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1. Introduction

Hausdorff measure and packing measure are two of the most important fractal measures
used in studying fractal sets (see [1–5]). They also yield Hausdorff dimension dim and
packing dimension Dim, whose main properties are the following.

Property 1.1 (monotonicity). E1 ⊂ E2⇒ dim (E1)≤ dim(E2), Dim(E1)≤Dim(E2).

Property 1.2 (σ-stability). dim(
⋃

n En)≤ supndim(En), Dim(
⋃

n En)≤ supnDim(En).

Not all dimension indices are σ-stable. For example, upper box dimensionΔ and lower
box dimension δ are not σ-stable. These two indices can be yielded from the upper and
lower Minkowski contents M∗s and Ms∗. We know that the Minkowski contents are not
outer measures as they are not countably subadditive. It is known that themodified upper

box dimension ̂Δ and the modified lower box dimension ̂δ are dimension indices which
satisfy Properties 1.1 and 1.2. However, until now no measures have been constructed

that yield ̂Δ and ̂δ. In the first part of this paper, we construct two Borel regular measures
�∗s and �s∗. The properties of these two new measures, many of which mirror those of

packing measure, are studied. We show that they yield ̂Δ and ̂δ, respectively.
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The first result about the Hausdorff dimension of the Cartesian product of sets in
Euclidean space was obtained by Besicovitch and Moran [6]. Readers can also consult
the book of Falconer [2] for a good survey. In [5], Tricot gives a complete description of
Hausdorff and packing dimensions as follows:

dim(E) +dim(F)≤ dim(E×F)≤ dim(E) +Dim(F)

≤Dim(E×F)≤Dim(E) +Dim(F).
(1.1)

Connecting to ̂δ, Xiao [7] proves the following result:

̂δ(E) +Dim(F)≤Dim(E×F). (1.2)

In this paper, we first prove the following inequality:

̂δ(E) + ̂δ(F)≤ ̂δ(E×F)≤ ̂δ(E) +Dim(F). (1.3)

As a consequence, we have the following inequality:

̂δ(E) + ̂δ(F)≤ ̂δ(E×F)≤ ̂δ(E) +Dim(F)≤Dim(E×F)≤Dim(E) +Dim(F). (1.4)

We also show that the inequality dim(E×F)≤ dim(E) + ̂δ(F) does not hold.
On the other hand, Haase [8] studies the dimension of product measures and obtains

the following result:

dim(μ) +dim(ν)≤ dim(μ× ν)≤ dim(μ) +Dim(ν)

≤Dim(μ× ν)≤Dim(μ) +Dim(ν).
(1.5)

Using the properties of �s∗, here we prove a new inequality as follows:

̂δ(μ) + ̂δ(ν)≤ ̂δ(μ× ν)≤ ̂δ(μ) +Dim(ν)≤Dim(μ× ν)≤Dim(μ) +Dim(ν). (1.6)

2. Background

Let us first recall some basic properties of Hausdorff measure, Hausdorff dimension,
packing measure, packing dimension, Minkowski contents, box dimensions, and mod-
ified box dimensions.

Let U be a nonempty subset of Rn. As usual, one may define the diameter of U as

|U| = sup
{|x− y| : x, y ∈U

}

. (2.1)

Let E be a subset of Rn and s > 0. For δ > 0, define

�s
δ(E)= inf

{ ∞
∑

i=1

∣

∣Ei
∣

∣

s
: E ⊂

⋃

i

Ei,
∣

∣Ei
∣

∣≤ δ

}

. (2.2)

It is easy to check that �s
δ is an outer measure on Rn.
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We define the s-dimensional Hausdorff measure of E by

�s(E)= lim
δ→0

�s
δ(E). (2.3)

It is known that �s is a Borel regular measure (see Stein and Shakarchi [9, Chapter 7]).
The Hausdorff dimension of E can be defined as

dim(E)= inf
{

s > 0 : �s(E)= 0
}= sup

{

s > 0 : �s(E) > 0
}

. (2.4)

Define

Ps
δ(E)= sup

{ ∞
∑

i=1

∣

∣2ri
∣

∣

s
: B
(

xi,ri
)

s are pairwisely disjoint, xi ∈ E, ri < δ

}

, (2.5)

where B(x,r) is the closed ball centered at x with radius r. Then the premeasure Ps(E) of
E is defined as (see Tricot [5])

Ps(E)= lim
δ→0

Ps
δ(E). (2.6)

It is known that Ps(E) is not an outer measure since it fails to be countably subadditive.
However, the s-dimensional packing measure of E, which is a Borel regular measure, can
be defined as

�s(E)= inf

{ ∞
∑

i=1
Ps
(

Ei
)

: E ⊂
⋃

i

Ei

}

. (2.7)

The packing dimension of E is defined by

Dim(E)= inf
{

s > 0 : �s(E)= 0
}= sup

{

s > 0 : �s(E) > 0
}

. (2.8)

