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1. Introduction

Recently, Hermite-Hadamard-type inequalities and their applications have attracted con-
siderable interest, as shown in the book [1], for example. These inequalities have been
studied for various classes of functions such as convex functions [1], quasiconvex func-
tions [2–4], p-functions [3, 5], Godnova-Levin type functions [5], r-convex functions [6],
increasing convex-along-rays functions [7], and increasing radiant functions [8], and it
is shown that these inequalities are sharp.

For instance, if f : [0,1]→ R is an arbitrary nonnegative quasiconvex function, then
for any u∈ (0,1) one has (see [3])

f (u)≤ 1
min(u,1−u)

∫ 1

0
f (x)dx, (1.1)

and the inequality (1.1) is sharp.
In this paper, we consider one generalization of Hermite-Hadamard-type inequalities

for the class of increasing positively homogeneous of degree one functions defined on
Rn

++ = {x ∈Rn : xi > 0, i= 1,2,3, . . . ,n}.
The structure of the paper is as follows: in Section 2, certain concepts of abstract con-

vexity, definition of increasing positively homogeneous of degree one functions and its
important properties are given. In Section 3, Hermite-Hadamard-type inequalities for
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the class of increasing positively homogeneous of degree one functions are considered.
Some examples of such inequalities for functions defined on R2

++ are given in Section 4.

2. Preliminaries

First we recall some definitions from abstract convexity. Let R be a real line and R+∞ =
R∪{+∞}. Consider a set X and a set H of function h : X →R defined on X . A function
f : X →R+∞ is called abstract convex with respect toH (orH-convex) if there exists a set
U ⊂H such that

f (x)= sup
{
h(x) : h∈U

} ∀x ∈ X. (2.1)

Clearly, f is H-convex if and only if

f (x)= sup
{
h(x) : h≤ f

} ∀x ∈ X. (2.2)

Let Y be a set of functions f : X →R+∞. A set H ⊂ Y is called a supremal generator of
the set Y , if each function f ∈ Y is abstract convex with respect to H .

In some cases, the investigation of Hermite-Hadamard-type inequalities is based on
the principle of preservation of inequalities [9].

Proposition 2.1 (principle of preservation of inequalities). LetH be a supremal generator
of Y and let Ψ be an increasing functional defined on Y . Then

(
h(u)≤Ψ(h)∀h∈H

)⇐⇒ ( f (u)≤Ψ( f )∀ f ∈ Y
)
. (2.3)

A function f defined onRn
++ is called increasing (with respect to the coordinate-wise order

relation) if x ≥ y implies f (x)≥ f (y).
The function f is positively homogeneous of degree one if f (λx)= λ f (x) for all x ∈Rn

++

and λ > 0.
Let L be the set of all min-type functions defined on Rn

++, that is, the set L consists of
identical zero and all the functions of the form

l(x)= 〈l,x〉 =min
i

xi
li
, x ∈Rn

++ (2.4)

with all l ∈Rn
++.

One has (see [9]) that a function f : Rn
++ → R is L-convex if and only if f is increasing

and positively homogeneous of degree one (shortly IPH).

Let us present the important property of IPH functions.

Proposition 2.2. Let f be an IPH function defined on Rn
++. Then the following inequality

holds for all x, l ∈Rn
++:

f (l)〈l,x〉 ≤ f (x). (2.5)
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Proof. Since 〈l,x〉 =min1≤i≤n(xi/li), then 〈l,x〉li ≤ xi is proved for all i= 1,2,3, . . . ,n.
Consequently, we get 〈l,x〉l ≤ x. Because f is an IPH function,

f (x)≥ f
(〈l,x〉l)= 〈l,x〉 f (l) ∀l,x ∈Rn

++. (2.6)
�

Let f be an IPH function defined on Rn
++ and D ⊂ Rn

++. It can be easily shown by
Proposition 2.2 that the function

fD(x)= sup
l∈D

(
f (l)〈l,x〉) (2.7)

is IPH and it possesses the properties

fD(x)≤ f (x) ∀x ∈Rn
++, fD(x)= f (x) ∀x ∈D. (2.8)

Let D ⊂Rn
++. A function f :D→ [0,∞] is called IPH on D if there exists an IPH func-

tion F defined on Rn
++ such that F|D = f , that is, F(x)= f (x) for all x ∈D.

