Research Article
 Bessel's Differential Equation and Its Hyers-Ulam Stability

Byungbae Kim and Soon-Mo Jung

Received 23 August 2007; Accepted 25 October 2007
Recommended by Panayiotis D. Siafarikas

We solve the inhomogeneous Bessel differential equation and apply this result to obtain a partial solution to the Hyers-Ulam stability problem for the Bessel differential equation.

Copyright © 2007 B. Kim and S.-M. Jung. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In 1940, Ulam gave a wide ranging talk before the Mathematics Club of the University of Wisconsin, in which he discussed a number of important unsolved problems (see [1]). Among those was the question concerning the stability of homomorphisms: let G_{1} be a group and let G_{2} be a metric group with a metric $d(\cdot, \cdot)$. Given any $\delta>0$, does there exist an $\varepsilon>0$ such that if a function $h: G_{1} \rightarrow G_{2}$ satisfies the inequality $d(h(x y), h(x) h(y))<\varepsilon$ for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \rightarrow G_{2}$ with $d(h(x), H(x))<\delta$ for all $x \in G_{1}$?

In the following year, Hyers [2] partially solved the Ulam problem for the case where G_{1} and G_{2} are Banach spaces. Furthermore, the result of Hyers has been generalized by Rassias (see [3]). Since then, the stability problems of various functional equations have been investigated by many authors (see [4-6]).

We will now consider the Hyers-Ulam stability problem for the differential equations: assume that X is a normed space over a scalar field \mathbb{K} and that I is an open interval, where \mathbb{K} denotes either \mathbb{R} or \mathbb{C}. Let $a_{0}, a_{1}, \ldots, a_{n}: I \rightarrow \mathbb{K}$ be given continuous functions, let $g: I \rightarrow X$ be a given continuous function, and let $y: I \rightarrow X$ be an n times continuously differentiable function satisfying the inequality

$$
\begin{equation*}
\left\|a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)+g(t)\right\| \leq \varepsilon \tag{1.1}
\end{equation*}
$$

for all $t \in I$ and for a given $\varepsilon>0$. If there exists an n times continuously differentiable function $y_{0}: I \rightarrow X$ satisfying

$$
\begin{equation*}
a_{n}(t) y_{0}^{(n)}(t)+a_{n-1}(t) y_{0}^{(n-1)}(t)+\cdots+a_{1}(t) y_{0}^{\prime}(t)+a_{0}(t) y_{0}(t)+g(t)=0 \tag{1.2}
\end{equation*}
$$

and $\left\|y(t)-y_{0}(t)\right\| \leq K(\varepsilon)$ for any $t \in I$, where $K(\varepsilon)$ is an expression of ε with $\lim _{\varepsilon \rightarrow 0} K(\varepsilon)=$ 0 , then we say that the above differential equation has the Hyers-Ulam stability. For more detailed definitions of the Hyers-Ulam stability, we refer the reader to [4-8].

Alsina and Ger were the first authors who investigated the Hyers-Ulam stability of differential equations. They proved in [9] that if a differentiable function $f: I \rightarrow \mathbb{R}$ is a solution of the differential inequality $\left|y^{\prime}(t)-y(t)\right| \leq \varepsilon$, where I is an open subinterval of \mathbb{R}, then there exists a solution $f_{0}: I \rightarrow \mathbb{R}$ of the differential equation $y^{\prime}(t)=y(t)$ such that $\left|f(t)-f_{0}(t)\right| \leq 3 \varepsilon$ for any $t \in I$.

This result of Alsina and Ger has been generalized by Takahasi et al. They proved in [10] that the Hyers-Ulam stability holds true for the Banach space valued differential equation $y^{\prime}(t)=\lambda y(t)$ (see also $\left.[11,12]\right)$.

Moreover, Miura et al. [13] investigated the Hyers-Ulam stability of nth order linear differential equation with complex coefficients. They [14] also proved the HyersUlam stability of linear differential equations of first order, $y^{\prime}(t)+g(t) y(t)=0$, where $g(t)$ is a continuous function. Indeed, they dealt with the differential inequality $\| y^{\prime}(t)+$ $g(t) y(t) \| \leq \varepsilon$ for some $\varepsilon>0$.

Recently, Jung proved the Hyers-Ulam stability of various linear differential equations of first order (see [15-18]) and further investigated the general solution of the inhomogeneous Legendre differential equation and its Hyers-Ulam stability (see [14, 19]).

