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1. Introduction, notations, and lemmas

Ifp>1,1/p+1/9=1, f(x),g(x) =0, f € LP(0,00), g € L9(0,00), 0 < (f fP(x)dx)"P <
00, and 0 < (Jy g9(y)dy)"P < oo, then

where the constant factor n/sin(7/p) is the best possible. Equation (1.1) is the famous
Hardy-Hilbert’s inequality proved by Hardy-Riesz [1] in 1925.

By introducing the norms ||f||p, lgllg> and an integral operator T : LP(0, ) — L?(0,
), Yang [2] rewrite (1.1) as

(Tf,g)< Iflplgllg, (1.2)

/P)
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where (T f,g) is the formal inner product of T f and g. For f € L?(0,) (or g € L1(0,
)), the integral operator T is defined by (T f)(y) := [, (f (x)/(x+ y))dx (or (Tg)(x) :=
Jo (g (x+y)dy)and I f1l, = {fy | f(x)1Pdx} VP, lIglly:={[y |g(»)| dy}"4, then

(Tf,g):=J:( de) H A )g y)d dy. (1.3)

0o Xty

Inequality (1.2) posts the relationship of Hilbert inequality and the integral operator
T. Recently, inequality (1.1) has been extended by [3-6] by using the way of weight func-
tion and introducing some parameters. A reverse Hilbert-Pachpatte’s inequality was first
proved by Zhao in [7]. Yang and Zhong [8—10] gave some reverse inequalities concerning
some extensions of Hardy-Hilbert’s inequality (1.1).

Because of the requirement of higher-dimensional harmonic analysis and higher-
dimensional operator theory, multiple Hardy-Hilbert integral inequalities have been
studied by some mathematicians (see [11-15]).

Our major objective of this paper is to build a multiple Hilbert-type integral inequality
with the symmetric kernel K(x, y) and involving an integral operator T. In order to fulfil
the aim, we introduce the norm |[|x||% (x € R%), two pairs of conjugate exponents (p,q),
(r,s), and two parameters «, A. As applications, the equivalent form, the reverse forms,
and some particular inequalities are given. We also prove that the constant factors in the
new inequalities are all the best possible.

For these purposes, we introduce the following notations.

Ifp>1,1/p+1/g=1r>11/r+1/s=1,a>0,1>0,and n € Z,, we set

R := {x = (x1,...,Xn) : X15...,X; >0},

y (1.4)
lallgi= (g + - - +x%) "

If f(x) and w(x) > 0 are measurable in R%, define the norm of f with the weight
function w(x) as

1/p
flpi=1 |, @Gl 0017} (15)

IfO< | fllpw < oo, it is marked by f € Lg([Rﬁ) (for 0< p<1orgq<0, we still use (1.5)
with this formal mark in the following).

Suppose that K(x,y) is a measurable and symmetric function satistying K(x, y) =
K(y,x) >0 (forall (x,y) € R? x R}). For f,g = 0, define an integral operator T as

(TH)= | Ky fdx (yeRY), (1.6)

or

(Tg)(x J K(x,)g(y)dy (x€RY). (1.7)
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Then we have the formal inner product as

(1£.8)= (Tg.f) = || KGwp)fg(ndxdy, (1.8)

We also define the following weight functions:

Catalsx) ::J Kxy) ”x%/;/sdy, (1.9)
RY llylla
_ ”x”‘);t/rﬂ/q
Carald5:5%):= JMK(’“’”W@’ (1.10)
and the notation as
”x”)L/rJrs/q
C::J ||X||*"*£J K(x,y) /% dxdy, (1.11)
[Ix]l4>1 “ 0<llyllo<1 y Hy”Z—A/sﬂ/q y

where ¢ >0 in (1.10) and (1.11) are small enough.