If E is a bounded subset in Rn, for ε > 0, denote

E(ε)= {x ∈Rn : d(x,E)≤ ε
}

, (2.9)

which is called a closed ε-neighborhood of E. Associating to ε, one may also define the
covering number

N(E,ε)=min

{

k : E ⊂
k
⋃

i=1
B
(

xi,ε
)

}

, (2.10)

and the packing number

P(E,ε)=max
{

k : there are disjoint balls B
(

xi,ε
)

, i= 1, . . . ,k, xi ∈ E
}

. (2.11)
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The s-dimensional upper and lower Minkowski contents of bounded set E are defined
by

M∗s(E)= limsup
ε↓0

{

(2ε)s−n�n
(

E(ε)
)}

,

Ms
∗(E)= liminf

ε↓0
{

(2ε)s−n�n
(

E(ε)
)}

,
(2.12)

where ε ↓ 0 and �n are the Lebesgue measures on Rn.
Thus we can define the upper and lower box dimensions by

Δ(E)= inf
{

s :M∗s(E)= 0
}= sup

{

s :M∗s(E) > 0
}

,

δ(E)= inf
{

s :Ms
∗(E)= 0

}= sup
{

s :Ms
∗(E) > 0

}

.
(2.13)

It is known that Minkowski contents are not outer measures as they are not countable
subadditive, and the indices Δ,δ are not σ-stable (see, e.g., Tricot [5], Falconer [1]). We

can obtain σ-stable indices ̂Δ and ̂δ, which are called the modified upper and lower box
dimensions, by letting

̂Δ(E)= inf

{

sup
i
Δ
(

Ei
)

: E ⊂
⋃

i

Ei, Eis are bounded

}

,

̂δ(E)= inf

{

sup
i
δ
(

Ei
)

: E ⊂
⋃

i

Ei, Eis are bounded

}

.

(2.14)

In [5], Tricot proves that Dim= ̂Δ, and Falconer [1] shows that for any set E ⊂Rn,

0≤ dim(E)≤ ̂δ(E)≤ ̂Δ(E)=Dim(E)≤ n. (2.15)

In order to prove the results in this paper, the following two auxiliary lemmas are
needed, which can be found by Mattila in [3, Lemmas 5.4 and 5.5].

Lemma 2.1. N(E,2ε)≤ P(E,ε)≤N(E,ε/2) for any subset E of Rn.

Lemma 2.2. P(E,ε)anεn ≤�n(E(ε))≤N(E,ε)an(2ε)
n, where an =�n(B(0,1)).

The following lemma is from [1, Example 7.8].

Lemma 2.3. There exist sets E,F ⊂R with δ(E)= δ(F)= 0 and dim(E×F)≥ 1.

For reader’s convenience, we give the example as follows.
Let 0 =m0 < m1 < ··· be a rapidly increasing sequence of integers satisfying a con-

dition to be specified below. Let E be a set of real numbers in [0,1] with zero in the rth
decimal place whenever mk + 1 ≤ r ≤mk+1 with k = 2�, � ∈ Z+. Similarly, let F be a set
of real numbers with zero in the rth decimal place if mk + 1≤ r ≤mk+1 with k = 2� + 1,
� ∈ Z+. Looking at the firstmk+1 decimal places for even k, there is an obvious cover of E
by 10 jk intervals of length 10−mk+1 , where

jk =
(

m2−m1
)

+
(

m4−m3
)

+ ···+ (mk −mk−1
)

. (2.16)
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Then log10 jk /− log10−mk+1 = jk/mk+1 which tends to 0 as k→∞ provided that themk are
chosen to increase sufficiently rapidly. So we have δ(E)= 0. Similarly, δ(F)= 0.

If 0 < w < 1, then we can write w = x + y, where x ∈ E and y ∈ F; just take the rth
decimal digit of w from E if mk +1≤ r ≤mk+1 and k is odd and from F if k is even. The
mapping f :R2→R given by f (x, y)= x+ y is easily seen to be Lipschitz, so

dim(E×F)≥ dim f (E×F)≥ dim
(

(0,1)
)= 1 (2.17)

by [1, Corollary 2.4(a)].
The following lemma summarizes some of the basic properties ofMinkowski contents.

Lemma 2.4. LetMs be one ofM∗s andMs∗, then for bounded sets E, F, {Ei},
(i) Ms(∅)= 0;
(ii) Ms is monotone: E1 ⊂ E2⇒Ms(E1)≤Ms(E2);
(iii) Ms(E)=Ms(E);
(iv) assume that s < t. If Ms(E) <∞, then Mt(E) = 0. Moreover, if Mt(E) > 0, then

Ms(E)=∞;
(v) M∗s(E∪F)≤M∗s(E) +M∗s(F), Ms∗(

⋃

i Ei)≥
∑

iM
s∗(Ei) for d(Ei,Ej) > c > 0, i 
=

j;
(vi) if E = {x}, thenM0(E)= 2−nan, Ms(E)= 0, s > 0;
(vii) if 0 < �n(E) <∞, thenMn(E)=�n(E), Ms(E)=∞, s < n.

