Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2007, Article ID 14630, 10 pages
doi:10.1155/2007/14630

Research Article
On Janowski Starlike Functions

M. Caglar, Y. Polatoglu, A. $en, E. Yavuz, and S. Owa
Received 23 June 2007; Accepted 3 October 2007

Recommended by Ram N. Mohapatra

For analytic functions f(z) in the open unit disc U with f(0) = 0 and f'(0) = 1, applying
the fractional calculus for f(z), a new fractional operator D! f(2) is introduced. Further,
a new subclass &; (A, B) consisting of f(z) associated with Janowski function is defined.

The objective of the present paper is to discuss some interesting properties of the class
I3 (A,B).
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1. Introduction and preliminaries

Let Q) be the class of analytic functions w(z) in the open unit disc U= {z € C| |z| < 1}
satisfying w(0) = 0 and |w(z)| < 1 for all z € U. For arbitrary fixed real numbers A and B
which satisfty —1 < B < A < 1, we say that p(z) belongs to the class (A, B) if

p(2)=1+> p,z" (1.1)

n=1
is analytic in U and p(z) is given by

_1+Aw(z)

= 7B (zel) (1.2)

p(2)

for some w(z) € Q. This class, (A, B), was first introduced by Janowski [1]. Therefore,
we call f(z) in the class (A, B) Janowski functions. Further, let s be class of functions
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f(z) of the form

f(z)=z+zanz” (1.3)

which are analytic in U. We recall here the following definitions of the fractional calculus
(fractional integrals and fractional derivatives) given by Owa [2, 3] (also by Srivastava
and Owa [4]).

Definition 1.1. The fractional integral of order A is defined, for f(z) € o4, by
- L (F_ S
D* = —J ——=—=d({ (A1>0), 1.4
2@ =1l L omd >0 (1.4)

where the multiplicity of (z—{ "' is removed by requiring log(z — {) to be real when

(z—{)>0.
Definition 1.2. The fractional derivative of order A is defined, for f(z) € o, by

L d(r f©Q ,
T(1-A) dzlo(z-¢)

Dif(2) = £ (D f(2)) = { 0<i<n,  (9)

where the multiplicity of (z—( )~ is removed by requiring log(z — () to be real when

(z—1{)>0.

Definition 1.3. Under the hypothesis of Definition 1.2, the fractional derivative of order
(n+A) is defined, for f(z) € 4, by

drl
dz"

DY f(z)= — (D f(z)) (0<A<1,neNy=1{0,1,2,...}). (1.6)

By means of the above definitions for the fractional calculus, we see that

DAk F(k+1) i

2z :mz (A>0,k>0),

I'(k+1) _
Dizk = - k-1

mz (0SA<1,k>O),

I'(k+1) ken_)

ntA k _ _ —1.-2.—
DI = ) (0<A<1,k>0,neNy k—n#t—1,-2,-3,..).
(1.7)
Therefore, we conclude that for any real A,
[(k+1)
Ak _ k-2 L —1.-2 —
D}z TSy (k>0 k—A£—1,-2,-3,...). (1.8)
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With the definitions of the fractional calculus, we introduce the fractional operator

D' f(z), for f(z) € o, by

Zw 2" (A#£2,3,4,...).  (1.9)

A _ A
D'f(z) =T(2-M)Z'D} f(2) TS

n=2

If A =1, then
D'f(z) =Df(2) = zf'(2) (1.10)

and if A#2,3,4,... and a#2,3,4,..., then

i Q-Nr2-a)(Tn+1)°

anz",
= I'n+1-AM)I'(n+1-«a) (L11)

D*(D*f(2)) = D}(D*f(2))

D(D'f(2)) = 2(D' f(2)) = T(2 - V)z*(AD} f(2) + 2D £ (2)).
Let &5 (A, B) be the subclass of & consisting of functions f(z) satisfying

z(D'f(2))

Dt =plz) (A#2,3,4,...) (1.12)

for some p(z) € P(A,B). Note that (1.12) is equivalent to

A+1
L2 LGN S WO (1.13)

D} f(2)

Finally, for h(z) € 9 and s(z) € o, we say that h(z) is subordinate to s(z), denoted by
h(z) < s(z), if there exists some function w(z) € Q such that

h(z) =s(w(z)) (ze€U). (1.14)

In particular, if s(z) is univalent in U, then the subordination h(z) < s(z) is equivalent to
h(0) = s(0) and h(U) C s(U) (see [5]).
2. Main results

To discuss our problems, we need the following lemma due to Jack [6] or Miller and
Mocanu [7].

