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1. Introduction

In order to study the elliptic partial differential equations of order two with variable coef-
ficients, Calder6n and Zygmund [3] defined and studied the L?-boundedness of singular
integral T with variable kernels. In 1980, Aguilera and Harboure [4] studied the problem
of pointwise convergence of singular integral and the L?>-bounds of Hardy-Littlewood
maximal function with variable kernels. In 2002, Tang and Yang [1] gave the L?> bound-
edness of the singular integrals with rough variable kernels associated to surfaces of the
form {x = ®(|y|)y'}, where y’ = y/|y| for any y € R"\{0} (n = 2). That is, they consid-
ered the variable Calderén-Zygmund singular integral operator Te defined by

To(N)() = pav. | kG ) f(x=@(1y1)y )y, (L)
and its truncated maximal operator Tg defined by

Te(f)(x) =sup

>0

Lyl>£k(x,}’)f(x—q)(lyl)y’)dy , (1.2)
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for f € Cy (R"), where k(x,y) = Q(x,y)/Iy|" : R" x R"\{0} — R, Q(x,y) is positively
homogeneous in y of degree 0, namely Q(x,1y) = Q(x, y) for any A > 0, and

J Q(x,y")da(y’') =0 forae. xeR", (1.3)
Snfl

where "~ is the unit sphere of R” equipped with Lebesgue measure do = do(x’).
They gave the following result.

TaEOREM 1.1 (see [1]). Suppose k(x, y) is as above and satisfies, for some q >2(n—1)/n,

1/q
190y = sup ([ 1060y o)) <o (14)

xeR”

Let ®(t) be a nonnegative (or nonpositive) C* function on (0, o) satisfying
(a) D is strictly increasing (or decreasing);
(b) O(t)/t = C,D'(t)p(t) for all t € (0,00), ¢ is defined on (0, c0) which is a monotonic
and uniformly bounded function.
Then Ty is bounded on L*>(R") and Tq can be uniquely extended to be a bounded operator
on L*(R"). Moreover, for all f € L*>(R"),

where the constant C is independent of f.

On the other hand, as a related vector-valued singular integral with variable kernel, the
Marcinkiewicz integral with rough variable kernel associated with surfaces of the form
{x=®(|yl)y'} is considered. It is defined by

0 172
w1 = ([ %) (16)
where
_ Qxp) o ,
Fg,t<x>—jy‘g P e aly)y)dy. (1.7)

If ®(|y|) = |yl, we put ud = pq. Then pq with convolution type of kernel is just the
Marcinkiewicz integral of higher dimension which was first defined and studied by Stein
[5] in 1958. Since then, many works have been done about this integral (see, e.g., [6-8]).
In 2005, Ding et al. [9] studied the L? boundedness of the operator pq.

TaEOREM 1.2 (see [9]). Suppose that Q(x,y) is positively homogeneous in y of degree 0,
and satisfies (1.3) and (1.4) for some q >2(n — 1)/n. Then there is a constant C such that
lpa ()2 < Cll fll2, where the constant C is independent of f.

So, we have considered that it is natural to ask if the results in Theorem 1.1 still hold
or not for the Marcinkiewicz integral with rough variable kernels along surfaces, and got
in our paper [2] the following answer.
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TaEOREM 1.3 (see [2]). Suppose that Q(x, y) is positively homogeneous in y of degree 0, and
satisfies (1.3) and (1.4) for some q > 2(n — 1)/n. Let ® be a positive and strictly increasing
(or negative and decreasing) C' function and let it satisfy ©(t)/t = @' (t)¢(t) for all t €
(0,00), where ¢ is a function defined on (0, c0) and there exist two constants 8, M such that
0< 6 < |o(t)| < M. Suppose moreover ¢ satisfies one of the following conditions:

(i) to'(t) is bounded;

(ii) ¢ is a monotonic function.
Then there is a constant C such that I\yg(f)llz < Cll f |2, where constant C is independent

of f.

In this paper, we will give another sufficient condition, relating to a recent paper by
Al-Qassem [10].