Lemma 1.1 (cf. [16]). Assume that p >0, 1/p+1/q=1, F,G>=0, and F € LP(E), G €
L1(E). We have the following Holder’s inequalities:
(1) if p > 1, then

JEF(t)G(t)dt < (LFP(t)dt> VP(JE Gq(t)dt) " (1.12)

(2) if0< p< 1, then

1/p 1/q
| BwGwar= (| rrwa) (| cwar) (1.13)
E E E
where equality holds if and only if there exists nonnegative real numbers A and B (A* + B* +
0) such that AFP(t) = BG1(t) a.e. in E.
LemMa 1.2 (cf. [17]). If pi >0 (i = 1,2,...,n), a >0, and Y (u) is a measurable function,
then
JJ Y@t x®) T ey - dxy
{(x1oxn ) ERY; (X +- - - +xg) <1}

_ F(PI/OC) s 'F(Pn/(X) Jl (pr++--+pn)/a)—1
“arT((pr+---+pa)/a) Jo Fluu it

(1.14)

where I'(-) is the Gamma function.

By (1.14), it is easy to obtain following result.
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Lemma 1.3. If p; >0 (i = 1,2,...,n), a >0, and Y (u) is a measurable function, then

W(x+ -+ x)x Pt p”fldxl - dx,
R
(1.15)

_ F(Pl/OC) e F(Pn/(X) on ((pr++-+pa)/a)—1
- T ((prt -+ p)/a) Y (u)u du.

Proof. In view of (1.14), setting t = p*u, we have

W(x 4+ x)xl Lo -,

RY
—hmppl+ PJJ
p=e {(15X0 ) ERY; ((X1/p) %+ -+ (xn/p)*) <1}

A (G GG G oG)o)

. L(pi/a) - - -T(pn/a) Jl B
= lim pPtt tPn Y (¥ ((pr+++++pu)/a)=1
}pr arT((p1+- -+ pu)/a) (p*uu du

_ F(PI/OC)' (Pn/(X J W(t t(<pl+ +pu)/a) -4t
arT((p1+- -+ pu)/a)

(1.16)
and (1.15) holds. The lemma is proved. O
By (1.14) and (1.15), we still have the following lemma.
LemMa 14, If p;i >0 (i=1,2,...,n), a >0, and ¥ (u) is a measurable function, then
I J W)l B - d,
..... Xn) ERY; (x4 +x%)>1} (1 17)
_ (PI/OC) . (pn/(x J ¥(u)u (prt--tpu)la=1 g, ‘
arT((pr+-- -+ pn)/a)
Lemma 1.5. For ¢ >0 small enough and n € Z,, we have
" (1/cx)
M= ———————, 1.18
lenm el ™ dx e-a 1T (n/a) (1.18)
Proof. By using Lemma 1.4, we have
| e
[loello>1
= J J (x84 -+ o x%) LT,
{(X1500s ) ERME; (x4 - - 4+x%)>1}
I"(1/a) r"(1/a) (©
— (n+£)/oc n/a— ld J —£/0c—1d )
oc”l"(n/oc) J . " a'T(n/a) " "
(1.19)

Hence (1.18) is valid. The lemma is O
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2. Main results

TaeoReM 2.1. Suppose that p > 1, I/p+1/q=1r>1, l/r+1/s=1, a,A>0, n € Z,,
f>g =0, K(x,y) is a measurable and symmetric function, w(x) = ||x||£("7/w)7n, o(y) =

IIyIIZ(nfMS)fn, h(y) = ||}/||§/VH1, and the integral operator T is defined by (1.6) (or (1.7)). If
C«x,A,n(S)x) = Ca,/\,n(s) = sz,/\,n(r)) (2.1)
Cq,A,n(q,S,E,X) = Ca,l,n(s) +o(1) (8 - O+) (2.2)

are all constants independent of x, and
C=0(1)(e— 0"), (2.3)

where Co 1 (5,%), Coy1n(q>5,6,x) and C are defined by (1.9), (1.10), and (1.11), respectively.
We have the following:
1) if f € LG(RY), g € LH(RY), then

(Tf,g)= [ . K(x,y) f(x)g(y)dxdy < Corn(O)I fll p0llgllges (2.4)

2) if f € LL(R™), then Tf € L} (R™) and

P 1/p
||Tf||p,h={jw|y||£””( | K food) dy} <CarnOlf Iy (25)

where the same constant factor Cazn(s) in (2.4) and (2.5) is the best possible. Inequalities
(2.4) and (2.5) are equivalent.