Proof. (i), (ii) are trivial. (iii) follows from E(ε)= E(ε). (iv) derives from the equality

(2ε)s−n�n
(

E(ε)
)= (2ε)s−t(2ε)t−n�n

(

E(ε)
)

. (2.18)

(v) The first inequality is obvious.
We have d(Ei(ε),Ej(ε)) > 0 for i 
= j when 0 < 2ε < c, thus

Ms
∗

(

⋃

i

Ei

)

= liminf
ε↓0

{

(2ε)s−n�n

((

⋃

i

Ei

)

(ε)

)}

= liminf
ε↓0

{

(2ε)s−n
∑

i

�n
(

Ei(ε)
)

}

≥
∑

i

liminf
ε↓0

{

(2ε)s−n�n
(

Ei(ε)
)}=

∑

i

Ms
∗
(

Ei
)

.

(2.19)

(vi) Follows from (2ε)s−n�n(x(ε))= an(2ε)s−nεn = 2s−nanεs.
(vii) Holds since

lim
ε↓0

(2ε)n−n�n
(

E(ε)
)=�n(E),

lim
ε↓0
{

(2ε)s−n�n
(

E(ε)
)}≥ lim

ε↓0
(2ε)s−n�n(E)=∞ for s < n.

(2.20)

�

3. The dimensions of product sets

In this section, we give a formula about dimensions of product sets. First let us state a
lemma from Bishop and Peres [10, Lemma 2.1].
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Lemma 3.1. Let E be a subset of a separable metric space, with ̂δ(E) > α (or Dim(E) >

α). Then there is a (relatively closed) nonempty subset F of E, such that ̂δ(F ∩V) > α (or
Dim(F ∩V) > α) for any open set V which intersects F.

Theorem 3.2. For any subsets E, F of Rn,

̂δ(E) + ̂δ(F)≤ ̂δ(E×F)≤ ̂δ(E) +Dim(F)≤Dim(E×F)≤Dim(E) +Dim(F). (3.1)

Proof. (i) First we prove the first inequality. Here we modify the proof of Theorem 4.1 in
[7], where E is Borel set and F is compact.

It suffices to show that

̂δ(E×F)≥ α+β (3.2)

for any α < ̂δ(E), β < ̂δ(F).
By Lemma 3.1, there exist closed sets Eα ⊂ E, Fβ ⊂ F such that

̂δ
(

Eα∩V
)

> α, ̂δ
(

Fβ∩W
)

> β (3.3)

for any open sets V , W , where V ∩Eα 
= ∅,W ∩Fβ 
= ∅.
For any ε > 0, we may find bounded {Gn} with Eα×Fβ ⊂

⋃

nGn, and for any n,

δ
(

Gn
)≤ ̂δ(Eα×Fβ

)

+ ε ≤ ̂δ(E×F) + ε. (3.4)

Since δ(Gn) = δ(Gn), we may take Gn to be closed and Gn ∩ (Eα × Fβ) 
= ∅. By Baire’s
category theorem, we know that there exist n and an open set U which intersects Eα×Fβ
such that U ∩ (Eα×Fβ)⊂Gn. Therefore, we may find open sets V ,W such that V ×W ⊂
U and (V ×W)∩ (Eα×Fβ) 
= ∅, then we have

(

Eα∩V
)× (Fβ∩W

)⊂Gn, (3.5)

hence

α+β ≤ ̂δ(Eα∩V
)

+ ̂δ
(

Fβ∩W
)

≤ δ
(

Eα∩V
)

+ δ
(

Fβ∩W
)

≤ δ
((

Eα∩V
)× (Fβ∩W

))

≤ δ
(

Gn
)≤ ̂δ(E×F) + ε,

(3.6)

the third inequality follows from the definitions of the upper and lower box dimensions.
Since ε is arbitrary, (3.2) follows immediately.
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(ii) Now let us turn to the second inequality. Suppose E ⊂⋃i Ei, F ⊂
⋃

i Fi, Eis and Fis
are bounded, then E×F ⊂⋃i, j(Ei×Fi), thus

̂δ(E×F)= inf
E×F⊂⋃l Vl

{

sup
l
δ
(

Vl
)

: E×F ⊂
⋃

l

Vl,Vls are bounded

}

≤ inf
E×F⊂⋃i, j

(

Ei×Fj

)

{

sup
i, j

δ
(

Ei×Fj
)

: E×F ⊂
⋃

i, j

(

Ei×Fj
)

}

≤ inf

{

sup
i, j

(

δ
(

Ei
)

+Δ
(

Fj
))

: E ⊂
⋃

i

Ei, F ⊂
⋃

j

F j

}

≤ inf

{

sup
i
δ
(

Ei
)

: E ⊂
⋃

i

Ei

}

+ inf

{

sup
j
Δ
(

Fj
)

: F ⊂
⋃

j

F j

}

= ̂δ(E) + ̂Δ(F),

(3.7)

the second inequality above follows from the definitions of the upper and lower box di-
mensions.