In Section 2 of this paper, by using the ideas from [19], we investigate the general solution of the inhomogeneous Bessel differential equation of the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+\left(x^{2}-v^{2}\right) y(x)=\sum_{m=0}^{\infty} a_{m} x^{m} \tag{1.3}
\end{equation*}
$$

where the parameter v is a given positive nonintegral number. Section 3 will be devoted to a partial solution of the Hyers-Ulam stability problem for the Bessel differential equation (2.1) in a subclass of analytic functions.

2. Inhomogeneous Bessel equation

A function is called a Bessel function if it satisfies the Bessel differential equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+\left(x^{2}-v^{2}\right) y(x)=0 . \tag{2.1}
\end{equation*}
$$

The Bessel equation plays a great role in physics and engineering. In particular, this equation is most useful for treating the boundary-value problems exhibiting cylindrical symmetries.

In this section, we define

$$
\begin{equation*}
c_{m}=-\sum_{i=0}^{[m / 2]} a_{m-2 i} \prod_{j=0}^{i} \frac{1}{v^{2}-(m-2 j)^{2}} \tag{2.2}
\end{equation*}
$$

for each $m \in\{0,1,2, \ldots\}$, where $[m / 2]$ denotes the largest integer not exceeding $m / 2$, and we refer to (1.3) for the a_{m} 's. We can easily check that c_{m} 's satisfy

$$
\begin{align*}
a_{0} & =-v^{2} c_{0}, \quad a_{1}=-\left(\nu^{2}-1\right) c_{1}, \\
a_{m+2} & =c_{m}-\left(\nu^{2}-(m+2)^{2}\right) c_{m+2} \tag{2.3}
\end{align*}
$$

for any $m \in\{0,1,2, \ldots\}$.
Lemma 1. (a) If the power series $\sum_{m=0}^{\infty} a_{m} x^{m}$ converges for all $x \in(-\rho, \rho)$ with $\rho>1$, then the power series $\sum_{m=0}^{\infty} c_{m} x^{m}$ with c_{m} 's given in (2.2) satisfies the inequality $\left|\sum_{m=0}^{\infty} c_{m} x^{m}\right| \leq$ $C_{1} /(1-|x|)$ for some positive constant C_{1} and for any $x \in(-1,1)$.
(b) If the power series $\sum_{m=0}^{\infty} a_{m} x^{m}$ converges for all $x \in(-\rho, \rho)$ with $\rho \leq 1$, then for any positive $\rho_{0}<\rho$, the power series $\sum_{m=0}^{\infty} c_{m} x^{m}$ with c_{m} 's given in (2.2) satisfies the inequality $\left|\sum_{m=0}^{\infty} c_{m} x^{m}\right| \leq C_{2}$ for any $x \in\left(-\rho_{0}, \rho_{0}\right)$ and for some positive constant C_{2} which depends on ρ_{0}. Since ρ_{0} is arbitrarily close to ρ, this means that $\sum_{m=0}^{\infty} c_{m} x^{m}$ is convergent for all $x \in(-\rho, \rho)$.

Proof. (a) Since the power series $\sum_{m=0}^{\infty} a_{m} x^{m}$ is absolutely convergent on its interval of convergence, with $x=1, \sum_{m=0}^{\infty} a_{m}$ converges absolutely, that is, $\sum_{m=0}^{\infty}\left|a_{m}\right|<M_{1}$ by some number M_{1}. Suppose that $p<\nu<p+1$ for some integer p. Then for any nonnegative integer $q, 1 /\left|\nu^{2}-q^{2}\right|=1 /|\nu+q| 1 /|\nu-q|$ is less than 1 except, possibly, for $q=p$ and $q=p+1$. Therefore,

$$
\begin{equation*}
\prod_{j=0}^{i} \frac{1}{\left|v^{2}-(m-2 j)^{2}\right|} \leq \max \left\{\frac{1}{\left|v^{2}-p^{2}\right|}, \frac{1}{\left|v^{2}-(p+1)^{2}\right|}\right\}=M_{2} \tag{2.4}
\end{equation*}
$$

for any m and i. Now,

$$
\begin{equation*}
\left|c_{m}\right| \leq \sum_{i=0}^{[m / 2]}\left|a_{m-2 i}\right| \prod_{j=0}^{i} \frac{1}{\left|v^{2}-(m-2 j)^{2}\right|} \leq \sum_{i=0}^{[m / 2]}\left|a_{m-2 i}\right| M_{2} \leq M_{1} M_{2}=C_{1} \tag{2.5}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
\left|\sum_{m=0}^{\infty} c_{m} x^{m}\right| \leq \sum_{m=0}^{\infty}\left|c_{m}\right|\left|x^{m}\right| \leq C_{1} \sum_{m=0}^{\infty}\left|x^{m}\right| \leq \frac{C_{1}}{1-|x|} \tag{2.6}
\end{equation*}
$$

for $x \in(-1,1)$.