Proof. (1) Since p > 1, we use Holder’s inequality (1.12) in the following:
” 14 (1/q)(n=M/r) H 11 (1/p)(n—A/s)
(Tf,g) = H[RK [KI/P(x,y)f( 7” PG /Vs):| [KI/Q(x,)/)g(J’)” | ]dxdy

J J ||x\|’V' () 1/p
< ) nK( )” = “dy | lxlla " FP(x)dx

Ms 1/q
X” H Kxy) -2 g ]II [ g‘f(y)dy} '
Ry LJw: [EY|F

(2.6)

By (1.9), (2.1), and notations (1.5), (1.8), it follows

(Tf;g) = Ca,/\,n(s)”f”p,w”g”q,@- (27)
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If (2.6) takes the form of equality, then by Lemma 1.1, there exist real numbers A and

B (A% + B? #0), such that

” ”(P 1)(n—A/r) ” ”(q 1)(n—A\/s)

7”)4“1 T fP(x 7” RG gi(y), ae. in R} xR

It follows that there exists a constant E, such that
n—A/r) n—>\As .
AlB" V) f2(x) = Bl y4" M g4(y) =E, ae.in R" xR

Without lose of generality, suppose that A # 0. We have

E

(n=Mr)—n
[E3[E Px) = ——)\
g S = Hiam

a.e.in R,

(2.8)

(2.9)

(2.10)

which contradicts the fact that f € Lf)([Ri). Hence, (2.6) takes the form of strict inequal-

ity; so does (2.7). Then we obtain (2.4).

Suppose there exists a number 0 < C < Cy,) ,(5), such that (2.4) is still valid if we re-

place Cy 1,,(s) by C. In particular, for ¢ > 0 small enough, setting

Il "7 x e {llxlly > 1} AR,
filx) =

0, x€{0<|lxlla <1} NRY;

alyy = [y e lyla> 1) R,
8 0, ye{o<lyla <1} NRY,

it follows

(Tﬂ,ge><6{fmnxn””” f"(x)dx} “Mnynq““ (y)dy}l/q

I"(1/a)

~c| ey = C— )
lxlla>1 el = C an-1T (n/a)

(by (1.18)).
But by (2.2), (1.18), and (2.3), we have

(Tferge) = H K(x, ) fe(x)ge(y)dxdy
J\IxH el SU Ko p)lxl ) ylls " gy,

_J K(X,y)” ”)L/Hs/q”y”; n—/\/s)—s/qdy] dx
0<llylla=1

I"(1/«) N .
:WM[%M(SHO(I)](I+o(1)) (e — 07).

(2.11)

(2.12)

(2.13)

In view of (2.12) and (2.13), we have [Cq,1.,(s) + 0(1)](1+0(1)) < C, and then C, 1 ,(s) <

C (e — 0™). Hence the constant factor C = C,,) ,(s) is the best possible.
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(2) Setting g(y) = I8 " (Jas K(x, ) f (x)dx)?~1 (y € R%), then we have g(y) = 0.
Using the notation (1.5), by Hélder’s inequality (1.12) (as (2.6)) and (2.1), we have

TSI = gl = | IY1E""g3)dy

» P
=ka“(&MMWMM%UﬂUwS%MMNMMW,
(2.14)

which is equivalent to
ITFIE ) = lIglio < Chau() fllho- (2.15)

In view of f € LE(R?), it follows that g € LE(R?) and T f € L} (R"). Using the result of
(2.4), we can find that inequality (2.14) takes the strict form; so does (2.15). Hence we
obtain (2.5).

