y are vectors on the n-dimensional unite A-sphere.
For f € L(Qp)), 0 < a(x) < n, we will consider the following nonisotropic spherical
Riesz potential operator generated by the A-distance of variable order:

EOF@ = x=yli T 0y v Qu (1.7)
n,A

The aim of this paper to show that the well-known properties of classical Riesz poten-
tials may be formulated for our generalization (1.7). We will study the (p,q)-boundedness
of operators (1.7). Note that our results are the generalization of corresponding results
for classical Riesz potentials, given in [11]. The important properties of the nonisotropic
Riesz potentials and theirs generalizations were studied by many authors. We refer to pa-
pers [1-9, 12]. The nonisotropic spherical Riesz potential generated by A-distance is the
classical Riesz potential for A; = 1/2, i = 1,2,...,n and «(x) = a. Here particular impor-
tance of the nonisotropic kernel is that it does not have the classical triangle inequality.

It is well known that the classical Riesz potentials I, = ¢ * [x|*"" are bounded oper-
ators from L,(R") to Ly(R") for 1/q = 1/p —a/n,0<a<n, 1 < p<q< o [10].

LemMmA 1.1. Let Jy(x) = fQLA f()K(x,y)dy, x € Q7 ),

1/r 1/q-1/r
ki = sup (J , IK(x,y)qux) < 00, k, = sup (I 1 IK(x,y)lqdy> < 00

yel, N xeQ2) N

(1.8)
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and the following conditions are carried out: 1 < p<r <o, 1 -1/p+1/r=1/4q, f €
LP( ). Then

Wl D= <|lf Lz kiko. (1.9)

Proof. Let A, y, v be positive numbers such that 1/ + 1/u+ 1/v = 1. We write
]/\(x) fp (1/p— l/y) fp/y Kq (1/9—1/v) (x y)Kq/V(x y)dy (1_10)
Q1

By Holder’s inequality with exponents A, i, and v, we obtain

h(x)s( o f(y)Pl(l/p—l/y)K(x,y))tq(l/q—l/v)dy) UA(JQI f(y)de> W(L}} K(x,y)qdy> l/v'
’ " . (1.11)

Since we want to have f? and K17 in the integrand above, we note that we can choose A,

¢, v in such a way
1 1 1 1 1 1 1 1
1 (;‘p) 1 (5‘ Doty (1.12)

With these choices of A, 4 and v, we can rewrite expression last inequality,

1/A

IIfIIZ"QIA)(JQLJK(x,y)qdy) UV(,[Q;JJ[()’)PK(x,y)qdy) . (1.13)

Taking rth powers and integrating in x,

| heolax
Qn,)

s||f||;1p’{glk)J (J K(xy‘ldy) (J K, )qdy)mdx

nl yeQl )

r/v
<|fl; P/”1 L) sup (Jﬂl K(x,y)%iy) Jz sup K(x,y (J f de)dx
XGQEM A

r/v
<11 I o ) sup (J nyqu) sup(j K(xy)idy)
P yeQl, Qi

xEQ2
(1.14)
Hence
r/v
GO o) = 1AL su (J K yrdx) sup (| Kxydy)
EQI xeQ2) VY

(1.15)
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Taking rth roots, we have the following inequality:

|1 (x)] |L,(Qfm)

r /v
< IFI7 e " sup ( K(x,y)dx)  sup ( K(x,y)‘fdy>
yeal, N Q.

2
x€Q,,

(1.16)
1/r 1/q—1/r
<1f Il sup (J K(x, y)%lx) sup (J K, y)qdy)
Tyeal, N Qi

x€Q),
= ||f||LP(Q:M)k1k2- O

TaEOREM 1.2 (Riesz-Therin interpolation theorem, [13]). Suppose T is simultaneously of
weak types (po,qo) and (p1,q1), 1 < pi,gi < 00. If 0 <t <1 and 1/py = (1 —t)/po+t/p1,
1/g: = (1 —t)/qo +t/q, then T is of type (ps,q:), and

1T g0 < ITUE L 1T - (1.17)

The following theorem gives the condition of absolute convergence of the potential
()
nf.

THEOREM 1.3. Let 0 <m < a(x) <n, f € L1(Qpy). Then the integral (1.7) is absolutely
convergent for almost every x.