(iii) The proof of the third inequality is similar to (i).
(iv) The last one can be referred to Tricot [5, Theorem 3]. �

Remark 3.3. (a) One may ask whether dim(E × F) ≤ dim(E) + ̂δ(F) holds or not. By
Lemma 2.3, we know that there exist sets E,F ⊂ R with δ(E) = δ(F) = 0 and dim(E×
F)≥ 1. Hence,

dim(E×F) > δ(E) + δ(F)≥ dim(E) + δ(F)≥ dim(E) + ̂δ(F). (3.8)

(b) As a consequence of (2.15) and Theorem 3.2, one has

dim(E) +dim(F)≤ dim(E×F)≤ ̂δ(E×F)≤ ̂δ(E) +Dim(F)

≤Dim(E×F)≤Dim(E) +Dim(F).
(3.9)

4. �∗s, �s∗, and their dimensionsD, d

It is known that the Minkowski contents are not outer measures since they fail to be
countably subadditive. In fact, we may derive this assertion directly from Lemma 2.4.
Consider s= 1 and E =Q∩ [0,1], the set of rational numbers in [0,1]. By Lemma 2.4, we
know thatM1(E)=M1([0,1])=1 andM1({q})=0 for any q ∈ E, thus

∑

q∈EM1({q})=0.
We use a standard procedure and define

�∗s(E)= inf

{ ∞
∑

i=1
M∗s(Ei

)

: E =
⋃

i

Ei, Eis are bounded

}

,

�s
∗(E)= inf

{ ∞
∑

i=1
Ms
∗
(

Ei
)

: E =
⋃

i

Ei, Eis are bounded

}

.

(4.1)
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Theorem 4.1. Let �s be one of �∗s and �s∗, then
(i) �s is an outer measure;
(ii) �s is metric: d(E,F) > 0⇒�s(E∪F)=�s(E) +�s(F);
(iii) �s is a Borel measure;
(iv) �s is Borel regular: for all E ⊂ Rn, there is a Borel set B ⊃ E such that �s(B) =

�s(E);
(v) �s(E)≤Ms(E) for bounded set E;
(vi) �s(En)→�s(E) for any sequence of sets En ↑ E;
(vii) if E is �s-measurable, 0 < �s(E) <∞, and ε > 0, there exists a closed set F ⊂ E such

that �s(F) > �s(E)− ε;
(viii) for any E,

�∗s(E)= inf
{

lim
n→∞M

∗s(En
)

: En ↑ E, Ens are bounded
}

. (4.2)

Proof. LetMs be one ofM∗s andMs∗.
(i) �s(∅) = 0 and that �s is monotone are obvious, so it suffices to verify that �s

is countably subadditive. Suppose that E =⋃i Ei, for any ε > 0, there exist bounded sets
{Eij} such that Ei =

⋃

j Ei j ,
∑

j M
s(Eij) < �s(Ei) + ε/2i, thus

E =
⋃

i

Ei =
⋃

i

⋃

j

Ei j ,

�s(E)≤
∑

i

∑

j

Ms
(

Eij
)≤

∑

i

(

�s
(

Ei
)

+
ε

2i

)

=
∑

i

�s
(

Ei
)

+ ε.
(4.3)

So we have �s(E)≤∑i�s(Ei) by the arbitrariness of ε.
(ii) Assume that E∪F =∑i Ai, Ais are bounded, then

∑

i

Ms
(

Ai
)=

∑

E∩Ai 
=∅
Ms
(

Ai
)

+
∑

F∩Ai 
=∅
Ms
(

Ai
)

, (4.4)

thus

inf
∑

i

Ms
(

Ai
)≥ inf

∑

E∩Ai 
=∅
Ms
(

Ai
)

+ inf
∑

F∩Ai 
=∅
Ms
(

Ai
)

, (4.5)

so we have

�s(E∪F)≥�s(E) +�s(F), (4.6)

the opposite inequality holds since �s is an outer measure by (i).
(iii) Follows from (ii) by Falconer [2, Theorem 1.5].
(iv) We haveMs(E)=Ms(E) by (iii) of Lemma 2.4, thus

�s(E)= inf

{ ∞
∑

i=1
Ms
(

Bi
)

: E ⊂
⋃

i

Bi, Bis are closed and bounded

}

. (4.7)
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For i= 1,2, . . . , choose closed sets Bi1,Bi2, . . . , such that

E ⊂
⋃

j

Bi j ,
∞
∑

j=1
Ms
(

Bij
)≤�s(E) +

1
i
. (4.8)