4 Journal of Inequalities and Applications
(b) The power series $\sum_{m=0}^{\infty} a_{m} x^{m}$ is absolutely convergent on its interval of convergence, and, therefore, for any given $\rho_{0}<\rho$, the series $\sum_{m=0}^{\infty}\left|a_{m} x^{m}\right|$ is convergent on $\left[-\rho_{0}, \rho_{0}\right]$ and

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left|a_{m}\right||x|^{m} \leq \sum_{m=0}^{\infty}\left|a_{m}\right| \rho_{0}^{m}=M_{3} \tag{2.7}
\end{equation*}
$$

for any $x \in\left[-\rho_{0}, \rho_{0}\right]$.
Also for $m \geq p+2$, if we let $M_{2}^{\prime}=\max \left\{1, M_{2}\right\}$, then

$$
\begin{equation*}
\prod_{j=0}^{i} \frac{1}{\left|\nu^{2}-(m-2 j)^{2}\right|} \leq \frac{1}{\left|\nu^{2}-m^{2}\right|} M_{2}^{\prime} \leq \frac{1}{(m-p-1)^{2}} M_{2}^{\prime} \tag{2.8}
\end{equation*}
$$

Now,

$$
\begin{align*}
\left|\sum_{m=p+2}^{\infty} c_{m} x^{m}\right| & =\left|-\sum_{m=p+2}^{\infty} x^{m} \sum_{i=0}^{[m / 2]} a_{m-2 i} \prod_{j=0}^{i} \frac{1}{v^{2}-(m-2 j)^{2}}\right| \\
& \leq \sum_{m=p+2}^{\infty} \sum_{i=0}^{[m / 2]}\left|a_{m-2 i}\right| \rho_{0}^{m} \frac{1}{(m-p-1)^{2}} M_{2}^{\prime} \\
& \leq \sum_{m=p+2}^{\infty} \frac{1}{(m-p-1)^{2}} \sum_{i=0}^{[m / 2]}\left|a_{m-2 i}\right| \rho_{0}^{m-2 i} M_{2}^{\prime} \tag{2.9}\\
& \leq \sum_{m=p+2}^{\infty} \frac{1}{(m-p-1)^{2}} M_{3} M_{2}^{\prime} \\
& =\sum_{k=1}^{\infty} \frac{1}{k^{2}} M_{3} M_{2}^{\prime} \leq 2 M_{3} M_{2}^{\prime}
\end{align*}
$$

and, therefore, if $\left|\sum_{m=0}^{p+1} c_{m} x^{m}\right| \leq \sum_{m=0}^{p+1} \sum_{i=0}^{[m / 2]}\left|a_{m-2 i}\right| \rho_{0}^{m-2 i} M_{2} \leq(p+2) M_{3} M_{2}$, then

$$
\begin{equation*}
\left|\sum_{m=0}^{\infty} c_{m} x^{m}\right| \leq(p+2) M_{2} M_{3}+2 M_{2}^{\prime} M_{3}=\left[(p+2) M_{2}+2 M_{2}^{\prime}\right] M_{3}=C_{2} \tag{2.10}
\end{equation*}
$$

for all $x \in\left(-\rho_{0}, \rho_{0}\right)$.
Lemma 2. Suppose that the power series $\sum_{m=0}^{\infty} a_{m} x^{m}$ converges for all $x \in(-\rho, \rho)$ with some positive ρ. Let $\rho_{1}=\min \{1, \rho\}$. Then the power series $\sum_{m=0}^{\infty} c_{m} x^{m}$ with c_{m} 's given in (2.2) is convergent for all $x \in\left(-\rho_{1}, \rho_{1}\right)$. Further, for any positive $\rho_{0}<\rho_{1},\left|\sum_{m=0}^{\infty} c_{m} x^{m}\right| \leq C$ for any $x \in\left(-\rho_{0}, \rho_{0}\right)$ and for some positive constant C which depends on ρ_{0}.

