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1. Introduction

Recently, Hermite-Hadamard-type inequalities and their applications have attracted con-
siderable interest, as shown in the book [1], for example. These inequalities have been
studied for various classes of functions such as convex functions [1], quasiconvex func-
tions [2—4], p-functions [3, 5], Godnova-Levin type functions [5], r-convex functions [6],
increasing convex-along-rays functions [7], and increasing radiant functions [8], and it
is shown that these inequalities are sharp.

For instance, if f: [0,1] — R is an arbitrary nonnegative quasiconvex function, then
for any u € (0,1) one has (see [3])

1 1
flu) < mfo f(x)dx, (1.1)
and the inequality (1.1) is sharp.

In this paper, we consider one generalization of Hermite-Hadamard-type inequalities
for the class of increasing positively homogeneous of degree one functions defined on
R, ={xeR":x,>0,i=1,2,3,...,n}.

The structure of the paper is as follows: in Section 2, certain concepts of abstract con-
vexity, definition of increasing positively homogeneous of degree one functions and its
important properties are given. In Section 3, Hermite-Hadamard-type inequalities for
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the class of increasing positively homogeneous of degree one functions are considered.
Some examples of such inequalities for functions defined on R2, are given in Section 4.

2. Preliminaries

First we recall some definitions from abstract convexity. Let R be a real line and R;o =
R U {+00}. Consider a set X and a set H of function h: X — R defined on X. A function
f:X = Ry is called abstract convex with respect to H (or H-convex) if there exists a set
U C H such that

f(x)=sup{h(x):he U} VxeX (2.1)
Clearly, f is H-convex if and only if
f(x)=suplh(x):h<f} VxeX (2.2)

Let Y be a set of functions f : X — Ry. Aset H C Y is called a supremal generator of
the set Y, if each function f € Y is abstract convex with respect to H.

In some cases, the investigation of Hermite-Hadamard-type inequalities is based on
the principle of preservation of inequalities [9].

ProrosrtioN 2.1 (principle of preservation of inequalities). Let H be a supremal generator
of Y and let ¥ be an increasing functional defined on Y. Then

(h(u) <¥(h) Vhe H) < (f(u) <¥(f) Vf € Y). (2.3)

A function f defined on R, is called increasing (with respect to the coordinate-wise order
relation) if x = y implies f(x) = f(y).

The function f is positively homogeneous of degree one if f(Ax) = Af(x) for all x € R,
and A > 0.

Let L be the set of all min-type functions defined on RY,, that is, the set L consists of
identical zero and all the functions of the form

I(x)=(Lx) = miin%, xe Ry, (2.4)

withalll € R%,.

One has (see [9]) that a function f :R?, — R is L-convex if and only if f is increasing
and positively homogeneous of degree one (shortly IPH).

Let us present the important property of IPH functions.

ProrosiTiON 2.2. Let f be an IPH function defined on R .. Then the following inequality
holds for all x,1 € R :

f)({Lx) = f(x). (2.5)
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Proof. Since (l,x) = min; <j<,(xi/l;), then (,x)]; < x; is proved for all i = 1,2,3,...,n.
Consequently, we get (/,x)] < x. Because f is an IPH function,

fx)= f((Lx)) ={Lx)f(I) VIxeRL,. (2.6)
O

Let f be an IPH function defined on R”, and D C R”,. It can be easily shown by
Proposition 2.2 that the function

Jo(x) = sup (f(D(Lx)) (2.7)

leD

is IPH and it possesses the properties
folx) < f(x) VxeR},, fo(x)=f(x) VxeD. (2.8)

Let D c R%,. A function f : D — [0, o] is called IPH on D if there exists an IPH func-
tion F defined on R%, such that F|p = f, thatis, F(x) = f(x) forall x € D.