Then B =⋂i

⋃

j Bi j is a Borel set such that E ⊂ B and �s(E)=�s(B).
(v) Is obvious by the definition of �s.
(vi) Since En ↑ E, we know that lim�s(En) exists and is ≤�s(E) by the monotonicity

of �s. By (iv), there exists Borel set Fi ⊃ Ei with �s(Fi)=�s(Ei), that is, �s(Fi\Ei)= 0.
Let

Bn =
n
⋃

i=1
Fi, B =

⋃

n

Bn, (4.9)

then Bns are Borel sets with Bn ↑ B, En ⊂ Bn. Furthermore, we have

�s
(

Bn
)=�s

( n
⋃

i=1
Fi

)

=�s
(

Fn
)

+�s

((n−1
⋃

i=1
Fi

)

∖

Fn

)

≤�s
(

En
)

+
n−1
∑

i=1
�s
(

Fi En
)

≤�s
(

En
)

+
n−1
∑

i=1
�s
(

Fi\Ei
)=�s

(

En
)

,

(4.10)

hence

�s(E)≥ lim
n→∞�s

(

En
)= lim

n→∞�s
(

Bn
)=�s(B)≥�s(E) (4.11)

by the fact that

E =
⋃

n

En ⊂
⋃

n

Bn = B. (4.12)

(vii) Let E be �s-measurable, then there exists a Borel set B ⊃ E with �s(B)=�s(E),
that is, �s(B\E)= 0.We can find a Borel set B1 ⊃ (B\E) with �s(B1)= 0, then B2 = B\B1

is Borel, B2 ⊂ E, and �s(B2)=�s(E). By [3, Theorem 1.9 and Corollary 1.11], we know
that �s|B2, the restriction of measure �s to B2, is a Radon measure, thus is an inner
regular measure since 0 < �s(E) =�s(B2) <∞, so there exists a closed set F ⊂ B2 such
that �s|B2 (F) > �s|B2 (B2)− ε which gives �s(F) > �s(B2)− ε =�s(E)− ε.

(viii) The proof is the same as that of [4, Lemma 5.1(vii)]. �

Corollary 4.2. For any subset E of Rn,

�s(E)= inf

{ ∞
∑

i=1
Ms
(

Ei
)

: E ⊂
⋃

i

Ei, Eis are bounded Borel sets

}

. (4.13)

Proof. We denote the right-hand side of the above equality by μ(E), then �s(E) ≤ μ(E)
follows from the definition of �s(E) and �s(E)≥ μ(E) follows from (4.7). �
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Corollary 4.3. Let B be Borel set of Rn, then

�s(B)= inf

{ ∞
∑

i=1
Ms
(

Bi
)

: B =
⋃

i

Bi, Bis are disjoint bounded Borel sets

}

. (4.14)

Proof. From (4.7), we have

�s(B)= inf

{ ∞
∑

i=1
Ms
(

Fi
)

: B ⊂
⋃

i

Fi, Fis are closed and bounded

}

, (4.15)

then Ei = Fi∩B is a bounded Borel set and B =⋃i Ei. Take

B1 = E1, B2 = E2\B1, . . . ,Bn = En

∖

(n−1
⋃

i=1
Bi

)

, . . . , (4.16)

then {Bi} are disjoint bounded Borel sets and B =⋃i Bi, so we have

�s(B)≥ inf

{ ∞
∑

i=1
Ms
(

Bi
)

: B =
⋃

i

Bi, Bis are disjoint bounded Borel sets

}

(4.17)

by the fact that Bi ⊂ Fi.
The opposite inequality holds by the definition of �s. �

Theorem 4.4. For any subset E of Rn, the following inequality holds:

2−s−nan�s(E)≤�s
∗(E)≤�∗s(E)≤ 2san�s(E). (4.18)

Proof. The assertion �s∗(E)≤�∗s(E) is trivial. We first prove the right-hand inequality,
by Lemmas 2.1 and 2.2, for all bounded set B ⊂Rn,

M∗s(B)= limsup
ε↓0

{

(2ε)s−n�n
(

B(ε)
)}

≤ limsup
ε↓0

{

(2ε)s−nN(B,ε)an(2ε)n
}

≤ limsup
ε↓0

{

2sanP
(

B,
ε

2

)

εs
}

≤ 2san limsup
ε↓0

Ps
ε(B)≤ 2sanPs(B),

(4.19)

thus

�∗s(E)= inf

{ ∞
∑

i=1
M∗s(Ei

)

: E =
⋃

i

Ei, Eis are bounded

}

≤ inf

{ ∞
∑

i=1
2sanPs

(

Ei
)

: E =
⋃

i

Ei, Eis are bounded

}

= 2san�s(B).

(4.20)
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The following is the proof of the left-hand side of the inequality. By Lemmas 2.1 and
2.2, we have for any bounded subset B ⊂Rn,

Ms
∗(B)= liminf

ε↓0
{

(2ε)s−n�n
(

B(ε)
)}

≥ liminf
ε↓0

{

(2ε)s−nP(B,ε)anεn
}

≥ liminf
ε↓0

{

2s−nanN(B,2ε)εs
}

= 2−n−san liminf
ε↓0

{

N(B,2ε)(4ε)s
}

≥ 2−n−san liminf
ε↓0

�s
4ε(B)= 2−n−san�s(B).