On the other hand, if inequality (2.5) holds, then by using the Hélder’s inequality
(1.12) again, we find

(1.9 = || Ky fgmxdy

:J [”HMSWPJ Ko f ][ 11275 dy

<3|l ( ] Koy fxdx ‘] g dy)
R" R” R”

(2.16)

By (2.5), we have (2.4). It follows that (2.5) is equivalent to (2.4). If the constant factor
Ca1,n(s) in (2.5) is not the best possible, then by (2.16), we can get a contradiction that
the constant factor C,,) ,(s) in (2.4) is not the best possible. The theorem is proved. [

THEOREM 2.2. Let 0<p<1(qg<0), I/p+1/gq=1Lr>1, l/r+1/s=1, a,A >0, and

n € Zy. Assume that f,g = 0, K(x,y), w(x), ®(y), h(y) are all defined as in Theorem 2.1,

setting ¢(x) = IIxHZM_n, the integral operator T is defined by (1.6) (or (1.7)), and the weight

functions Cop,n(s,x) and Cy 3 4(g,s,€,x) satisfy (2.1) and (2.2). Then we have the following:
1) if f € LE(R?) and g € LH(R™), then

(Tf.g) = j K(x,9) f0)g(ndxdy > Corn® I flpoliglgos  (2.17)

(2) if f € LE(RY), then

P 1/p
1Tl = {JW Hy”g,vs—n(LRn K(x,y)f(x)dx) dy}» > Corn ()N f 1l pws (2.18)
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3)ifge LE(R™), then Tg e LZ([R’;), and

1Tglgy = | 1 ( | KeoygOidy) de<ClOlgllon  (219)

where the constant factors Cy ) »(s) and Ca 1.n(8) are the best possible. Inequalities (2.18) and
(2.19) are all equivalent to inequality (2.17).

Proof. (1) Since 0 < p < 1 (g <0), we can use the reverse Holder’s inequality (1.13). Using
the combination as (2.6) and notation (1.8), we have

xS 1/q)(n=Mr) ” ”(I/p)n As)

(Tf,g)Zﬂm [KVP(x,y)f( )””(1/;;);1/\/5] [K(l/q>( )’)”Hl/q)n,w]dx‘i)’

> {J . [J K(xy) IIH |||;|1M;/S ]lellg(nk/r)nf"(x)dx}l/p

Ms As)en /g
X” U K y)- 2 ,'Jfk/rdx]”ynﬁ‘” ) ngW} '
Ry LJw: [l 1 &

By (1.9), (2.1), and notation (1.5), we have

(2.20)

(Tf,8) = Capn()l fllpollgllga- (2.21)

If (2.20) takes the form of equality, then by using the conclusions of (2.8)—(2.10), we still
can get a result which contradicts the condition of f € Lg(ﬂ%ﬁ) (orge LE(R™)). It means
that (2.20) takes the form of strict inequality; so does (2.21). The form (2.17) is valid.

If there exists a positive number C > Cy 3 ,(s), such that (2.17) is still valid if we replace
Ca,1,n(s) by C, then in particular, for € > 0 small enough, setting f.(x) and g.(y) as (2.11),
we have

(Tferge) > ClIfell o llgell 40 = Cf“ L Ila . (2.22)

But by (1.10) and (2.2), we have

(Tfos) = || K figdrdy
= JH o e H K(x,y)llx ||””‘/q\|y||;(”‘””‘“‘1dy]dx (2.23)
Xlla>

= [Cu,A,n(S)+0(1)]J llx|l " dx.

|x]|o>1
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In view of (2.22) and (2.23), we find C < Cy,) 4(s) + 0(1), and then C < Cy 1 ,4(s) (e — 0*).
Hence the constant C = Cy,) ,(5) is the best possible.

(2) Setting g(y) = IIyIIgMH(fM K(x,y) f(x)dx)?P~1 (y € R), it follows g(y) = 0. By
Notation (1.5) and in view of (2.21), we have

T, = gho = [ IyIE" ™ "g1(y)dy
- | 1 UMK("’M (dx) dy = (T£,9) = Carn() I f I plglg0r
(2.24)
ITfII, = lIghGe = Chr) f e (2.25)

If ||Tf||ph = IIgIIZ,@ =oo,by f € Lg([R’}_), (2.25) takes the form of strict inequality. (2.18)
holds. If Tf € Lﬁ(IR{ﬁ) (ge LE(R™)), this tells us that the condition of (2.17) is satisfied,
then by using (2.17), it follows that both (2.24) and (2.25) keep the strict forms and (2.18)
holds.