ProposITION 2.3. Let f: D — [0,00] be a function on D C R, then the following asser-
tions are equivalent:
(i) f is abstract convex with respect to the set of functions c{l,-) : D — [0, 00) with
leD,c=0;
(ii) f is IPH function on D;
(iii) f(I){L,x) < f(x) foralll,x € D.

Proof. (i)=(ii) It is obvious since any function /(x) = ¢(l,x) defined on D can be consid-
ered as elementary function /(x) € L defined on R”,.

(ii)=(iii) By definition, there exists an IPH function F : R, — [0, o] such that F(x) =
f(x) for all x € D. Then by (2.7) we have

f(x) = Fp(x) = sup (F(D){Lx)) =sup (f(D){L,x)) (2.9)

leD leD

for all x € D, which implies the assertion (iii).

(iii)= (i) Consider the function fp defined on D, sup,.,(f (1){,x)) = fp(x). Itis clear
that fp is abstract convex with respect to the set of functions {c{/,-) : [ € D, ¢ = 0} de-
fined on D. Further, using (iii) we get that for all x € D,

Jo(x) < f(x) = f(x)(x,x) < sup (f(D{Lx)) = fo(x). (2.10)
€D

So, fp(x) = f(x) for all x € D and we have the defined statement (i). O
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3. Hermite-Hadamard-type inequalities for IPH functions
Now, we will research to Hermite-Hadamard-type inequality for IPH functions.
ProrosrtioN 3.1. Let D C R, f: D — [0,c0] is IPH function, and f is integrable on D.
Then
f(u)J <u,x>dxsj Fx)dx (3.1)
D D

for all u=D.

Proof. It can be seen via Proposition 2.3. Since f(I){l,x) < f(x) for all ,x € D, (3.1) is
clear. O

Let us investigate Hermite-Hadamard-type inequalities via Q(D) sets given in [7, 8].
Let D C R”, be a closed domain, that is, D is bounded set such that ¢/intD = D. De-
note by Q(D) the set of all points x* € D such that

1

AD) JD (x*,x)dx =1, (3.2)

where A(D) = [, dx.
ProrosiTioN 3.2. Let f be an IPH function defined on D. If the set Q(D) is nonempty and
f is integrable on D, then

sup f(x* J f(x)dx. (3.3)

x*€Q(D)

Proof. 1f we take f(x™) = +co, by using the equality (2.5), it can be easily shown that f
cannot be integrable. So f(x*) < +o0. According to Proposition 2.3,

f(x*)(x*,x) < f(x) VxeD. (3.4)
Since x* € Q(D), then by (3.2) we get

F) = F ) s | G

1

) (3.5)
= MJD (x*,x) f(x*)dx < mj})f(x)dx

O

Remark 3.3. For each x* € Q(D) we have also the following inequality, which is weaker
than (3.3):

Flx*) < ﬁ JD Flx)dx. (3.6)

However, even the inequality (3.6) is sharp. For example, if f(x) = (x*,x), then (3.6)
holds as the equality.
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Remark 3.4. Let Q(D) be a nonempty set. We can define a set Qx(D) for every positive
real number k such that Qx(D) = {ue D:u=k-x*, x* € Q(D)}. The set Qx(D) above
can be easily defined as follows: Qx(D) = {u € D : (k/A(D)) [, (u,x)dx = 1}.

Considering the property that an IPH function is positively homogeneous of degree
one, we can generalize the inequality (3.3) as follows:

wp 05 25 [ soni 5

ueQx(D)

Let us try to derive inequalities similar to the right hand of the statement which is derived
for convex functions (see [1]).

Let f be an IPH function defined on a closed domain D C R”,, and f is integrable on
D. Then f(I){L,x) < f(x) forall ,x € D. Hence for all /,x € D,

_IW e
f) =< )~ (6,07 f(x), (3.8)

where (x,])* = max) <;<li/x; is the so-called max-type function.
We have established the following result.

