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1. Introduction

In 1940, Ulam gave a wide ranging talk before the Mathematics Club of the University of
Wisconsin, in which he discussed a number of important unsolved problems (see [1]).
Among those was the question concerning the stability of homomorphisms: let G1 be a
group and let G2 be a metric group with a metric d(·,·) . Given any δ > 0, does there exist
an ε > 0 such that if a function h : G1→G2 satisfies the inequality d(h(xy), h(x)h(y)) < ε
for all x, y ∈ G1, then there exists a homomorphism H : G1→G2 with d(h(x),H(x)) < δ
for all x ∈G1?

In the following year, Hyers [2] partially solved the Ulam problem for the case where
G1 and G2 are Banach spaces. Furthermore, the result of Hyers has been generalized by
Rassias (see [3]). Since then, the stability problems of various functional equations have
been investigated by many authors (see [4–6]).

We will now consider the Hyers-Ulam stability problem for the differential equations:
assume that X is a normed space over a scalar field K and that I is an open interval,
where K denotes either R or C. Let a0,a1, . . . ,an : I→K be given continuous functions,
let g : I→X be a given continuous function, and let y : I→X be an n times continuously
differentiable function satisfying the inequality

∥
∥an(t)y(n)(t) + an−1(t)y(n−1)(t) + ··· + a1(t)y′(t) + a0(t)y(t) + g(t)

∥
∥≤ ε (1.1)



2 Journal of Inequalities and Applications

for all t ∈ I and for a given ε > 0. If there exists an n times continuously differentiable
function y0 : I→X satisfying

an(t)y
(n)
0 (t) + an−1(t)y

(n−1)
0 (t) + ··· + a1(t)y′0(t) + a0(t)y0(t) + g(t)= 0 (1.2)

and ‖y(t)− y0(t)‖≤K(ε) for any t∈I , whereK(ε) is an expression of εwith lim ε→0K(ε)=
0, then we say that the above differential equation has the Hyers-Ulam stability. For more
detailed definitions of the Hyers-Ulam stability, we refer the reader to [4–8].

Alsina and Ger were the first authors who investigated the Hyers-Ulam stability of
differential equations. They proved in [9] that if a differentiable function f : I→R is a
solution of the differential inequality |y′(t)− y(t)| ≤ ε, where I is an open subinterval of
R, then there exists a solution f0 : I→R of the differential equation y′(t)= y(t) such that
| f (t)− f0(t)| ≤ 3ε for any t ∈ I .

This result of Alsina and Ger has been generalized by Takahasi et al. They proved in
[10] that the Hyers-Ulam stability holds true for the Banach space valued differential
equation y′(t)= λy(t) (see also [11, 12]).

Moreover, Miura et al. [13] investigated the Hyers-Ulam stability of nth order lin-
ear differential equation with complex coefficients. They [14] also proved the Hyers-
Ulam stability of linear differential equations of first order, y′(t) + g(t)y(t) = 0, where
g(t) is a continuous function. Indeed, they dealt with the differential inequality ‖y′(t) +
g(t)y(t)‖ ≤ ε for some ε > 0.

Recently, Jung proved the Hyers-Ulam stability of various linear differential equations
of first order (see [15–18]) and further investigated the general solution of the inhomo-
geneous Legendre differential equation and its Hyers-Ulam stability (see [14, 19]).

In Section 2 of this paper, by using the ideas from [19], we investigate the general
solution of the inhomogeneous Bessel differential equation of the form

x2y′′(x) + xy′(x) +
(

x2− ν2
)

y(x)=
∞
∑

m=0
amx

m, (1.3)

where the parameter ν is a given positive nonintegral number. Section 3 will be devoted to
a partial solution of the Hyers-Ulam stability problem for the Bessel differential equation
(2.1) in a subclass of analytic functions.