On the other hand, if (2.18) is valid, using the reverse Holder’s inequality (1.13) again,
we have

(Tf,g) = j Iyl ”/PH K fedx || 171 g( |y

A/ Vp Vs) 1/q
z{jw 1B | Ky feod] dy} [, e rgatay)
(2.26)
By (2.18), we have (2.17). This means that (2.18) is equivalent to (2.17).

(3) Firstly, setting f(x) = IIxHZM_n(fM K(x,y)g(y)dy)?! (x € R%), then it follows
(x) = 0. Using the notation (1.5) and in view of (1.9), (2.1), and (2.20), we have
g

||Tg||q¢—||f||§,w=j B0 £ (x)dx

n q
= J, 11270 ( ] Keoylgdy) dy = (Tg.f) = Cors® 1S Iyl
(2.27)

It follows

-Mr)-n a
1Tgllyo = 171G = [ 1IE" pr ] = Cona gy 228)

and by g < 0, we have

0<I1Tgll? ;= Il £l = j eV (j ny)g(y)dy) dy<Cl,,(9)gllEo < co.
(2.29)
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This follows that T'g € Lz([Rﬁ), fe Lf,([RZ’_). And by (2.17), we find that (2.27)—(2.29) are
strict inequalities. Thus inequality (2.19) holds.
Secondly, if (2.19) is valid, using the reverse Holder’s inequality (1.13) again, in view

of
(1£.8) = || Ktxy)fxig)dxdy

= [ peon e K yg(dy |
R? R
1/q

[ [ [ ko] e
+ + + (2.30)

by (2.19) and g < 0, it follows that (2.17) holds, and (2.19) is equivalent to (2.17).

If the constant factor C,) ,(s) (or CZ’)M(S)) in (2.18) (or in (2.19)) is not the best
possible, then by (2.26) (or (2.30)), we can get a contradiction that the constant factor
Caan(s) in (2.17) is not the best possible. The theorem is proved. O

3. Applications to some particular cases

CorOLLARY 3.1. Let p>0, I/p+1/q=1,r>1 U/r+1/s=1, a>0,0<A<1, ne’Z,
w(x) = [xI2" V77 @(y) = IylE" ™)™, and f,g = 0. Then
(1) ifp>1, f € LE(RY), and g € LH(R?), then

[ _TCRY) ety < Conn @) fllpaliglges (3.1)
il — Iyl

(2) if p>1, f € LL(R™), then

[ ([ L) ay<cl 0 62
R R | lxlla = [yl

(3)if0< p<1, f e LL(R"), and g € LY(R?), then

N mdxdy > Cann 1 fllpoIglgas (33)
| X e — Yl

(4) if0< p<1and f € LL(R™), then

—n x 4
e ([ — Ly ays e, @ik G
w 2 el lyle]

(5)if0<p<landgec LE(R™), then

q
[ 12 ([ ) dx <Ol 69)
RY RE | Nxlla = llyllal
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where the constant factors Cyyn(s) = (I"(1/a)/a 'T(n/a))[B(A/s,1 — A) + B(A/r,1 — A)]
(B(+,-) is the Beta function) and Cs’ an(S) CZ’ 1.n(8) are the best possible. Inequality (3.2) is
equivalent to (3.1); inequalities (3.4) and (3.5) are all equivalent to (3.3).

Proof. Setting K(x,y) = 1/(llIxloa — IIyIIuI)‘), it is a measurable function, satisfying K(x,
y) = K(y,x) >0 (for all (x,y) € R?” x R"). In view of Theorems 2.1 and 2.2, just need to
prove that conditions (2.1)—(2.3) are all satisfied.