ProrosrtioN 3.5. Let f be IPH and integrable function on D. Then

JD f(dx < inf [ Fw) JD <u,x>+dx]. (3.9)

For every u € D, inequality

J f(X)def(u)J (u,x)"dx (3.10)
D D
is sharp.

4. Examples

On some special domains D of the cones R, and R, , Hermite-Hadamard-type inequal-
ities have been stated for ICAR and InR functions (see [7, 8]). Let us derive the set Q(D)
and the inequalities (3.1), (3.6), (3.9), for IPH functions, too.

Before the examples, for a region D C R2, and every u € D, let us derive the compu-
tation formula of the integral [, (u,x)dx.

Let D C R2, and u = (u;,u;) € D. In order to calculate the integral, we represent the
set D as D (u) U D,(u), where

Dl(u):{xeD;ﬂsﬂ}, Dz(u):{xeD.x—zle}. (4.1)

up Uy up Uy
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Then

J (u,x)dx = J (u,x)dx+J (u,x)dx
D Dy (u) Dy (u)

(4.2)
1 1
= — xzdxldx2+— X]dxlde.
Uz JDi(u) Ui JDy(u)
Example 4.1. Consider the triangle D defined as
D= {(x,%) ER2, :0<x <a, 0<x, <vx}. (4.3)

Let u € D. Assume that the R, is ray defined by the equation x, = (u2/u;)x,. Since u € D,
we get 0 < up/u; < v. Hence R, intersects the set D and divides the set into two parts D,
and D, given as

Di(u) = {(xl,xz) ER%,:0<x <a,0<x, < ﬂxl} = {(xl,xz) eD: 2 < ﬂ},
231 u Ui

D(u) = {(xl,xz) ER?, :0<x <a, Z%xl <x svxl} = {(xl,xz) ep: 2 ﬁ}

Uus u
(4.4)
By (4.2) we get
1 1
J (u,xydx = — Xopdx1dxy+— x1dx;dx;
D Uz JDy(u) Uy JDy(u)
1 a (uy/ur)x 1 a rvx
= — J J dedexl + —J J dedexl (4.5)
uz Jo Jo Uy Jo J(up/ur)x
2w (wv-w)a®  Quv-w)a’
B 6u? 3u? a 6u?
Thus, for the given region D, the inequality (3.1) will be as follows:
fur,up) < 67%‘[ f (x1,%2) dxydx,. (4.6)
a®(Quiv—uy) Jp

Since A(D) = va?/2, then a point x* € D belongs to Q(D) if and only if

ko k) 43
2 @ev=d)@ e 3 ) s, (4.7)
va 6(xi") a
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Consider now the inequality (3.9) for triangle D. Let us calculate the integral of the func-
tion (u,x)" on D:

1
I (u,x)tdx = — x1dx dx; + — J Xodx1dx,
Di(u) Uz JDy(u)
1 a r(uy/ur)xy 1 a rvx
= —J J dedexl + —J J deXdel (48)
0 U uy/uy
o a v?
-5l )
6 ui u
Therefore,
a’ u v
f Xl,XZ dxldxz < Elllng u—% + u—2 f(ul,uz) . (49)

Example 4.2. Let D C R2, be the triangle with vertices (0,0), (a,0) and (0,b), that is
D:{xeuai+-ﬂ+ﬂsl}. (4.10)
a b
If u € D, then we get
abu, U a }
D =1x€ER?, :0<x < —————, —x3<xX;<a——
() SLx = “ aur +bu;’ up a=x=a bx2

abu; U

Dy (u ={xE[R2 0<x; < ——,
2(u) A 'S s+ buy

By (4.2) we have

J (U, x)dx = L xzdxldxz-i-L x1dx1dx;
D

Uz JDi(u) Uy JDy(u)

1 abuy/(auy+buy) ra—(a/b)x; abu,/(auy+buy) —(b/a)x
= — J Xodx1dxy + — I J x1dx>dx;