2. Inhomogeneous Bessel equation

A function is called a Bessel function if it satisfies the Bessel differential equation

x2y′′(x) + xy′(x) +
(

x2− ν2
)

y(x)= 0. (2.1)

The Bessel equation plays a great role in physics and engineering. In particular, this
equation is most useful for treating the boundary-value problems exhibiting cylindrical
symmetries.
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In this section, we define

cm =−
[m/2]
∑

i=0
am−2i

i
∏

j=0

1

ν2− (m− 2 j)2
(2.2)

for eachm∈ {0,1,2, . . .}, where [m/2] denotes the largest integer not exceedingm/2, and
we refer to (1.3) for the am’s. We can easily check that cm’s satisfy

a0 =−ν2c0, a1 =−(ν2− 1)c1,

am+2 = cm−
(

ν2− (m+2)2
)

cm+2
(2.3)

for anym∈ {0,1,2, . . .}.
Lemma 1. (a) If the power series

∑∞
m=0amxm converges for all x ∈ (−ρ,ρ) with ρ > 1, then

the power series
∑∞

m=0cmxm with cm’s given in (2.2) satisfies the inequality |∑∞
m=0cmxm| ≤

C1/(1−|x|) for some positive constant C1 and for any x ∈ (−1,1).
(b) If the power series

∑∞
m=0amxm converges for all x ∈ (−ρ,ρ) with ρ ≤ 1, then for any

positive ρ0 < ρ, the power series
∑∞

m=0cmxm with cm’s given in (2.2) satisfies the inequality
|∑∞

m=0cmxm| ≤ C2 for any x ∈ (−ρ0,ρ0) and for some positive constant C2 which depends
on ρ0. Since ρ0 is arbitrarily close to ρ, this means that

∑∞
m=0cmxm is convergent for all

x ∈ (−ρ,ρ).
Proof. (a) Since the power series

∑∞
m=0amxm is absolutely convergent on its interval of

convergence, with x = 1,
∑∞

m=0am converges absolutely, that is,
∑∞

m=0|am| <M1 by some
number M1. Suppose that p < ν < p + 1 for some integer p. Then for any nonnegative
integer q, 1/|ν2 − q2| = 1/|ν + q|1/|ν− q| is less than 1 except, possibly, for q = p and
q = p+1. Therefore,

i
∏

j=0

1
∣
∣ν2− (m− 2 j)2

∣
∣
≤ max

{

1
∣
∣ν2− p2

∣
∣
,

1
∣
∣ν2− (p+1)2

∣
∣

}

=M2 (2.4)

for anym and i. Now,

∣
∣cm

∣
∣≤

[m/2]
∑

i=0

∣
∣am−2i

∣
∣

i
∏

j=0

1
∣
∣ν2− (m− 2 j)2

∣
∣
≤

[m/2]
∑

i=0

∣
∣am−2i

∣
∣M2 ≤M1M2 = C1 (2.5)

and, therefore,

∣
∣
∣
∣
∣

∞
∑

m=0
cmx

m

∣
∣
∣
∣
∣
≤

∞
∑

m=0

∣
∣cm

∣
∣
∣
∣xm

∣
∣≤ C1

∞
∑

m=0

∣
∣xm

∣
∣≤ C1

1−|x| (2.6)

for x ∈ (−1,1).
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(b) The power series
∑∞

m=0amxm is absolutely convergent on its interval of conver-
gence, and, therefore, for any given ρ0<ρ, the series

∑∞
m=0|amxm| is convergent on [−ρ0,ρ0]

and

∞
∑

m=0

∣
∣am

∣
∣|x|m ≤

∞
∑

m=0

∣
∣am

∣
∣ρm0 =M3 (2.7)

for any x ∈ [−ρ0,ρ0].
Also form≥ p+2, if we letM′

2 =max{1,M2}, then
i
∏

j=0

1
∣
∣ν2− (m− 2 j)2

∣
∣
≤ 1
∣
∣ν2−m2

∣
∣
M′

2 ≤
1

(m− p− 1)2
M′

2. (2.8)