THEOREM 1.4. Suppose that Q(x, y) is positively homogeneous in y of degree 0, and satisfies
(1.3) and (1.4) for some q >2(n — 1)/n. Let ® be a positive and monotonic (or negative and
monotonic) C' function on (0,0) and let it satisfy the following conditions:

(1) 6 < |D(t)/(tD'(t))| < M for some 0 < § < M < oo;

(ii) @’ (t) is monotonic on (0, o).
Then there is a constant C such that H/,tg(f)llz < Cll f |2, where constant C is independent

of f.

Remark 1.5. There is no including relationship between condition (ii) and conditions (i),
(ii) in Theorem 1.3, this can be seen from the example given in [2, Section 2 and Examples
2 and 3].

Remark 1.6. 1f ®(¢) is a positive and monotonic function on (0, c0) and @’(¢) is mono-
tonic, then the following (i) and (ii) are equivalent.
1) 6§ < |D(t)/(tD'(t))| <M (0 <t < o0) for some 0 < d < M < oo;
(ii) # < max{g(2t)/g(t),g(t)/g(2t)} <L on (0,00) for some 1 <# < L < oo,
This can be checked by elementary consideration, using convexity or concavity.
Condition (ii) is used to give L? boundedness of Marcinkiewicz integrals along sur-
faces with convolution type of kernel by Al-Qassem [10].

Furthermore, our results can be extended to the parametric Marcinkiewicz integrals,
parametric area integral, and parametric y; function, which are defined by

2 dt 172
t1+2a> >

Zdydt)l/z

9]

Q > !
[ 2D paliyhy )y
yl<t 1yl

ij Q(y,2)
to ¢ |Z|nfa

whe = (|

0

wrnw= (] |
s = ([, (Wt—yl))t L[ 2D G- a(a)e)ds

lzl<t |2|"C

fy—@(lzl)z')dz

tn+1

Zdydt)l/Z

tn+l

(1.8)

where I'(x) = {(y,t) € R?!: [x— y| <t} and A > 1.
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We get the following result.

TaEOREM 1.7. Let 0 > 0. Then Theorem 1.4 still holds for the parametric operators yg’”,
g, and p}g.

Throughout this paper, the letter C will denote a positive constant that may vary at
each occurrence but is independent of the essential variables.

2. Proof of Theorem 1.4

We begin with recalling a known lemma. This lemma can be obtained from [11, (2.19),
page 152], and [11, Theorem 3.10, page 158], see also [1].

LemMA 2.1 (see [11]). Let n =2, k > 0, and let P(y) be a spherical harmonic of degree k.
Then

N _—ix-y ’ . n]n +—(| |)
PO doty) = (it A p( ), 2.1)

The first part of the next lemma is given in [2, page 372].

LemMa 2.2. (1) Let g(t) be a nonnegative (positive) and nondecreasing (strictly increasing)
function on (0, 00) such that there exists ¢(t) satisfying

S =g (He(t). (2.2)

If there exists § >0 such that 0 < 8 < ¢(t) on (0,00), then [g~1(£)]°/t¢ is nondecreasing
(strictly increasing) on (0,00) for 0 < e < 08 (0 < e < 08). Conversely, if [g~1(¢)]°/t¢ is non-
decreasing (strictly increasing) for some € >0, then ¢(t) = /0 (¢(t) > €/0).

(2) Let g(t) be a nonnegative (positive) and nonincreasing (strictly decreasing) function
on (0, 00) such that there exists ¢(t) satisfying

8t

=g (g0, (23)

If there exists 8 > 0 such that 0 < § < —¢(t) on (0,00), then [g~'(t)]°t is non-increasing
(strictly decreasing) on (0,00) for 0 < e < 06 (0 < e < d8). Conversely, if [g~ 1 (£)]9/t¢ is non-
increasing (strictly decreasing) for some € >0, then —¢(t) = e/0 (—¢(t) > €/0).

One can prove this in an elementary calculation. Case (1) is given in [2, page 372], and
Case (2) is shown similarly. We also note that if ¢(f) in Lemma 2.2 is bounded (without
boundedness from below), it follows lim,_(g(¢) = 0 and lim,_ g(t) = +oco in Case (1),
and lim;_g(t) = +o0 and lim,_. g(t) = 0 in Case (2). (Cf. [12] for the proof.)