Proposition 2.3. Let f : D→ [0,∞] be a function on D ⊂ Rn
++, then the following asser-

tions are equivalent:
(i) f is abstract convex with respect to the set of functions c〈l,·〉 : D → [0,∞) with

l ∈D, c ≥ 0;
(ii) f is IPH function on D;
(iii) f (l)〈l,x〉 ≤ f (x) for all l,x ∈D.

Proof. (i)⇒(ii) It is obvious since any function l(x)= c〈l,x〉 defined on D can be consid-
ered as elementary function l(x)∈ L defined on Rn

++.
(ii)⇒(iii) By definition, there exists an IPH function F :Rn

++→ [0,∞] such that F(x)=
f (x) for all x ∈D. Then by (2.7) we have

f (x)= FD(x)= sup
l∈D

(
F(l)〈l,x〉)= sup

l∈D

(
f (l)〈l,x〉) (2.9)

for all x ∈D, which implies the assertion (iii).
(iii)⇒(i) Consider the function fD defined on D, supl∈D( f (l)〈l,x〉)= fD(x). It is clear

that fD is abstract convex with respect to the set of functions {c〈l,·〉 : l ∈D, c ≥ 0} de-
fined on D. Further, using (iii) we get that for all x ∈D,

fD(x)≤ f (x)= f (x)〈x,x〉 ≤ sup
l∈D

(
f (l)〈l,x〉)= fD(x). (2.10)

So, fD(x)= f (x) for all x ∈D and we have the defined statement (i). �
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3. Hermite-Hadamard-type inequalities for IPH functions

Now, we will research to Hermite-Hadamard-type inequality for IPH functions.

Proposition 3.1. Let D ⊂ Rn
++, f :D→ [0,∞] is IPH function, and f is integrable on D.

Then

f (u)
∫
D
〈u,x〉dx ≤

∫
D
f (x)dx (3.1)

for all u∈D.

Proof. It can be seen via Proposition 2.3. Since f (l)〈l,x〉 ≤ f (x) for all l,x ∈ D, (3.1) is
clear. �

Let us investigate Hermite-Hadamard-type inequalities via Q(D) sets given in [7, 8].
Let D ⊂Rn

++ be a closed domain, that is, D is bounded set such that cl intD =D. De-
note by Q(D) the set of all points x∗ ∈D such that

1
A(D)

∫
D

〈
x∗,x

〉
dx = 1, (3.2)

where A(D)= ∫D dx.
Proposition 3.2. Let f be an IPH function defined on D. If the set Q(D) is nonempty and
f is integrable on D, then

sup
x∗∈Q(D)

f
(
x∗
)≤ 1

A(D)

∫
D
f (x)dx. (3.3)

Proof. If we take f (x∗) = +∞, by using the equality (2.5), it can be easily shown that f
cannot be integrable. So f (x∗) < +∞. According to Proposition 2.3,

f
(
x∗
)〈
x∗,x

〉≤ f (x) ∀x ∈D. (3.4)

Since x∗ ∈Q(D), then by (3.2) we get

f
(
x∗
)= f

(
x∗
) 1
A(D)

∫
D

〈
x∗,x

〉
dx

= 1
A(D)

∫
D

〈
x∗,x

〉
f
(
x∗
)
dx ≤ 1

A(D)

∫
D
f (x)dx.