(4.21)

There exists a Borel set F such that E ⊂ F,�s∗(E)=�s∗(F) since �s∗ is Borel regular.
By Corollary 4.3, we have

�s
∗(F)= inf

{ ∞
∑

i=1
Ms
∗
(

Fi
)

: F =
⋃

i

Fi, Fis are disjoint bounded Borel sets

}

≥ 2−n−san inf

{ ∞
∑

i=1
�s
(

Fi
)

: F =
⋃

i

Fi, Fis are disjoint bounded Borel sets

}

= 2−n−san�s(F)≥ 2−n−san�s(E).
(4.22)

We complete the proof of the theorem. �

From Theorem 4.4 and its proof, we have the following corollary.

Corollary 4.5. For any bounded subset E of Rn, one has

2−s−nan�s(E)≤�s
∗(E)≤Ms

∗(E)≤M∗s(E)≤ 2sanPs(E). (4.23)

Now we can define two fractal dimensions from �∗s and �s∗ as follows:

d(E)= inf
{

s : �s
∗(E)= 0

}= sup
{

s : �s
∗(E)=∞

}

,

D(E)= inf
{

s : �∗s(E)= 0
}= sup

{

s : �∗s(E)=∞}.
(4.24)

Thus by Theorem 4.4 and Corollary 4.5, we have

dim(E)≤ d(E)≤D(E)≤Dim(E)≤ Δ(E),

dim(E)≤ d(E)≤ δ(E)≤ Δ(E).
(4.25)

In fact, we have the following formulas.

Theorem 4.6. For any subset E of Rn,
(1) D(E)=Dim(E),
(2) d(E)= ̂δ(E).
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Proof. (1) It suffices to prove D(E)≥Dim(E). If Dim(E) > t, E =⋃i Ei, Eis are bounded,
then supiΔ(Ei) > t by the equivalent definition of Dim(E) as follows:

Dim(E)= inf

{

sup
i
Δ
(

Ei
)

: E ⊂
⋃

i

Ei, Eis are bounded

}

. (4.26)

So there exists an i0 such that Δ(Ei0 ) > t, thenM∗t(Ei0 )=∞ which implies that �∗t(E)=
∞, so we have D(E)≥ t, thus D(E)≥Dim(E).

(2) The proof of d(E)≥ ̂δ(E) is the same as that of (1). It suffices to prove ̂δ(E)≥ d(E).
If t > ̂δ(E), then there exist bounded sets {Ei} such that E = ⋃i Ei and t > supi δ(Ei) ≥
δ(Ei) for any i by the definition of ̂δ as follows:

̂δ(E)= inf

{

sup
i
δ
(

Ei
)

: E ⊂
⋃

i

Ei, Eis are bounded

}

. (4.27)

So we have Mt∗(Ei) = 0 for any i, thus �t∗(E) ≤
∑∞

i=1Mt∗(Ei) = 0 which implies that

d(E)≤ t, then we have ̂δ(E)≥ d(E). �

5. The dimensions of product measures

Let μ, ν be Borel probability measures on Rn, μ× ν denotes the unique product mea-
sure. If α denotes any dimension index for a set, then for a measure μ, the corresponding
dimension index α(μ) is defined by

α(μ)= inf
{

α(E) : μ(E) > 0, E is a Borel set
}

. (5.1)

From the above definition, we have

0≤ dim(μ)≤ ̂δ(μ)≤ ̂Δ(μ)=Dim(μ)≤ n (5.2)

for any Borel probability meausre μ on Rn.
Haase [8] studies the dimension of product measures in terms of dim and Dim, here

we discuss the case in terms of ̂δ and Dim. In this section, we will restrict discussion toR2

in order to simplify notation, all our results have obvious analogs in higher dimensions.
Suppose that E ⊂ R2 and let A be a subset of the x-axis. For a ∈ A, denote Ea = E∩

{(x, y) : x = a}. Define E1
a(ε) to be the 1-dimensional closed ε-neighborhood of Ea on the

direction of y-axis. For example, if Ea = {(x, y) : x = a, 1≤ y ≤ 2}, then E1
a(ε)= {(x, y) :

x = a, 1− ε ≤ y ≤ 2+ ε}. Denote a(ε) to be the 1-dimensional closed ε-neighborhood of
a on x-axis, that is, a(ε)= {(x, y) : a− ε ≤ x ≤ a+ ε, y = 0}.
Theorem 5.1. Let E be a subset in R2 and let A be any subset of the x-axis. Suppose that if
x ∈ A, �t∗(Ex) > c for some constant c. Then �s+t∗ (E)≥ 2s+t−2c�s∗(A).