Uz Jo (t1/u2)x (u2/u1)x1
a’bu, . a?bdu, B a*bh? 3 ab
6(aw, +buy)’  6(aus +buy)”  6(aua+bur)  6(ui/a+uy/b)’
(4.12)
In this triangular region D, the inequality (3.1) is as follows:
6 u1
f(ul,uz) < %< ) f Xl,XZ)dxld)Q (4.13)

Let us derive the set Q(D) for the given triangular region D. Since A(D) = ab/2, then for
x* e D,

* *
1
x* € Q(D) — % + %2 -3 (4.14)
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Therefore,
* *
Q(D)z{x*eD:%+%=%}. (4.15)

For the same region D, let us compute [, (u,x)"dx in order to derive the inequality (3.9):

J (u,x)tdx = — J x1dx1dx; + — Xodx;dx;
Dy (u)

_1[ b, a'buj (aj_uj) b’u3 ]
2uy | aus +buy (au2+bu1)2 b* u 3(au2+bu1)3

1 ab’u b*au? v uw ab’ui
o - ) s
2up | aup +bur  (quy + buy) a*  ui/ 3(au, +buy)

:a_b<au2+bu1 1 )

6 Uty aus + buy

(4.16)

Hence,

J f X1,X2 dxldX2 < %b lllf{(auz—i_bu1 — ! )f(ul,uz)}. (4.17)

ueD Uiy aus + bu,

Example 4.3. We will now consider the rectangle in R2,. Let D be the rectangle defined
as

D={xeR2, :x;<a, x; <b}. (4.18)

We consider two possible cases for u € D.
(a) If up/u; < b/a, then we have

1)](]) [RZ .()<xl<a“<x2< Zx
up

Dz(u)={x€ R2,:0<x <a, %xlﬁxzsb}.
1

Therefore,

J (U, x)dx = — xzdxldxz+i x1dx1dx;

Dy (u) Ui JDy(u)

1 uz/m
= — J I Xodxydx; + 7)[ J x1dxydx; (4.20)
uz Jo Jo (up/uy)x

1 wa’ L(b_az_@a:) 3ba’u; — upa’

U, 6ur  up\ 2 u; 3 6u?
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By using the equality above, the inequality (3.1) will be as follows:

6u?
< -t @@
flu,u) < 3balu; — upad

JDf(Xsz)dexz- (4.21)

Let us derive the set Q(D). Since A(D) = ab, then we get the equation for x* € Q(D),

1 3ba*x{ — x5a’ 6b 2
| ¥ =2 () ok 422
b ey T e (422)
(b) If up/u; = b/a, then by analogy
2 13
J () dx = M2 — b (4.23)
D 6“2
Hence,
f(ul,le) < 6716[ f(xl,xz)dxldxz. (4.24)
3abtu; — u1b3 Jp
We get the symmetric equation for x* € Q(D):
6a 2 3a
xf = —ﬁ(x;‘) + ?xg“. (4.25)
By taking into account both cases, Q(D) becomes as the following:
x5 b 6b 2 3b
QD) = {x* ED:% < a,x;‘ :—E(x{k) +7x1*}
(4.26)

*
u{x*eD:%zg,xf =—%(x§)2+3—bax§‘}.

Consider now inequality (3.9). If uo/u; < b/a, then D;(u) and D, (u) are stated as similar
to (4.19). Consequently,

3 2
J (u,x)Tdx = L xldxldx2+i Xadx dx; = % &. (4.27)
D u1 Jpy(w) Uy Jp,(w) 6u;  2up
If up/u; = b/a, then by analogy
. wb®  ba?
, =——+_—. 4.2
JDW = o (4.28)
That is,
3 2
we' b w b
6ur  2uy U~ a
f () dx = p(u) = (4.29)
D wmb® ba*> . u, b
CLN .
6u;  2u Uy a
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Therefore

JDf(xl,xz)dxldxz < ;relzf) {f (w1, u) @ (ur,u2) }. (4.30)
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