Now,

∣
∣
∣
∣
∣

∞
∑

m=p+2
cmx

m

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
−

∞
∑

m=p+2
xm

[m/2]
∑

i=0
am−2i

i
∏

j=0

1

ν2− (m− 2 j)2

∣
∣
∣
∣
∣

≤
∞
∑

m=p+2

[m/2]
∑

i=0

∣
∣am−2i

∣
∣ρm0

1

(m− p− 1)2
M′

2

≤
∞
∑

m=p+2

1

(m− p− 1)2

[m/2]
∑

i=0

∣
∣am−2i

∣
∣ρm−2i0 M′

2

≤
∞
∑

m=p+2

1

(m− p− 1)2
M3M

′
2

=
∞
∑

k=1

1
k2

M3M
′
2 ≤ 2M3M

′
2,

(2.9)

and, therefore, if |∑p+1
m=0cmxm| ≤

∑p+1
m=0

∑[m/2]
i=0 |am−2i|ρm−2i0 M2 ≤ (p+2)M3M2, then

∣
∣
∣
∣
∣

∞
∑

m=0
cmx

m

∣
∣
∣
∣
∣
≤ (p+2)M2M3 + 2M′

2M3 =
[

(p+2)M2 + 2M′
2

]

M3 = C2 (2.10)

for all x ∈ (−ρ0,ρ0). �

Lemma 2. Suppose that the power series
∑∞

m=0amxm converges for all x ∈ (−ρ,ρ) with some
positive ρ. Let ρ1 =min{1,ρ}. Then the power series

∑∞
m=0cmxm with cm’s given in (2.2) is

convergent for all x ∈ (−ρ1,ρ1). Further, for any positive ρ0 < ρ1, |
∑∞

m=0cmxm| ≤ C for any
x ∈ (−ρ0,ρ0) and for some positive constant C which depends on ρ0.

Proof. The first statement follows from the latter statement. Therefore, let us prove the
latter statement. If ρ ≤ 1, then ρ1 = ρ. By Lemma 1(b), for any positive ρ0 < ρ = ρ1,
|∑∞

m=0cmxm| ≤ C2 for x ∈ (−ρ0,ρ0) and for some positive constant C2 which depends
on ρ0.
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If ρ > 1, then by Lemma 1(a), for any positive ρ0 < 1= ρ1,

∣
∣
∣
∣
∣

∞
∑

m=0
cmx

m

∣
∣
∣
∣
∣
≤ C1

1−|x| <
C1

1− ρ0
= C (2.11)

for x ∈ (−ρ0,ρ0) and for some positive constant C which depends on ρ0. �

Using these definitions and the lemmas above, we will show that
∑∞

m=0cmxm is a par-
ticular solution of the inhomogeneous Bessel equation (1.3).

Theorem 2.1. Assume that ν is a given positive nonintegral number and the radius of
convergence of the power series

∑∞
m=0amxm is ρ. Let ρ1 =min{1,ρ}. Then, every solution

y : (−ρ1,ρ1)→C of the differential equation (1.3) can be expressed by

y(x)= yh(x) +
∞
∑

m=0
cmx

m, (2.12)

where yh(x) is a Bessel function and cm’s are given by(2.2).

Proof. We show that
∑∞

m=0cmxm satisfies (1.3). By Lemma 2, the power series
∑∞

m=0cmxm

is convergent for each x ∈ (−ρ1,ρ1).
Substituting

∑∞
m=0cmxm for y(x) in (1.3) and collecting like powers together, we have

x2y′′(x) + xy′(x) +
(

x2− ν2
)

y(x)

=−ν2c0−
(

ν2− 1
)

c1x+
∞
∑

m=0

[

cm−
(

ν2− (m+2)2
)

cm+2
]

xm+2

= a0 + a1x+
∞
∑

m=0
am+2x

m+2 =
∞
∑

m=0
amx

m

(2.13)

for all x ∈ (−ρ1,ρ1) by (2.3).
Therefore, every solution y : (−ρ1,ρ1)→C of the differential equation (1.3) can be ex-

pressed by

y(x)= yh(x) +
∞
∑

m=0
cmx

m, (2.14)

where yh(x) is a Bessel function. �

3. Partial solution to Hyers-Ulam stability problem

In this section, we will investigate a property of the Bessel differential equation (2.1) con-
cerning the Hyers-Ulam stability problem. That is, we will try to answer the question
whether there exists a Bessel function near any approximate Bessel function.