Proof. The first statement follows from the latter statement. Therefore, let us prove the latter statement. If $\rho \leq 1$, then $\rho_{1}=\rho$. By Lemma 1 (b), for any positive $\rho_{0}<\rho=\rho_{1}$, $\left|\sum_{m=0}^{\infty} c_{m} x^{m}\right| \leq C_{2}$ for $x \in\left(-\rho_{0}, \rho_{0}\right)$ and for some positive constant C_{2} which depends on ρ_{0}.

If $\rho>1$, then by Lemma $1(\mathrm{a})$, for any positive $\rho_{0}<1=\rho_{1}$,

$$
\begin{equation*}
\left|\sum_{m=0}^{\infty} c_{m} x^{m}\right| \leq \frac{C_{1}}{1-|x|}<\frac{C_{1}}{1-\rho_{0}}=C \tag{2.11}
\end{equation*}
$$

for $x \in\left(-\rho_{0}, \rho_{0}\right)$ and for some positive constant C which depends on ρ_{0}.
Using these definitions and the lemmas above, we will show that $\sum_{m=0}^{\infty} c_{m} x^{m}$ is a particular solution of the inhomogeneous Bessel equation (1.3).

Theorem 2.1. Assume that v is a given positive nonintegral number and the radius of convergence of the power series $\sum_{m=0}^{\infty} a_{m} x^{m}$ is ρ. Let $\rho_{1}=\min \{1, \rho\}$. Then, every solution $y:\left(-\rho_{1}, \rho_{1}\right) \rightarrow \mathbb{C}$ of the differential equation (1.3) can be expressed by

$$
\begin{equation*}
y(x)=y_{h}(x)+\sum_{m=0}^{\infty} c_{m} x^{m} \tag{2.12}
\end{equation*}
$$

where $y_{h}(x)$ is a Bessel function and c_{m} 's are given by (2.2).
Proof. We show that $\sum_{m=0}^{\infty} c_{m} x^{m}$ satisfies (1.3). By Lemma 2, the power series $\sum_{m=0}^{\infty} c_{m} x^{m}$ is convergent for each $x \in\left(-\rho_{1}, \rho_{1}\right)$.

Substituting $\sum_{m=0}^{\infty} c_{m} x^{m}$ for $y(x)$ in (1.3) and collecting like powers together, we have

$$
\begin{align*}
& x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+\left(x^{2}-v^{2}\right) y(x) \\
&=-v^{2} c_{0}-\left(v^{2}-1\right) c_{1} x+\sum_{m=0}^{\infty}\left[c_{m}-\left(v^{2}-(m+2)^{2}\right) c_{m+2}\right] x^{m+2} \tag{2.13}\\
&=a_{0}+a_{1} x+\sum_{m=0}^{\infty} a_{m+2} x^{m+2}=\sum_{m=0}^{\infty} a_{m} x^{m}
\end{align*}
$$

for all $x \in\left(-\rho_{1}, \rho_{1}\right)$ by (2.3).
Therefore, every solution $y:\left(-\rho_{1}, \rho_{1}\right) \rightarrow \mathbb{C}$ of the differential equation (1.3) can be expressed by

$$
\begin{equation*}
y(x)=y_{h}(x)+\sum_{m=0}^{\infty} c_{m} x^{m} \tag{2.14}
\end{equation*}
$$

where $y_{h}(x)$ is a Bessel function.

3. Partial solution to Hyers-Ulam stability problem

In this section, we will investigate a property of the Bessel differential equation (2.1) concerning the Hyers-Ulam stability problem. That is, we will try to answer the question whether there exists a Bessel function near any approximate Bessel function.