LeMMma 2.1. Let w(z) be a nonconstant analytic in U with w(0) = 0. If |w(z)| attains its
maximum value on the circle |z| = r at a point zy, then one has

aw' (z1) = kw(z1), (2.1)

where k is real and k > 1.
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Next, we have the following lemma.

LemMa 2.2. Let f(z) € sd and

g(z)=z+ Z b,z" € A. (2.2)

n=2

Then, the following fractional differential equation:

A R S
D;f(z) = e —A)Z g(z) (A42,3,4,...) (2.3)
has the solution
_ T'(n+1-21) "
=z+ g —2 )LF(rH-l)hz (2.4)

Proof. It is easy to see that

D} ()= 7 21_ 57 8o - ml_ 5 (zl‘)”r Zzbnz"-ﬁ),

(2.5)
V- L (pa s TC=MEnrD)
P/ =0 (Z +§2 Tnt1-4) )
which gives
_ I(n+1-1)
"It 1) " (25)
This completes the proof of the lemma. O
Next, we derive the following theorem.
Tueorem 2.3. If f(z) € s satisfies the condition
(A-B)z _
(D'f(2))’ ) o 1Bz =R, B#0, o)
z D f(2) .
Az = F(z), B=0,

for some A (A#2,3,4,...), then f(z) € ¥ (A,B). This result is sharp because the extremal
function is the solution of the fractional differential equation

Zl*/\

(A-B)/B
A F(Z—A)(H—Bz) ,  B#0,
D;f(z) = (2.8)

Zl*/\ N
z B=0.
re-n 0
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Proof. We define the function w(z) by

(1+Bw(z)“™", B+,

- (2.9)
eAv(@) B=0.

D'f(z)

z

When (1+ Bw(z))(AfB)/B and e4*® have the value 1 at z = 0 (i.e., we consider the corre-
sponding Riemann branch), then w(z) is analytic in U and w(0) = 0, and

(A—B)zw'(z)
( (D)‘f(z)),_1> _] 1+Bw(z) B£0,

z D"f(z) (2.10)

Azw'(2), B=0.

Now, it is easy to realize that the subordination (2.7) is equivalent to |w(z)| < 1 for all
z € U. Indeed, assume the contrary. Then, there exists a point z; € D such that |[w(z;)| =
1. Then, by Lemma 2.1, zyw'(z;) = kw(z;) for some real k > 1; for such z; € U, then we
have

, (A~ B)kw(z) _
(ZIW_1>: W—Fl(W(zl))éFl([U), B#0,

2.11
D' (z)) (21

AkW(Zl) = Fz(W(Zl)) ¢ Fz([U), B =0,

but this contradicts the condition (2.7) of this theorem and so the assumption is wrong,
that is, [w(z)| < 1 for every z € U. The sharpness of this result follows from the fact that

Zl—/\
r(2_)l)(1+Bz)(A*B>/B, B+0,
D! f(z) = 1 . =
z Az _
ST N A B=0,
(A-B)/B
le(z) N (1+BZ) > B?é(), _
z {e“‘z, B=0,
(2.12)
(A-B)z
( (D'f(2) ):q x5 B0 _
DA.
/@ Az, B=0,
1+Az
7@ |1z PP
A
Df@@) 144z, B=0
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CoroLLARY 2.4. If f(2) € ¥} (A,B), then

|(r@-) ' Dif)" " 1] <1, B0,
(2.13)

’ log(I'(2 - M)z D} f(2)) A ‘

<1, B=0.

Proof. This corollary is a simple consequence of Theorem 2.3, and these inequalities are
known as the Marx-Strohhacker inequalities for the class ¥ (A, B). O

Next, our result is contained in the following theorem.

TueoreMm 2.5. If f(z) € ¥ (A,B), then

A1+ Br)(AfB)/B, B+0,
(2.14)

1-1(1 _ p,\(A-BV/B A 1
r'74(1 - Br) S|DZf(Z)|SF(2—A)

1-1 —Ar A 1
ri e S|D2f(z)|sl"(2—)t)

re-»a)

b
r(2-2)

ri-edr B =0.