Theorem 3.1. Let y : (−ρ,ρ)→C be a given analytic function which can be represented by
a power-series expansion centered at x = 0. Suppose there exists a constant ε > 0 such that

∣
∣x2y′′(x) + xy′(x) +

(

x2− ν2
)

y(x)
∣
∣≤ ε (3.1)
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for all x ∈ (−ρ,ρ) and for some positive nonintegral number ν. Let ρ1 =min{1,ρ}. Suppose,
further, that x2y′′(x) + xy′(x) + (x2− ν2)y(x)=∑∞

m=0amxm satisfies

∞
∑

m=0

∣
∣amx

m
∣
∣≤ K

∣
∣
∣
∣
∣

∞
∑

m=0
amx

m

∣
∣
∣
∣
∣

(3.2)

for all x∈(−ρ,ρ) and for some constantK . Then there exists a Bessel function yh : (−ρ1,ρ1)→
C such that

∣
∣y(x)− yh(x)

∣
∣≤ Cε (3.3)

for all x ∈ (−ρ0,ρ0), where ρ0 < ρ1 is any positive number and C is some constant which
depends on ρ0.

Proof. We assumed that y(x) can be represented by a power series and

x2y′′(x) + xy′(x) +
(

x2− ν2
)

y(x)=
∞
∑

m=0
amx

m (3.4)

also satisfies

∞
∑

m=0

∣
∣amx

m
∣
∣≤ K

∣
∣
∣
∣
∣

∞
∑

m=0
amx

m

∣
∣
∣
∣
∣
≤ Kε (3.5)

for all x ∈ (−ρ,ρ) from (3.1).
According to Theorem 2.1, y can be written as yh +

∑∞
m=0cmxm for x ∈ (−ρ1,ρ1), where

yh is some Bessel function and cm’s are given by (2.2). Then by Lemmas 1 and 2 and their
proofs (replaceM1 andM3 with Kε in Lemma 1),

∣
∣y(x)− yh(x)

∣
∣=

∣
∣
∣
∣

∞
∑

m=0
cmx

m

∣
∣
∣
∣≤ Cε (3.6)

for all x ∈ (−ρ0,ρ0), where ρ0 < ρ1 is any positive number and C is some constant which
depends on ρ0. This completes the proof of our theorem. �

4. Example

In this section, our task is to show that there certainly exist functions y(x) which satisfy
all the conditions given in Theorem 3.1.

Example 1. Let y : (−1,1)→R be an analytic function given by

y(x)= J1/2(x) + b
(

x2 + x4 + ··· + x2n
)

, (4.1)

where J1/2(x) is the Bessel function of the first kind of order 1/2, n is a given positive
integer, and b is a constant satisfying

0≤ b ≤
[
2
3
n
(

2n2 + 3n+
17
8

)]−1
ε (4.2)
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for some ε ≥ 0. Since J1/2(x) is a particular solution of the Bessel differential equation
(2.1) with ν= 1/2, we then have

x2y′′(x) + xy′(x) +
(

x2− 1
4

)

y(x)= bx2n+2 +
n
∑

m=2

[
(

2m
)2
+
3
4

]

bx2m +
15
4
bx2. (4.3)

If we set

am =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b form= 2n+2,
(

m2 +
3
4

)

b form∈ {4,6, . . . ,2n},
(
15
4

)

b form= 2,

0 otherwise,

(4.4)

then we obtain

x2y′′(x) + xy′(x) +
(

x2− 1
4

)

y(x)=
∞
∑

m=0
amx

m (4.5)

for all x ∈ (−1,1). It further follows from (4.2) and (4.4) that

∞
∑

m=0

∣
∣amx

m
∣
∣=

∣
∣
∣
∣
∣

∞
∑

m=0
amx

m

∣
∣
∣
∣
∣
≤ ε (4.6)

for any x ∈ (−1,1).
Indeed, if we choose the J1/2(x) as a Bessel function, then we have

∣
∣y(x)− J1/2(x)

∣
∣= b

∣
∣x2 + x4 + ··· + x2n

∣
∣≤ nb≤ n

[
2
3
n
(

2n2 + 3n+
17
8

)]−1
ε (4.7)

for all x ∈ (−1,1), which is consistent with the assertion of Theorem 3.1.
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