Below we give one example.

Example 2.3. Take a nondecreasing function y(t) € C*(R) satisfying 0 < w(t) <1 (t €
R), y(t) =0o0n (—00,0), w(t) =1on [1,00),and 0 < ¥'(t) <2 (0 < t < 1). Set

o(t) = é<2+1//(t iz Ty (2% t—zf))) (2.4)
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Then, we have 2/5 < ¢(t) <3/5 on (0,00), 0< ¢'(t) = y'(£)/5<2/5(0<t<1), ¢ (t) <0
(t=1),¢'(1)<0 (2 <t<2/+27%,j=1,2,..) (hence ¢(t) is not monotonic on (0, )),
and limsup,_ ., [t'(t)| = +oo. Put g(t) = exp fl ds/s¢(s))). Then g(t) is positive and
increasing on (0, ), and g’'(t) = g(¢)/(te(t)) (i.e., g(t)/t = g'(t)¢(t)), and g""(t) = (1 —
@(t) — t¢'(£))/(te(t))*. By the definition of ¢() we have, for 0 <t < 1

, 3 , 2 2
1—(p(t)—tgo(t)zl—5—tq)(t)>5—5—O, (2.5)
and for f > 1, because of ¢'(t) <0 (t = 1)
: 3_2
—o(t)—te’ (1) = 1 Sl (2.6)

Hence g"(t) > 0 on (0,0), and so g’'(t) is strictly increasing. This g(¢) satisfies condi-
tions (i) and (ii) in Theorem 1.4. But, ¢(t) = g(¢)/(tg’(t)) is not monotonic nor t@’(t) is
bounded.

Next, we prepare two more lemmas. Denote by J, the Bessel function of order » of the
first kind. The following lemma is given by L. Lorch and P. Szego, the old version of this
type inequality is due to A. P. Calder6n and A. Zygmund.

LEmMMA 2.4 (see [13]). Suppose v and A satisfy v—A > —1, and |v| > 1/2, A = —1/2 or
v>—1,A>0. Then,

A’

J]” '_i for 0<r < oo, (2.7)

Lemma 2.5 (see[4]). Supposem > 1 and A > 0. Then

J ]m” ’ /Hl’ for 0<r< oo, (2.8)

Now we turn to the proof of Theorem 1.4.

Let ¥ be the space of surface spherical harmonics of degree k on $"~! with dimension
Dy. By the same argument as in [3], one can reduce the proof of Theorem 1.4 to the case
as follows:

Dy

fecy, Qx,y") = z z ak,j(x)Yx,j(y") is a finite sum, (2.9)
k=1 j=1

where {Yy;} (k=1, j =1,2,...,Dy) denotes the complete system of normalized surface
spherical harmonics. Set

Dy 172
= (Z |ak,j(x)|2> , o bilx) = 9 (%) (2.10)
i=1

ay(x)
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Then we get

Dk Dk
D) =1 Qxy) = D ar(x) D bei(x) Yi(y). (2.11)
j=1

k=1 j=1

Note that if we take 0 < ¢ < 1 sufficiently close to 1, then by [3, (4.4), page 230] we have

12
<Z k_sai(x)) < CllQ = mmyxracs-1y =: ClIQI. (2.12)
k=1

By Holder’s inequality, the above estimates, and Fourier transform, we get

2

Dx v )
W& PI; = [ Sa@Xbuw kﬂn )t oty s
n lyl=t = b=
Dy
J (Zk fak(x)> ZkeJ' (Zbi}()@)
k=1 =1 P
> ki NPt

L Tl f(x—CD(Iyl)y’)dy

< clal? Zkfzj |

P st Iyl
< . Yk](y ) , A 2 ﬂ
clalr 3k Zj J. (LM ST C-0(y)y)dy) | de
~clal Yk Z W8 (Y ) (O | F6)de,
k>
1 (2.13)
where
0 1 t ) , Zdt 1/2
i) © = (| 7] [ e o mgondoonar F) L e
So by Lemma 2.1, we only need to show
2
Zj ’—”/”" ;fﬂ)(,?z'i) v @) % <o (215)
Denote
Nt(&—) _ l t]n/2+k71(®(r)|£|) r (2.16)

tho (@(r)ien”*!