(3.5)

�

Remark 3.3. For each x∗ ∈Q(D) we have also the following inequality, which is weaker
than (3.3):

f
(
x∗
)≤ 1

A(D)

∫
D
f (x)dx. (3.6)

However, even the inequality (3.6) is sharp. For example, if f (x) = 〈x∗,x〉, then (3.6)
holds as the equality.
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Remark 3.4. Let Q(D) be a nonempty set. We can define a set Qk(D) for every positive
real number k such that Qk(D)= {u∈D : u= k · x∗, x∗ ∈Q(D)}. The set Qk(D) above
can be easily defined as follows: Qk(D)= {u∈D : (k/A(D))

∫
D 〈u,x〉dx = 1}.

Considering the property that an IPH function is positively homogeneous of degree
one, we can generalize the inequality (3.3) as follows:

sup
u∈Qk(D)

f (u)≤ k

A(D)

∫
D
f (x)dx. (3.7)

Let us try to derive inequalities similar to the right hand of the statement which is derived
for convex functions (see [1]).

Let f be an IPH function defined on a closed domain D ⊂Rn
++, and f is integrable on

D. Then f (l)〈l,x〉 ≤ f (x) for all l,x ∈D. Hence for all l,x ∈D,

f (l)≤ f (x)
〈l,x〉 = 〈x, l〉

+ f (x), (3.8)

where 〈x, l〉+ =max1≤i≤nli/xi is the so-called max-type function.
We have established the following result.

Proposition 3.5. Let f be IPH and integrable function on D. Then

∫
D
f (x)dx ≤ inf

u∈D

[
f (u)

∫
D
〈u,x〉+dx

]
. (3.9)

For every u∈D, inequality

∫
D
f (x)dx ≤ f (u)

∫
D
〈u,x〉+dx (3.10)

is sharp.

4. Examples

On some special domainsD of the conesR++ andR2
++, Hermite-Hadamard-type inequal-

ities have been stated for ICAR and InR functions (see [7, 8]). Let us derive the set Q(D)
and the inequalities (3.1), (3.6), (3.9), for IPH functions, too.

Before the examples, for a region D ⊂R2
++ and every u∈D, let us derive the compu-

tation formula of the integral
∫
D 〈u,x〉dx.

Let D ⊂ R2
++ and u= (u1,u2)∈D. In order to calculate the integral, we represent the

set D as D1(u)∪D2(u), where

D1(u)=
{
x ∈D :

x2
u2
≤ x1

u1

}
, D2(u)=

{
x ∈D :

x2
u2
≥ x1

u1

}
. (4.1)



6 Journal of Inequalities and Applications

Then

∫
D
〈u,x〉dx =

∫
D1(u)

〈u,x〉dx+
∫
D2(u)

〈u,x〉dx

= 1
u2

∫
D1(u)

x2dx1dx2+
1
u1

∫
D2(u)

x1dx1dx2.

(4.2)

Example 4.1. Consider the triangle D defined as

D = {(x1,x2)∈R2
++ : 0 < x1 ≤ a, 0 < x2 ≤ vx1

}
. (4.3)

Let u∈D. Assume that theRu is ray defined by the equation x2 = (u2/u1)x1. Since u∈D,
we get 0 < u2/u1 ≤ v. Hence Ru intersects the set D and divides the set into two parts D1

and D2 given as

D1(u)=
{(

x1,x2
)∈R2

++ : 0 < x1 ≤ a, 0 < x2 ≤ u2
u1

x1

}
=
{(

x1,x2
)∈D :

x2
u2
≤ x1

u1

}
,

D2(u)=
{(

x1,x2
)∈R2

++ : 0 < x1 ≤ a,
u2
u1

x1 ≤ x2 ≤ vx1

}
=
{(

x1,x2
)∈D :

x2
u2
≥ x1

u1

}
.

(4.4)

By (4.2) we get

∫
D
〈u,x〉dx = 1

u2

∫
D1(u)

x2dx1dx2+
1
u1

∫
D2(u)

x1dx1dx2

= 1
u2

∫ a

0

∫ (u2/u1)x1

0
x2dx2dx1 +

1
u1

∫ a

0

∫ vx1

(u2/u1)x1
x1dx2dx1

= a3u2
6u21

+

(
u1v−u2

)
a3

3u21
=
(
2u1v−u2

)
a3

6u21
.