Theorem 3.1. Let $y:(-\rho, \rho) \rightarrow \mathbb{C}$ be a given analytic function which can be represented by a power-series expansion centered at $x=0$. Suppose there exists a constant $\varepsilon>0$ such that

$$
\begin{equation*}
\left|x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+\left(x^{2}-v^{2}\right) y(x)\right| \leq \varepsilon \tag{3.1}
\end{equation*}
$$

6 Journal of Inequalities and Applications

for all $x \in(-\rho, \rho)$ and for some positive nonintegral number v. Let $\rho_{1}=\min \{1, \rho\}$. Suppose, further, that $x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+\left(x^{2}-v^{2}\right) y(x)=\sum_{m=0}^{\infty} a_{m} x^{m}$ satisfies

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left|a_{m} x^{m}\right| \leq K\left|\sum_{m=0}^{\infty} a_{m} x^{m}\right| \tag{3.2}
\end{equation*}
$$

for all $x \in(-\rho, \rho)$ and for some constant K. Then there exists a Bessel function $y_{h}:\left(-\rho_{1}, \rho_{1}\right) \rightarrow$ \mathbb{C} such that

$$
\begin{equation*}
\left|y(x)-y_{h}(x)\right| \leq C \varepsilon \tag{3.3}
\end{equation*}
$$

for all $x \in\left(-\rho_{0}, \rho_{0}\right)$, where $\rho_{0}<\rho_{1}$ is any positive number and C is some constant which depends on ρ_{0}.

Proof. We assumed that $y(x)$ can be represented by a power series and

$$
\begin{equation*}
x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+\left(x^{2}-v^{2}\right) y(x)=\sum_{m=0}^{\infty} a_{m} x^{m} \tag{3.4}
\end{equation*}
$$

also satisfies

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left|a_{m} x^{m}\right| \leq K\left|\sum_{m=0}^{\infty} a_{m} x^{m}\right| \leq K \varepsilon \tag{3.5}
\end{equation*}
$$

for all $x \in(-\rho, \rho)$ from (3.1).
According to Theorem 2.1, y can be written as $y_{h}+\sum_{m=0}^{\infty} c_{m} x^{m}$ for $x \in\left(-\rho_{1}, \rho_{1}\right)$, where y_{h} is some Bessel function and c_{m} 's are given by (2.2). Then by Lemmas 1 and 2 and their proofs (replace M_{1} and M_{3} with $K \varepsilon$ in Lemma 1),

$$
\begin{equation*}
\left|y(x)-y_{h}(x)\right|=\left|\sum_{m=0}^{\infty} c_{m} x^{m}\right| \leq C \varepsilon \tag{3.6}
\end{equation*}
$$

for all $x \in\left(-\rho_{0}, \rho_{0}\right)$, where $\rho_{0}<\rho_{1}$ is any positive number and C is some constant which depends on ρ_{0}. This completes the proof of our theorem.

4. Example

In this section, our task is to show that there certainly exist functions $y(x)$ which satisfy all the conditions given in Theorem 3.1.

Example 1. Let $y:(-1,1) \rightarrow \mathbb{R}$ be an analytic function given by

$$
\begin{equation*}
y(x)=J_{1 / 2}(x)+b\left(x^{2}+x^{4}+\cdots+x^{2 n}\right) \tag{4.1}
\end{equation*}
$$

where $J_{1 / 2}(x)$ is the Bessel function of the first kind of order $1 / 2, n$ is a given positive integer, and b is a constant satisfying

$$
\begin{equation*}
0 \leq b \leq\left[\frac{2}{3} n\left(2 n^{2}+3 n+\frac{17}{8}\right)\right]^{-1} \varepsilon \tag{4.2}
\end{equation*}
$$

for some $\varepsilon \geq 0$. Since $J_{1 / 2}(x)$ is a particular solution of the Bessel differential equation (2.1) with $v=1 / 2$, we then have

$$
\begin{equation*}
x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+\left(x^{2}-\frac{1}{4}\right) y(x)=b x^{2 n+2}+\sum_{m=2}^{n}\left[(2 m)^{2}+\frac{3}{4}\right] b x^{2 m}+\frac{15}{4} b x^{2} . \tag{4.3}
\end{equation*}
$$

If we set

$$
a_{m}= \begin{cases}b & \text { for } m=2 n+2 \tag{4.4}\\ \left(m^{2}+\frac{3}{4}\right) b & \text { for } m \in\{4,6, \ldots, 2 n\} \\ \left(\frac{15}{4}\right) b & \text { for } m=2 \\ 0 & \text { otherwise }\end{cases}
$$

then we obtain

$$
\begin{equation*}
x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+\left(x^{2}-\frac{1}{4}\right) y(x)=\sum_{m=0}^{\infty} a_{m} x^{m} \tag{4.5}
\end{equation*}
$$