In the sequel, we set ¢(t) = ©(t)/(td'(t)) and v = n/2 + k — 1. We note that
p/ 1§10 (@71 (p/1§1)) = (D~ (p/1E1) D" (p/1&]).
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We will treat the following two cases. (A) ®(¢) is positive and increasing, and (B) O(t)
is positive and decreasing. We do not need to treat the case where ®(¢) is negative.

(A) We treat first the case where @(¢) is positive and increasing. Setting p = ®(r)|&],
we have

(1) ,
Ni(&) = H Tk 1(p) -1y ( P )dp

0 pn/271 |_€| m

2.17
_ qu’mm Ju2rk-1(p) dp (217)
t Jo prat gD (@1 (p/1E]))
Setting s = @(t)[£], we have

" 2dt (@@ (S1ED) | [ Twzik-1(p) dp 2 ds

L IN(D)] t‘L o-1(s/1))> Do p2  E (@1 (p/IED) | s
, (2.18)

* Jn2+k-1(p) dp ds

s .

® 1
_Mjo O-1(s/ &) 1 o pr2t E|D (@1 (p/1€]))

Since Jup4k-1(p) >0 for 0 < p <n/2+k—1 and ®(t) is positive and increasing on
(0,00), together with Lemma 2.5 and p/|&[®" (D~ (p/[&])) = p(D~(p/1&]) D (p/1&]),
we have, for 0 < s < v,

* Jnek-1(p) dp ’
o pr2 Tl E|D (D 1p/|E])
e (o (e]
- (% ;de>s®l(|2|)||¢||oo < W

To treat the case where s is big, we fix ¢ with 0 < ¢ < min{1/4,8}. Then, by
Lemma 2.2(1), @ !(p/|&])/p? is increasing on (0,c0). We consider the two cases where
@' (t) is increasing and decreasing on (0, ).

(A1) The case where @’ (¢) is decreasing.

(Al-1) For 0 < s <, by (2.19), we have

* Jnssk=1(p) dp D 1(s/1€]) 1

o p |£|®,(®,1(P/|£|))‘5C ¢ maik-noe (220
(A1-2)
* Ju2rk-1(p) dp ’< " Juaik-1(p) dp ‘
o pl (@1 (p/IED) LT et [EID (D (p/1E))
+‘ * Jnark-1(p) dp ‘ (2.21)

pr2=t o (01 (p/1El))
=1L +1.
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By (A1-1) and using the increasingness of ®~!(p/|&1)/p, we know that
o1 (v/I€1) 1 Q! (s/1€1) 1

Ve (n/2+k—1)n2-e =C s¢ (n/2+k—1)m2-—e

I <C (2.22)

As for I, since p'=¢/|E|®' (D (p/|€])) is positive and increasing, by using the second
mean-value theorem, and Lemma 2.4, we get, for some v <s’ <s

o | [Tz (p) p'~cdp ’: *Twaeka(p) ‘ st
’ v pvre [EO (D1 (p/1E)) ¢ pre Plor @ (v1E) E
_ C s/|€| sl’fq),l(i)
T2+ k=12 @ (D7L(s/1E])) D (/1ED) s €]
O (s/ 1
< gl D 2
(2.23)
(A2) The case where @' (¢) is increasing.
(A2-1) For 0 < s < v, the same conclusion as (A1-1) holds:
* Juark-1(p) d/p O !(s/1€]) 1
ot B @ paE)) | = s k- 32
(A2-2) Forv< s < 2v,
* Jna+k-1(p) dp ’ | [ Jwzek-1(p) dp ‘
o pr2l GO (D (p/IEl)) | T 1o pr2tt €10 (@1 (p/1E]))
N * Ju2rk-1(p) dp ‘ (2.25)
v pr2ml E (@1 (p/1€))
=L +L.
By (A2-1) and using the increasingness of @~ (p/|&1)/p¢, we know that
-1 -1
R R 1 O 26