(a) When p >0, by (1.9) and (1.15), setting ¢ = u"/%, we have

Elllxlla = Ny llal

rn(l/a) 0 u—(n—l/s)/oc
arT(n/a) Jo | ||x||o — uv/e|*

. "(1/a) [E%IP Ms-1 oo M1
= ”X”(),L/ OMWOC)[J 7Adt+J 7/\dt .
0 (llxlla —1t) lxlla (£~ [lxll4)

Setting v = #//x||«, we have

Cann(5,%) = [IxII¥" jm

— v
= [IxlI5"

un/afldu (36)

" (1/ [Ixlla t)t/s—l " (1/ 1, Ms—1
Il | = SO )
a~1T(n/a) Jo (Ixlla — 1) a~1T(n/a) Jo (1 —v)
Setting u = ||x||4/t, it follows that dt = —||x||qu~2du and
n Y As—1 n 1 Ar—1
Jepvr L1/0) o g W (e g

a0 (n/a) Jist, (¢ — Ixll,)* @' T(n/a) Jo (1—u)

In view of (3.7), (3.8), and 0 <A < 1, it follows Cyru(q,8x) = Cyrn(s) =
Corn(r) = (I"(1/a)/a"'T(n/a))[B(M/s,1 — 1) + B(A/r,1 — A)], and condition (2.1) is sat-
isfied.

(b) When p > 1, by (1.10) and (1.15), setting ¢ = u!/%, for 0 < & < gA/s, we have

C Mre/ 1 —(n=Ms)—e/
Con(g:5,6,x) = llxlla qu iyl dy
RE |l xllo = 1y 1l

B ||x||)‘/r+£/q r”(l/oc) o~ (n=Mste/g)/a
- o
arT(n/a) Jo |||x||a_u1/o¢|)‘

un/oc—ldu

:||x||)t/r+s/q I"(1/a) |:Jxl.x Ms—e/q-1 dt-l—Ioo Ms—e/q-1 dt:|
ar 1T(n/a) | Jo (x| - £)* el (£ — Ilxll4)*
(3.9)
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Setting v = t/| x|, or u = ||x||o/t, respectively, as (3.7) or (3.8), we find

o B rn(l/(x) |:J1 yMs—e/q—1 Jl yMr+elq—1 ]
Can(q:5,8,%) = a-T(n/a) L Jo (1—v) dv+ o (1—u) du

_M[ (&_5 _> (& € _)]
= T B S q’l A)+B r+q’1 A

It follows that condition (2.2) is satisfied.

(3.10)

Note. When 0 < p<1(g<0),setting 0 < e < —gA/r, the constant Ea,a,n(q,s,s,x) satisfies
(2.2) as well.

(c) If p > 1, by (1.11), (1.14), and (1.17), respectively, setting ¢ = u'/* and v = t/|| x|,
for0<e<gMsand 0 <A< 1, we have

” ”A/He/p

0<&=[ g e dxdy
lxllg>1 0<lyle=t [ [lxllq = 1y lla] Iy lla

I"(1/a) 1/llxlla yMs—e/q-1

- a" T (n/a) Jx 1 el dxjo (1-v)t dv

I"(1/a) . J—I/HXHa yMs—e/g—1
T a 1T (n/a) Jjxl o1 el "dx 0 l—-v dv
(Ve quinde»l/HxHa i keomc-1 g, (3.11)
o IT(n/a) Dy o 5
 I"(Va) < 1 J (kM s—e/q)
h oc”—ll“(n/oc)k%)k+/\/s—£/q llxlla>1 ¢l dx
. I'(Va) i 1
an2T(n/a) 5 (k+Ms—e/q)”
It follows that C satisfies (2.3).
In view of (3.7)—(3.11), by Theorems 2.1 and 2.2, Corollary 3.1 is proved. a