for all $x \in(-1,1)$. It further follows from (4.2) and (4.4) that

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left|a_{m} x^{m}\right|=\left|\sum_{m=0}^{\infty} a_{m} x^{m}\right| \leq \varepsilon \tag{4.6}
\end{equation*}
$$

for any $x \in(-1,1)$.
Indeed, if we choose the $J_{1 / 2}(x)$ as a Bessel function, then we have

$$
\begin{equation*}
\left|y(x)-J_{1 / 2}(x)\right|=b\left|x^{2}+x^{4}+\cdots+x^{2 n}\right| \leq n b \leq n\left[\frac{2}{3} n\left(2 n^{2}+3 n+\frac{17}{8}\right)\right]^{-1} \varepsilon \tag{4.7}
\end{equation*}
$$

for all $x \in(-1,1)$, which is consistent with the assertion of Theorem 3.1.

References

[1] S. M. Ulam, Problems in Modern Mathematics, John Wiley \& Sons, New York, NY, USA, 1964.
[2] D. H. Hyers, "On the stability of the linear functional equation," Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222-224, 1941.
[3] Th. M. Rassias, "On the stability of the linear mapping in Banach spaces," Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297-300, 1978.
[4] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, Mass, USA, 1998.
[5] D. H. Hyers and Th. M. Rassias, "Approximate homomorphisms," Aequationes Mathematicae, vol. 44, no. 2-3, pp. 125-153, 1992.
[6] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Fla, USA, 2001.
[7] J. Sikorska, "Generalized orthogonal stability of some functional equations," Journal of Inequalities and Applications, vol. 2006, Article ID 12404, 23 pages, 2006.
[8] E. Liz and M. Pituk, "Exponential stability in a scalar functional differential equation," Journal of Inequalities and Applications, vol. 2006, Article ID 37195, 10 pages, 2006.
[9] C. Alsina and R. Ger, "On some inequalities and stability results related to the exponential function," Journal of Inequalities and Applications, vol. 2, no. 4, pp. 373-380, 1998.
[10] S.-E. Takahasi, T. Miura, and S. Miyajima, "On the Hyers-Ulam stability of the Banach spacevalued differential equation $y^{\prime}=\lambda y$," Bulletin of the Korean Mathematical Society, vol. 39, no. 2, pp. 309-315, 2002.
[11] T. Miura, "On the Hyers-Ulam stability of a differentiable map," Scientiae Mathematicae Japonicae, vol. 55, no. 1, pp. 17-24, 2002.
[12] T. Miura, S.-M. Jung, and S.-E. Takahasi, "Hyers-Ulam-Rassias stability of the Banach space valued linear differential equations $y^{\prime}=\lambda y$," Journal of the Korean Mathematical Society, vol. 41, no. 6, pp. 995-1005, 2004.
[13] T. Miura, S. Miyajima, and S.-E. Takahasi, "Hyers-Ulam stability of linear differential operator with constant coefficients," Mathematische Nachrichten, vol. 258, no. 1, pp. 90-96, 2003.
[14] S.-M. Jung, "Hyers-Ulam stability of Butler-Rassias functional equation," Journal of Inequalities and Applications, vol. 2005, no. 1, pp. 41-47, 2005.
[15] S.-M. Jung, "Hyers-Ulam stability of linear differential equations of first order," Applied Mathematics Letters, vol. 17, no. 10, pp. 1135-1140, 2004.
[16] S.-M. Jung, "Hyers-Ulam stability of linear differential equations of first order, II," Applied Mathematics Letters, vol. 19, no. 9, pp. 854-858, 2006.
[17] S.-M. Jung, "Hyers-Ulam stability of linear differential equations of first order, III," Journal of Mathematical Analysis and Applications, vol. 311, no. 1, pp. 139-146, 2005.
[18] S.-M. Jung, "Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients," Journal of Mathematical Analysis and Applications, vol. 320, no. 2, pp. 549-561, 2006.
[19] S.-M. Jung, "Legendre's differential equation and its Hyers-Ulam stability", to appear in Abstract and Applied Analysis.

Byungbae Kim: Mathematics Section, College of Science and Technology, Hong-Ik University, Chochiwon 339-701, South Korea
Email address: bkim@hongik.ac.kr
Soon-Mo Jung: Mathematics Section, College of Science and Technology, Hong-Ik University, Chochiwon 339-701, South Korea
Email address: smjung@hongik.ac.kr