e (n/2+k—1)m2-¢ ™ s kn/2=e
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As for I, by using the second mean-value theorem twice, and Lemma 2.4, we get, for
somev <s <5’ <s,

o | [Tz (p) p'dp ‘
’ prr=e [E|0 (@71 (p/I€]))
_ | [ T2k (p) dp sl—e
¢ pvre (D1 (p/18])) | IE]
S Jupk-1(p) ‘ sl-e
_ d (2.27)
o pr Plo@ (/18 IE
- C s'/1€&] sl‘sq),1< s )
T2+ k= 1) @ (O (s/1E])) D (s/IEL) 8 €]
-1
e 1
© 2tk
(A2-3) For 2v < s < 73,
* Jn2k-1(p) dp ' - 2 Jnsk-1(p) dp ‘
o pt [EO (@ (p/IEN) | T 1) pr2mt E[D (@1 (p/IE]))
> Junsk-1(p) dp ‘ (2.28)
w  p2t GO (D (p/1E]))
=13 +14.
By (A2-2) and using the increasingness of ®~(p/|€|)/p, we see that
—1 -1
I3sC(D (2v/1€]) 1 <C(D (s/1€1) 1 (2.29)

(2v)e (n/2+k—-1)v2-¢ "~ ¢ (n/2+k—1)m2-¢

As for Iy, since |],(x)| < 1 (see [14, page 406]), it is easy to see that ], (p)| < |],—1(p) —
Jyi1(p)1/2 < 1 (seealso [14, pages 45 and 406]). Hence, noting that p/|&|®" (O~ (p/|&])) =
(D1 (p/1€1) D (p/1€1), we get

JS Jos2ek1(P) dp
2 pD271 (p2 —92) €| D7 (D1 (p/1§]))
’ Juak-1(P) @' (p/1€1) -1
= O (p/ d
@J—zlv (pZET)/i R "
S olle (*
= s Lv pn=D/2=¢ (p2 — 32) dp
O/ 1

<C

s€ k(n+1)/2 _ S'
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On the other hand, since r2/r"~1/2=¢(y2 — 92) is decreasing on [27, %), by using the
second mean-value theorem twice, we have, for some 2y <s’ <s” <s,

J Y Pl (P) dp
2y pr=1271(p2 — 92) [E] D" (D1 (p/IE]))
_ r Jojvk1(P) 1 @' (p/1E])
2y pln=1/2727¢(p2 —92) @ (D1 (p/[§])) L (p/18])  1€lpe
I 2v/1¢|
= J, ik O o G =) (07 6 oD
O~ (s/1€1)
s¢ '
(2.31)
Hence, we have
S Pl (p) dp O '(s/1€1) 1
Jo e e ey | <€ @
Thus by (2.30), (2.32), and the fact that
L(p) 1, (p) pl, (p)
P2 _p(yﬁl)/z(pz —2) pn=172(p2 —92)’ (2.33)
we get
O I(s/1E]) 1
Ii< C— " e (2.34)
(A2-4) For v* < s,
* Ju2k-1(p) dp ' - i Ju2rk-1(p) dp ‘
o p2t O (D (p/1EN) 1T T p2l €l (D1 (p/1E]))
N * Juwask-1(p) dp ‘ (2.35)
wo p2l o E (@ (p/1€]))
=I5+ .
By (A2-3) and using the increasingness of ®~!(p/|&])/p¢, we see that
O 1(»/IEl) 1 Q1 (s/1E]) 1
Is<C ) ke <C - e (2.36)
Using the following inequality (see [14, page 447]):
2/m 1
|]v(x)| =< (2_—1}2)1/4, forx>v> E, (237)
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we see that |, (p)] < C/yp for p > 2v. Hence

I - * Junrk-1(p) p/1€] (Dil(P/lE')dp
Tl prme (@1 (p/IE)) L (p/IE) e
O (s/1€]) (* 1
=C s€ Jnﬁ Pn/2—s+1/2 dp (2'38)
O (s/1E) 1
=C s€ fn/2—¢”

Here, in the last inequality we have used 0 < € < 1/4. By (2.19), (A1-1), (A1-2) and (A2-
1)—(A2-4) above, we have, in the case ®(¢) is positive and increasing,

P o o] L)l
JO |Nt(£)| t SCJO (k_l)n+2 s +C M 528kn—2£+52£kn+1—28 s SCkn' (239)

(B) Next we consider the case ®(¢) is positive and decreasing. In this case, from the
monotonicity of @’ (¢), it follows that @'(¢) is nondecreasing. We take ¢ > 0 so that € <
min(1/4,8). So, by Lemma 2.2(2), we have *®~1(¢) is decreasing on (0, ).