CoROLLARY 3.2. Suppose that p >0, 1/p+1/q=1r>1, 1/r+1/s=1 a,A>0,ne Z,,

w(x) = 12" @(y) = Iy, and f,g = 0. Then

1) ifp>1, f € LA(R?), and g € LH(R™), then

|
II. “”y””ﬁ” S 9 f(g(ndxdy < Com@l flpaliglyes  (12)
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2)ifp>1, f € LE(R™), then

s—n In /x|l X P
(], v

(3)ifo<p<l, fe Lf)([Rﬁ), and g € LE(R™), then

In (yllo/I1xl.
JI,, ”y”ﬁ - ”A)f )& ()dxdy > Corn®)lflpolglyes  (3.14)

4) if0< p<1land f € LL(R?), then

e [ In(lyle/Ixl) FG) | \7
[ e([ (”yy ”A_”x')‘{ D) dy >l @Il G19)

5)if0< p<1andg € LL(RY), then

o [ Iy la/lxl)g() |
J 1t (], (|yy||*—||x|?3g(y dy) dx< Ly, (9)lglo, (3.16)

where the constant factor Courn(s) = (I"(1/a)/A2a"'T(n/a))B>(1/5,1/r) (B(-,-) is Beta
function) and C a an(8)s Ca 1, (s) are all the best possible. Inequality (3.13) is equivalent to
(3.12); inequalities (3.15) and (3.16) are all equivalent to (3.14).

Proof. Setting K(x,y) = In(|lyllo/llxllo)/(IlylI* = [x]2), it is a measurable function, sat-
isfying K(x,y) = K(y,x) >0. As in Corollary 3.1, we just need to prove that conditions
(2.1)—(2.3) are all satisfied. Setting t = u"% and v = (t/11x1l ) respectively, we can find
the results in the following.

(a) When p >0, by (1.9) and (1.15), we have

In (Ilyllo/llxlla)
ylld = llxlld

_ ||x||M’ I'"(1/) Jw [lnul —Inlx|l, ] (n—Ms)/a
- o arT(n/a) Jo Ma — ”x”&

Cunns) = 51" | Iy llzV dy

un/afldu

(3.17)
_ e 700 [Int = Injlxlla] £

* an=1T(n/a) Jo A — ||x]|2

. I'(lV/a) J'°° Inv .,
" Vam1T(n/a) Jo v—1' dv.

dt

It follows Cy11(g,8,%) = Caru(s) = (T"(1/a)/A?a 1T(n/a))B>(1/s,1/r) satisfies (2.1).
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(b) When p > 1, for 0 < £ < gA/s, by (1.10) and (1.15), we have

Mr+elq In (||)/||a/||x||rx) —(n—A/s)—¢/q
Cotn(@r,6%) = [IxI13 j DUl NxTa) d
Carn(g:5,8:) g Iylh— iy e y

~lx ||A/r+g/q I"(1/a) J (Inu® —1n || x| o) u~(n-Vs+ela)/a 1
B arT(n/a) Jo uMe — || x]|4
_ I(l/a) Im Inv g1
T N2am1T(n/a) Jo v — 17 dv
L T 1 e e
C VamT(n/a)” \s gAr  gA)
(3.18)

It follows that (2.2) is valid.

Note. When 0 < p <1 (g<0),setting 0 <& < —gM/r, the constant Corn (g,s,¢,x) satisfies
(2.2) as well.
(¢) If p> 1, then for 0 < £ < gA/s, by (1.11), (1.14), and (1.17), we have

—(n=A/r)—¢/p

[In (ILylla/llx]la) ] 1l
0< C J J 1 1 n—A/s+e/q dxd
lela>1 J0<ylla=t ([l y 1§ = llxll%) 1y lla

I (1/ax) . Jl/nxua v o
= n—eq 1/s e/qA 14
A2 1T (n/) Jiixile>1 d * 1 !