(4.5)

Thus, for the given region D, the inequality (3.1) will be as follows:

f
(
u1,u2

)≤ 6u21
a3
(
2u1v−u2

)
∫
D
f
(
x1,x2

)
dx1dx2. (4.6)

Since A(D)= va2/2, then a point x∗ ∈D belongs to Q(D) if and only if

2
va2

(
2x∗1 v− x∗2

)
a3

6
(
x∗1
)2 = 1⇐⇒ x∗2 =−

3v
a

(
x∗1
)2
+ 2vx∗1 . (4.7)
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Consider now the inequality (3.9) for triangle D. Let us calculate the integral of the func-
tion 〈u,x〉+ on D:

∫
D
〈u,x〉+dx = 1

u1

∫
D1(u)

x1dx1dx2 +
1
u2

∫
D2(u)

x2dx1dx2

= 1
u1

∫ a

0

∫ (u2/u1)x1

0
x1dx2dx1 +

1
u2

∫ a

0

∫ vx1

(u2/u1)x1
x2dx2dx1

= a3

6

(
u2
u21

+
v2

u2

)
.

(4.8)

Therefore,
∫
D
f
(
x1,x2

)
dx1dx2 ≤ a3

6
inf
u∈D

{(
u2
u21

+
v2

u2

)
f
(
u1,u2

)}
. (4.9)

Example 4.2. Let D ⊂R2
++ be the triangle with vertices (0,0), (a,0) and (0,b), that is

D =
{
x ∈R2

++ :
x1
a
+
x2
b
≤ 1
}
. (4.10)

If u∈D, then we get

D1(u)=
{
x ∈R2

++ : 0 < x2 <
abu2

au2 + bu1
,
u1
u2

x2 ≤ x1 ≤ a− a

b
x2

}

D2(u)=
{
x ∈R2

++ : 0 < x1 <
abu1

au2 + bu1
,
u2
u1

x1 ≤ x2 ≤ b− b

a
x1

}
.

(4.11)

By (4.2) we have
∫
D
〈u,x〉dx = 1

u2

∫
D1(u)

x2dx1dx2+
1
u1

∫
D2(u)

x1dx1dx2

= 1
u2

∫ abu2/(au2+bu1)

0

∫ a−(a/b)x2

(u1/u2)x2
x2dx1dx2 +

1
u1

∫ abu1/(au2+bu1)

0

∫ b−(b/a)x1

(u2/u1)x1
x1dx2dx1

= a3b2u2

6
(
au2 + bu1

)2 + a2b3u1

6
(
au2 + bu1

)2 = a2b2

6
(
au2 + bu1

) = ab

6
(
u1/a+u2/b

) .
(4.12)

In this triangular region D, the inequality (3.1) is as follows:

f
(
u1,u2

)≤ 6
ab

(
u1
a
+
u2
b

)∫
D
f
(
x1,x2

)
dx1dx2. (4.13)

Let us derive the set Q(D) for the given triangular region D. Since A(D)= ab/2, then for
x∗ ∈D,

x∗ ∈Q(D)⇐⇒ x∗1
a

+
x∗2
b
= 1

3
. (4.14)
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Therefore,

Q(D)=
{
x∗ ∈D :

x∗1
a

+
x∗2
b
= 1

3

}
. (4.15)

For the same region D, let us compute
∫
D 〈u,x〉+dx in order to derive the inequality (3.9):

∫
D
〈u,x〉+dx = 1

u1

∫
D1(u)

x1dx1dx2 +
1
u2

∫
D2(u)

x2dx1dx2

= 1
2u1

[
a3bu2

au2 + bu1
− a4bu22(

au2 + bu1
)2 +

(
a2

b2
− u21
u22

)
a3b3u32

3
(
au2 + bu1

)3
]

+
1
2u2

[
ab3u1

au2 + bu1
− b4au21(

au2 + bu1
)2 +

(
b2

a2
− u22
u21

)
a3b3u31

3
(
au2 + bu1

)3
]

= ab

6

(
au2 + bu1
u1u2

− 1
au2 + bu1

)
.