Setting p = @(r)|&|, we have

_ LT Taaek-1(p) dp
Ni(§) = th P EO (O (p/IED)” (240)

Setting s = ®(¢)[£], we have

N adt (@@ USIEN) | [ Twark-1(p) dp 2 ds

‘L NS t_L -1(s/|€])° ‘ prat gD (D (p/1El)) | s
L, (241)

* Ju2+k-1(p) dp ds

® 1
SMJO o-1(s/|E))* 1 )s  p2 T € (@ (p/El) | s

(B-1) The case v < s < 0. Since —1/®' (D~ (p/|£])) is positive and decreasing, for any
h > s, we have, by using the second mean-value theorem and Lemma 2.4

" Loprrk-1(p) dp ‘
s opl o gl (@1 (p/1El))
_ h,]n/2+k—1(,0)dp 1 ’
s oprl T (0 (s/1€D)) (2.42)
B C s/|E| Q! (s/[€])
T 2+ k- 1) (D1(s/1E])) [0 (s/1E]) s
_ Cliglls @' (s/1€1)
= fn2-1 s ’
Letting h — oo, we get
® Jn2rk—1 d Cllglle @ (s/1€]
R ey | < e e
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(B-2) The case 0 < s < v. We have

‘ * Jua+k-1(p) dp ‘
p2=t 1€l (@1 (p/1E]))
Y Jasr+k=1(p) dp ’ ® J2rk-1(p) dp
) et [l (01 (p/1El)) v p2ml o [E (D1 (p/1E))
=1L +D.

(2.44)

By (B-1) and the decreasingness of t*®~!(¢/|£]), we see that

O (v/IE]) 1 c .. o
L<C . T = qiyive” O (v/E]) < e O 1(s/[E)). (2.45)

As for I, since J21k-1(p) >0 for 0 < p < n/2+k — 1 and t##®~1(¢) is positive and decreas-
ing on (0, %), together with Lemma 2.4 and p/[&|®" (! (p/|&])) = (D1 (p/1&])) D (p/
I€]), we get

Y Jns+k-1(p) p/1€] 1 P
I = oL
! ‘ pve o (@1 (p/1E])) 1 (p/1E]) P <|€|>d’)‘
- et (S| [ Tmek-1(p)
~liglas® (|£|) e | (2.46)

oo ()
Skn/2+£5q) |£| )

Thus, using (B-1) and (B-2) we obtain

) v 2e o
JO |Nt(f)|2ﬂsC s?¢ ds J 1 ds

1
" L s <C— (2.47)

y S2kn=2 s kn

Therefore, in both cases (A) and (B) by the fact Z]D:"l |Yk,j(§")1? = wIDg ~ k"2 (see
[15, (2.6), page 255]), where w denotes the area of $"~!, we get

Dy [
> [ N @)1 < ok (2.49)
-1

Thus, inequality (2.15) holds and the proof of Theorem 1.4 is finished.

3. Proof of Theorem 1.7

We will give the proof of Theorem 1.7.
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First, we know that ug” (f)(x) < 233 (f)(x). On the other hand,

s (NI
Amiq Q(y,2) , Zdydt

Jnﬂwﬂ <t+|x yl) to lel<t |z|n=o fly=o(lzl)z)dz frtl dx
An 1 Q(y,2) L |Pdydt
J Jn<t”J[Rn(t+|x yl) d) t“J\z\q zin-e 4 7= @(l2l)2)dz| ==

SC”.”Q’ f)”z

(3.1)