)

I"(1/a) . J’l/l\xl\ o
S —_— X dx lnv +1/S S/qA ldv
A2 1T (n/a) Jijxll 1 Il 0 k%)

0 )»

_ k+1/s—¢e/gA
Aa=1T(n/a) Jixlles1 @ Z k + 1/5 —&/qA I (=Inv)dv

(1/“) < A —[n+A(k+1/s—¢/qM)]
)L2(X” lr(n/“) { Z k+ 1/s — S/q/\ ool || ||ot In HxH,xdx

=~ —[n+A(k+1/s—&/q))]
—_— o d
Z k+1/s—s/q/\) Jnxum I x}

k=0

(<]

_ e S 1
T Va2 (n/a) o (k+1/s—€/gh)? '

(3.19)

It is obvious that C is a bounded quantity and satisfies (2.3).
In view of (3.17)—(3.19), by Theorems 2.1 and 2.2, Corollary 3.2 is proved. (I

Similarly, by setting K (x, y) = 1/(llx|IX + [l ylI2) and K(x, y) = 1/(Max{|lxla | ylla})*s
respectively, we have Corollaries 3.3 and 3.4 in the following. In order to compress the
length of the paper, the proof for Corollaries 3.3 and 3.4 are here omitted.
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CoROLLARY 3.3. Suppose that p >0, 1/p+1/q=1,r>1, 1/r+1/s=1 a,A>0,ne Z,,
w(x) = [xIE" Y77 @(y) = IylE" ™)™, and f,g = 0. Then
1) ifp>1, f € LL(RY), and g € LE(R?), then

F0g() _
ﬂ T Ty < Ceta(l fl ol (3.20)

2)if p>1, f € LL(R™), then

P
[, (] ) dy < 9 s (3.21)

o lxlld+ Ny lly

(3)if0< p<1, f e LE(RY), and g € LE(R™), then

_Jgly)
dxd Carn w 5 3.22
«[JDR+ ||x||)t+ ||y||l X y > A, (S)”f”p, ||g||q,lD ( )

4) if0< p<1land f € LL(R?), then

p
j e (. Ldx) dy>C ) f b (323)

o lxlld+ Ny lly

(5)if0<p<landge LZ)([Rf;), then

qz\/r—n(J g(}’) d )qd q q
x|l & —o s x< C s R 3.24
jm Ix Y 1 ©lghe (3.24)
where the constant factors Cy ) »(s) = (I"(1/a)/Aa™ 'T(n/a))B(1/s,1/r) (B(-,-) is the Beta
function) and Cﬁ) an(S), Cz’ 1n(8) are all the best possible. Inequality (3.21) is equivalent to
(3.20); inequalities (3.23) and (3.24) are all equivalent to (3.22).

CoROLLARY 3.4. Suppose that p >0, 1/p+1/q=1r>1 1/r+1/s=1 a,A>0,ne Z,,
w(x) = Il @) = Iy 1", and f,g = 0. Then
1) ifp>1, f € LA(R?), and g € LY (R?), then

fx)g(y)
dxd Codn w 5 3.25
Il (el iyt 7 oM rellae 52

(2)ifp>1, f € LE(RY), then

P
Iyl /() dx) dy < C2 o () f Il pws (3.26)
JM Y (L’w(maum{nxna,||y||a}>A ) dy < CLa s

(3)if0< p<1, f e LE(RY), and g € LE(R™), then

FORY)  4aysc :
a () fll pollgllgos (3.27)
JJRi (maX{Hx”a,”yHa})A e i f pwli8la
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(4) if0< p< 1and f € LL(R™), then

P
Lyl Ve f) dx) dy>Cly GIfI0e  (3.28)
Jm ) <JM(max«{nxnm,||y||a})A ) V> CaanlI 17

(5)if0<p<landge Lg(lRi), then

Jw el ( Iw ( g )Ady> dx<Cl L (9)gllan (3.29)

max {|xla 1y}

where the constant factors Cy ) 4(s) = srT"(1/a)/Aa" T (n/«) and ct o (s), CZ)M(S) are all

a,An

the best possible. Inequality (3.26) is equivalent to (3.25); inequalities (3.28) and (3.29) are
all equivalent to (3.27).

Remark 3.5. For n = 1, the inequalities in Corollaries 3.1-3.4 reduce to the correspondent
inequalities in the 2-dimensional space.
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