Proof. For any bounded sets {Ei} with E =⋃i Ei, we have Ex = (
⋃

i Ei)x =
⋃

i(Ei)x.
For x ∈ A, we have �t∗(Ex) > c, which means that

c < �t
∗
(

Ex
)≤

∞
∑

i=1
Mt
∗
((

Ei
)

x

)=
∞
∑

i=1
liminf

ε↓0

{

εt−1�1
(

(

E1
i

)

x

(

ε

2

))}

, (5.3)
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so we have

inf
x∈A

∞
∑

i=1
liminf

ε↓0

{

εt−1�1
(

(

E1
i

)

x

(

ε

2

))}

> c, (5.4)

then

∞
∑

i=1
Ms+t
∗
(

Ei
)=

∞
∑

i=1
liminf

ε↓0
{

(2ε)s+t−2�2(Ei(ε)
)}

≥
∞
∑

i=1
liminf

ε↓0

{

(2ε)s+t−2�2

(

⋃

x∈A

((

Ei
)

x(ε)
)

)}

≥
∞
∑

i=1
liminf

ε↓0

{

(2ε)s+t−2�2

(

⋃

x∈A

(

(

E1
i

)

x

(

ε

2

)

× x
(

ε

2

))

)}

≥ 2s+t−2 inf
x∈A

∞
∑

i=1
liminf

ε↓0

{

εs−1�1

(

⋃

x∈A
x
(

ε

2

)

)

εt−1�1
(

(

E1
i

)

x

(

ε

2

))

}

≥ 2s+t−2 inf
x∈A

∞
∑

i=1
liminf

δ↓0

{

δs−1�1
(

A
(

δ

2

))}

liminf
ε↓0

{

εt−1�1
(

(

E1
i

)

x

(

ε

2
)
)}

=2s+t−2 liminf
δ↓0

{

δs−1�1
(

A
(

δ

2

))}

inf
x∈A

∞
∑

i=1
liminf

ε↓0

{

εt−1�1
(

(

E1
i

)

x

(

ε

2

))

}

.

(5.5)

The last line of the above inequality is bounded below by 2s+t−2cMs∗(A). Hence, we have

�s+t
∗ (E)≥ 2s+t−2c�s

∗(A) (5.6)

sinceMs∗(A)≥�s∗(A) and by the arbitrariness of {Ei}. �

Lemma 5.2. For any subset E in R2, one has

�s+t
∗ (E)≥ 2s+t−2

∫

�t
∗
(

Ex
)

d�s
∗(x). (5.7)

Proof. For any ε > 0, there exists a sequence 0 < c1 < ··· < cn < ··· such that
∫

�t
∗
(

Ex
)

d�s
∗ − ε <

∑

n

cn�s
∗
({

x : cn < �t
∗
(

Ex
)≤ cn+1

})

. (5.8)

Let An = {x : cn < �t∗(Ex) ≤ cn+1}, En =
⋃{Ex : x ∈ An} for all n. By Theorem 5.1, we

have

2s+t−2
(∫

�t
∗
(

Ex
)

d�s
∗ − ε

)

<
∑

n

2s+t−2cn�s
∗
(

An
)≤

∑

n

�s+t
∗
(

En
)=�s+t

∗ (E). (5.9)
�

Theorem 5.3. Let E be a subset in R2 and let A be any subset of the x-axis. Suppose that if
x ∈ A, �t∗(Ex) > c for some constant c. Then �s+t(E)≥ (c/2)�s(A).
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Proof. For x ∈ A, we haveMt∗(Ex) > c, which means that

liminf
ε↓0

{

(2ε)t−1�1(Ex(ε)
)}

> c, (5.10)

so there exists δx > 0 such that (2ε)t−1�1(Ex(ε)) > c when 0 < ε < δx.
Let δ > 0 and Aδ = {x ∈ A : (2ε)t−1�1(Ex(ε)) > c, 0 < ε < δ}, then Aδ1 ⊂ Aδ2 as δ1 > δ2,

which implies that Aδ ↑ A as δ ↓ 0. Hence for ε > 0, there exists δ(ε) > 0 such that for all
δ ≤ δ(ε),

�s
(

Aδ
)

> �s(A)− ε (5.11)

by the continuity of the measure �s. Let us first prove that

Ps+t(E)≥ c

2
�s(A). (5.12)

By the definitions of Ps and �s, we have

Ps
r

(

Aδ
)≥ Ps

(

Aδ
)≥�s

(

Aδ
)≥�s(A)− ε (5.13)

for all r > 0 and δ ≤ δ(ε), so Ps
r(Aδ) > �s(A)− ε holds for r < δ ≤ δ(ε), thus there exists a

family of disjoint closed intervals {Ii} centered at Aδ and |Ii| ≤ 2r for all i, say Ii has the
center xi ∈ Aδ ⊂A, such that

∑

i |Ii|s > �s(A)− ε.
For each xi ∈Aδ ,|Ii|/2≤ r < δ, so we have

∣

∣Ii
∣

∣

t−1
�1

(

Exi

(∣

∣Ii
∣

∣

2

))