Hence, we only need to give the estimates for yg"’( f). Similarly as (2.13), we get
iy <f>||z<cnm|22kszj W)@V IfOIrE 62

k=1
where

1

t
2 L LH p0—1p=i®()E-y Yi, (Yo (y')dr

Zdt 1/2
" ) R CE)

ub ) = ([

By Lemma 2.1, we have

L o008y, (do(yydr = L [ po-1 wzek-1(PWIED o
to JO JASyHr le y Yk,](y Ydo(y")dr = o Jor 1 (q)(r)|£|)n/271 drYk,J(f )-
(3.4)

For any o > 0, if we take 0 < € < min{1/4,00}, then we see by Lemma 2.2 that [®~!(¢)]°/t¢
is strictly increasing on (0, c0). Thus, Theorem 1.7 follows from repeating the steps in the
proof of Theorem 1.4.

References

[1] L. Tang and D. Yang, “Boundedness of singular integrals of variable rough Calder6n-Zygmund
kernels along surfaces,” Integral Equations and Operator Theory, vol. 43, no. 4, pp. 488-502,
2002.

[2] Q. Xue and K. Yabuta, “L2-boundedness of Marcinkiewicz integrals along surfaces with variable
kernels,” Scientiae Mathematicae Japonicae, vol. 63, no. 3, pp. 369-382, 2006.

[3] A.P. Calderén and A. Zygmund, “On a problem of Mihlin,” Transactions of the American Math-
ematical Society, vol. 78, no. 1, pp. 209-224, 1955.

[4] N.E. Aguilera and E. O. Harboure, “Some inequalities for maximal operators,” Indiana Univer-
sity Mathematics Journal, vol. 29, no. 4, pp. 559-576, 1980.

[5] E. M. Stein, “On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz,” Transactions of
the American Mathematical Society, vol. 88, no. 2, pp. 430-466, 1958.

[6] Y. Ding, D. Fan, and Y. Pan, “Weighted boundedness for a class of rough Marcinkiewicz inte-
grals,” Indiana University Mathematics Journal, vol. 48, no. 3, pp. 1037-1055, 1999.

[7] Y. Ding, D. Fan, and Y. Pan, “L?-boundedness of Marcinkiewicz integrals with Hardy space
function kernels,” Acta Mathematica Sinica, vol. 16, no. 4, pp. 593-600, 2000.



14 Journal of Inequalities and Applications

[8] D. Fanand S. Sato, “Weak type (1,1) estimates for Marcinkiewicz integrals with rough kernels,”
Tohoku Mathematical Journal, vol. 53, no. 2, pp. 265-284, 2001.
[9] Y. Ding, C.-C. Lin, and S. Shao, “On the Marcinkiewicz integral with variable kernels,” Indiana
University Mathematics Journal, vol. 53, no. 3, pp. 805-821, 2004.
[10] H. M. Al-Qassem, “On weighted inequalities for parametric Marcinkiewicz integrals,” Journal of
Inequalities and Applications, vol. 2006, Article ID 91541, 17 pages, 2006.
[11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math-
ematical Series, no. 32, Princeton University Press, Princeton, NJ, USA, 1971.
[12] Q.Xue and K. Yabuta, “Correction and addition to “L?-boundedness of Marcinkiewicz integrals
along surfaces with variable kernels”)” Scientiae Mathematicae Japonicae, vol. 65, no. 2, pp. 291—
298, 2007.
[13] L.Lorch and P. Szego, “A singular integral whose kernel involves a Bessel function,” Duke Math-
ematical Journal, vol. 22, no. 3, pp. 407-418, 1955.
[14] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, London,
UK, 2nd edition, 1966.
[15] A.P. Calderén and A. Zygmund, “On singular integrals with variable kernels,” Applicable Anal-
ysis, vol. 7, no. 3, pp. 221-238, 1978.

Qingying Xue: School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
Email address: qyxue@bnu.edu.cn

K6z6 Yabuta: School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1,
Sanda 669-1337, Japan
Email address: yabuta@ksc.kwansei.ac.jp


mailto:qyxue@bnu.edu.cn
mailto:yabuta@ksc.kwansei.ac.jp

	1. Introduction
	2. Proof of [thm1]Theorem 1.4
	3. Proof of [thm2]Theorem 1.7
	References