(4.16)

Hence,

∫
D
f
(
x1,x2

)
dx1dx2 ≤ ab

6
inf
u∈D

{(
au2 + bu1
u1u2

− 1
au2 + bu1

)
f
(
u1,u2

)}
. (4.17)

Example 4.3. We will now consider the rectangle in R2
++. Let D be the rectangle defined

as

D = {x ∈R2
++ : x1 ≤ a, x2 ≤ b

}
. (4.18)

We consider two possible cases for u∈D.
(a) If u2/u1 ≤ b/a, then we have

D1(u)=
{
x ∈R2

++ : 0 < x1 ≤ a, 0 < x2 ≤ u2
u1

x1

}
,

D2(u)=
{
x ∈R2

++ : 0 < x1 ≤ a,
u2
u1

x1 ≤ x2 ≤ b
}
.

(4.19)

Therefore,
∫
D
〈u,x〉dx = 1

u2

∫
D1(u)

x2dx1dx2+
1
u1

∫
D2(u)

x1dx1dx2

= 1
u2

∫ a

0

∫ (u2/u1)x1

0
x2dx2dx1 +

1
u1

∫ a

0

∫ b

(u2/u1)x1
x1dx2dx1

= 1
u2

u22a
3

6u21
+

1
u1

(
ba2

2
− u2
u1

a3

3

)
= 3ba2u1−u2a3

6u21
.

(4.20)
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By using the equality above, the inequality (3.1) will be as follows:

f
(
u1,u2

)≤ 6u21
3ba2u1−u2a3

∫
D
f
(
x1,x2

)
dx1dx2. (4.21)

Let us derive the set Q(D). Since A(D)= ab, then we get the equation for x∗ ∈Q(D),

1
ab

3ba2x∗1 − x∗2 a3

6
(
x∗1
)2 = 1⇐⇒ x∗2 =−

6b
a2
(
x∗1
)2
+
3b
a
x∗1 . (4.22)

(b) If u2/u1 ≥ b/a, then by analogy

∫
D
〈u,x〉dx = 3b2au2−u1b3

6u22
. (4.23)

Hence,

f
(
u1,u2

)≤ 6u22
3ab2u2−u1b3

∫
D
f
(
x1,x2

)
dx1dx2. (4.24)

We get the symmetric equation for x∗ ∈Q(D):

x∗1 =−
6a
b2
(
x∗2
)2
+
3a
b
x∗2 . (4.25)

By taking into account both cases, Q(D) becomes as the following:

Q(D)=
{
x∗ ∈D :

x∗2
x∗1
≤ b

a
, x∗2 =−

6b
a2
(
x∗1
)2
+
3b
a
x∗1

}

∪
{
x∗ ∈D :

x∗2
x∗1
≥ b

a
, x∗1 =−

6a
b2
(
x∗2
)2
+
3a
b
x∗2

}
.

(4.26)

Consider now inequality (3.9). If u2/u1 ≤ b/a, then D1(u) and D2(u) are stated as similar
to (4.19). Consequently,

∫
D
〈u,x〉+dx = 1

u1

∫
D1(u)

x1dx1dx2+
1
u2

∫
D2(u)

x2dx1dx2 = u2a3

6u21
+
ab2

2u2
. (4.27)

If u2/u1 ≥ b/a, then by analogy

∫
D
〈u,x〉+dx = u1b3

6u22
+
ba2

2u1
. (4.28)

That is,

∫
D
〈u,x〉+dx = ϕ(u)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u2a3

6u21
+
ab2

2u2
, if

u2
u1
≤ b

a
,

u1b3

6u22
+
ba2

2u1
, if

u2
u1
≥ b

a
.

(4.29)



10 Journal of Inequalities and Applications

Therefore
∫
D
f
(
x1,x2

)
dx1dx2 ≤ inf

u∈D
{
f
(
u1,u2

)
ϕ
(
u1,u2

)}
. (4.30)
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