> c, (5.14)

thus

N

(

Exi ,

∣

∣Ii
∣

∣

2

)

a1
∣

∣Ii
∣

∣

∣

∣Ii
∣

∣

t−1
>
∣

∣Ii
∣

∣

t−1
�1

(

Exi

(∣

∣Ii
∣

∣

2

))

> c, (5.15)

by Lemma 2.2 where a1 = 2. Since the covering number and the packing number agree
on the real line Exi , so we have

2P

(

Exi ,

∣

∣Ii
∣

∣

2

)

∣

∣Ii
∣

∣

t
> c. (5.16)

More precisely, there exist P(Exi ,|Ii|/2) disjoint closed intervals, centered at Exi , whose
each length is |Ii| such that P(Exi ,|Ii|/2)|Ii|t > c/2. Let {yi j} with j = 1,2, . . . ,P(Exi ,|Ii|/2)
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be the centers of these intervals. Then all the balls centered at (xi, yi j), with radius |Ii|/2 <
r, are disjoint which implies that they form a r-packing of E. Thus

Ps+t
r (E)≥

∞
∑

i=1
P
(

Exi ,

∣

∣Ii
∣

∣

2

)

∣

∣Ii
∣

∣

s+t

=
∞
∑

i=1

(

P
(

Exi ,

∣

∣Ii
∣

∣

2

)

∣

∣Ii
∣

∣

t
)

∣

∣Ii
∣

∣

s

>
c

2

∞
∑

i=1

∣

∣Ii
∣

∣

s ≥ c

2

(

�s(A)− ε
)

.

(5.17)

It follows that

Ps+t(E)≥ c

2
�s(A). (5.18)

By Taylor and Tricot [4, Lemma 5.1], one has

�s+t(E)= inf
{

lim
n→∞P

s+t(En
)

: En
�

⏐E
}

. (5.19)

For any En ↑ E, let

An =
{

x ∈ A : �t
∗
((

En
)

x

)

> c
}

, (5.20)

then by our intermediate result,

Ps+t(En
)≥ c

2
�s
(

An
)

, (5.21)

we have

lim
n→∞P

s+t(En
)≥ c

2
lim
n→∞�s

(

An
)

. (5.22)

Finally it suffices to verify that
⋃

nAn =A. First, En ⊂ En+1 implies thatAn ⊂ An+1. For any
x ∈ A, we have �t∗(Ex) > c, since

⋃

n(En)x = Ex, and by the continuity of �t∗ there exists
n0 such that �t∗(En0 )x > c, which implies that x ∈An0 , thus

lim
n→∞P

s+t(En
)≥ c

2
�s(A) (5.23)

by the continuity of �s, then

�s+t(E)≥ c

2
�s(A) (5.24)

by the arbitrariness of {En}. �

Remark 5.4. It is easy to see that [8, Lemma 5] is a corollary of Theorem 5.3 with only a
different constant c since �t∗(E)≥ 2−t�t(E) by Theorem 4.4.
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Lemma 5.5. For any subset E in R2, one has

�s+t(E)≥ 1
2

∫

�t
∗
(

Ex
)

d�s(x). (5.25)

Proof. By Theorem 5.3, the proof is similar to that of Lemma 5.2. �

Now we are in a position to prove the following inequality.

Theorem 5.6. For Borel probability measures μ,ν on R2, one has the following inequality:

̂δ(μ) + ̂δ(ν)≤ ̂δ(μ× ν)≤ ̂δ(μ) +Dim(ν)≤Dim(μ× ν)≤Dim(μ) +Dim(ν). (5.26)

Proof. (i) By Lemma 5.2, the proof of the first inequality is similar to that of [8, Lemma 1].
(ii) The proof of the second inequality: for any ε > 0, choose Borel subsets E, F of Rn

with

̂δ(E) < ̂δ(μ) +
ε

2
, μ(E) > 0,

Dim(F) <Dim(ν) +
ε

2
, ν(F) > 0,

(5.27)

then μ× ν(E×F) > 0, and we have

̂δ(μ× ν)≤ ̂δ(E×F)≤ ̂δ(E) +Dim(F) < ̂δ(μ) +Dim(ν) + ε, (5.28)

the second inequality above follows from Theorem 3.2, hence

̂δ(μ× ν)≤ ̂δ(μ) +Dim(ν). (5.29)

(iii) By Lemma 5.5, the proof of the third inequality is similar to that of [8, Lemma 7].
(iv) The last inequality is similar to that of [8, Lemma 3]. �

Remark 5.7. By a result of Tricot [5], we know that Dim= ̂Δ. Therefore, the conclusion
of Theorem 5.6 can be rewritten as

̂δ(μ) + ̂δ(ν)≤ ̂δ(μ× ν)≤ ̂δ(μ) + ̂Δ(ν)≤ ̂Δ(μ× ν)≤ ̂Δ(μ) + ̂Δ(ν). (5.30)
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