Proof. LetLyg=1{x€ Qup:y-x=cost}, |Lygl = [Qp 1.l sin?~1 9. Hence we have

|10 dx
Qn,)t

Sﬂ% |xlfyi)l dydx

1
=I D e dxdy
Qn,/\

Qur |x — yly

- LM lf(n)] ij:( 5 mdL%@(x))dG]dy
_ LM Bl (J J )(J g L)) 46| dy

<[, 1r»l L( med pat)) a0+ | o

M (1 [ Quia] sin?t 710 T -
SLM 1f(»)] _JO L d0+L Q11 | sin? lede]dy

dLy,g(x))de] dy

1 1 T
< |Qn71,)t~ JQM |f(y)| [JO mde-f-L de]dy < M||f||1 < 00,
(1.18)

The proof is completed. O
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THEOREM 1.4. Let 0 <m < a(x) <n, 1 < p < co. Then If(x)f is of type (p, p), that is,

I £1l, < Ml £, (1.19)

where the constant M is dependent on A, m, and n.

Proof. Let
Sof (x) = ﬁ wa (y)dLyxo(y). (1.20)
Thus we have
IS 11, < Ml f I . (1.21)

By the Minkowsky inequality for integrals, we have the following inequality:

(J,, 155001 ax) N
B (L)M Lm |x |fy(|}:l alx dy' dx>l/p
= (J,.,

Q] sin?™M e 1 po\UP
Jo geNVm(—al) | Lyo| Lxﬂf()’)de,edB‘ dx)

4 1 po\Vp

SM(JQM J mlse(f)lde‘ dx)
1 1/p

<M(J [ (J 1-CIA/n)a(x)p [So(f)] dx) do

1 » /p " , 1/p
SML W(L [So(f)1"dx) de+m | (jo |50 "dx)  do

1 1 .

SMJ m”&)(f)” d€+MJ1 ||S‘9(f)||pd9

<M||f||p(j S + | do) < mif,.

(1.22)

The proof is completed. O
The following theorem is an expanded form of Theorem 1.4.

TrEOREM 1.5. Let0<m < a(x) <n, 1< p <r,n/p—n/r <m. Then ;'™ f is of type (p,r)
that is,

1], < MIFI, (1.23)

where the constant M is dependent on A, m, and n.
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Proof. Let g = pr/(pr+p—r), 1/q+1/q" = 1. We show that If(x)f is of type (1,q) and
(q', ). By the Minkowsky inequality for integrals, we have the following inequality:

I 1,
1/q
o ] ]

<(J,

Qup Qup |x y|l

[ ( lfiqudx)”qdy
< O O |x_y|§tn706(x))‘1

1 1/q
= — ) d
J‘le |f(y)| (J’in1 |x_y|(n7a(x)>q X y

Qua Biedl _J (J QZMI/n n—alx dLye( ))d@]dy

| 1 " - 20A1-1
< JQ |f(y) | J ( Lo WdL%g(X))de‘f' J] |Qn—1,l | sSin 9d9] d)/

<

n,A LJO

<

1 Qi | sin?! 1
Qi | f ] _Jo Q@IN/n)(n—m)q d6+M]dy

_ 1 1
= Lm [ f ()] _|Q,,,M| Jo 9(2M|/n)(n—m)q—2|)t\+1d8+M:|dy <Ml flh.
(1.24)
Thus the last integral is convergence where
Pr__ for = = 2 < m,
pr+p—r n-m p (1.25)
q< EELLENEN M(n—m)q+l—2|)t| <1.
n—m n

This shows that I} ) f is of type (1,g). On the other hand, from Holder’s inequality, we
have

159 Ll
| f| < JQn,) |x_y|;z—tx(x) dy

= (Jéma'f(y)|qdy)lwl(J;nAf;_fﬁérﬂaf‘dy>lm:SA4nfnq-

Therefore we have

(1.26)

N £l < Ml flly- (1.27)

This shows that I{™ f is of type (q', ).
Lett = g(1—1/p), then from Theorem 1.2, I)‘f(x)f isof type (p,r) where 1/p=(1—1)/1+
t/q', 1/r = (1 —t)/q’. The proof is completed. O
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THEOREM 1.6. Let0<m < al(x) <n, 1< p<r,n/p—n/r =m. Then If(x)f is of type (p,7).

Proof. Firstly, for a constant m we will consider the a(x) = m. Thus, by using Lemma 1.1
for K(x,y) = |x — y|{"", we obtain the following inequality:

L 1l < MILf . (1.28)
This shows that I}" is of (p,r) type.
Let
Quax =1y €Qur:lx—ylh =1}, Qunx = Qup\ Qire (1.29)
Then

popts [ gy | rolae [ L9

Qi |x - yl7 Qe =y

(1.30)
< JQ | FO) [dy + I F(x) < M fllp + I £ ).
nAx
Therefore we have
I £l < 1M UFlp + I F GOl < MU, + 15 ), )
<M'lfll,+MIfll,=Clfl,. '

Thus Ii'™ f is of type (p, 7).

The proof is completed. O
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