These results are sharp because extremal function is the solution of the fractional differential
equation

1 1-2 (A-B)/B
) 71,(2_/1)2 (1+Bz) ,  B#0,
D;f(z) = 1 | (2.15)
1-1 ,Az —
T2 —/\)Z ez, B=0.
Proof. Janowski [1] proved that if p(z) € P (A, B), then
1 - ABr? (A-B)r
p(Z) B 1 - B2r2 < 1 - B2r2 ’ B%O, (216)

|p(z)—1| <Ar, B=0.

Using the definition of the class ¥} (A, B), the inequality (2.16) can be rewritten in the
form

(D'f(2))" 1-ABr*| (A-B)r

‘z D'f(z) 1-B? 1—B2r2’ B#0,

| ) (2.17)
‘ZW—I <Ar, B=0.
D'f(2)
From (2.17), with simple calculations, we get
1 - (A—B)r — AB#? (D*f(2))"\ _1+(A—B)r—ABr?
[~ B < Re(z D1 (2) < [_ g2 ,  B#0,
| , (2.18)
1-Ar< Re(zW) <1+Ar, B=0.
D f(z)
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Since

(DLf )\ _ 2,
Re(z DL f(2) >—rarlog|D f2)], (2.19)

using (2.18) and (2.19), we obtain

1-(A-B)r—ABr?
r(1+Br)(1 —Br)

1+ (A—-B)r — ABr?

r(1+Br)(1-Br) ’ B0,

< %log\DAf(zH <
(2.20)

1 d N 1

;—Aﬁglog“) f(Z)|S;+A, B=0.
Integrating both sides of (2.20) from 0 to r and after simple calculations, we complete the
proof of the theorem. O

COROLLARY 2.6. Giving specific values to A and B, one obtains the distortion of the following
class.

(i) &3 (1,-1),

(i) FF(1-2B,-1),0=<p<1,
(iii) ¥5(1,-1+ /M), M > 1/2,
(iv) I¥(B,—B), 0<p< 1.

Finally, we discuss the coefficient inequalities for f(z) € ¥ (A,B).
TueoreM 2.7. If f(z) € ¥} (A,B), then

JA=B| [T(n+1-1)| 1=
(n=DIT(n+1)|T(2 - )L)|Hk+|A Bl), B#0,

la,| < (2.21)

|A| [T(n+1- B
(n—1)!T(n+1)|T(2 - )L)|1_[ (k+14D), B=0.

Proof. Using the definition of the class, we can write, for B#0,

A ’
z(]’;;;ff;)) = p(z) = 2z(D'f(2) = D' f(2)p(z)
Ir(3)Ir(2-»1) Ir(4)rez-»a)
R ey 2+ 3as T(4—\) z
F(n+1I'2-A) ,
+e +nanm

=(1+piz+--+puz*+--+)

r'(3)re-»A r(4)re-x I'n+DI2-A) ,
-<z+a2wz2+agﬁ 34 --+anmz +)
(2.22)
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Equaling the coefficient of z” in both sides of (2.22), we get

1 n+1—)t)Z I'(k+1)

== Tntl) “T(ktl-2A

) AkPn-k>, a1 = L. (2.23)

On the other hand, if p(z) € (A, B), then |p,| < (A — B) (see [8]); so we obtain

|A Bl |[T(n+1-2A
(n—=1) T(n+1)

|an| <

I'(k
z|rk+-1|_1)/1)||ak|a lai| = 1. (2.24)

Using the induction method form (2.24), we obtain,

|A-B| [T(3-1)[T(2)
1 T3)[T2-N|’

lay| < forn =2,

M—B|HM—AHHm( |A_BU B
las| < > T[N 1 . , forn=3,
(2.25)
|A—B||F(5—A)|F(2)( |A—B|>< |A—B|) B
|a4|_ 3 I‘(5)|F(2—/\)| 1 1 1+ 5 ooy formn=4,
IA-B| |T(n+1-N)] =
|an|s( DIT(n+ D)[T2 - A|1_[ (k+]A - BJ).
O
Remark 2.8. One considers the extremal function f(z) defined by
2B ABE g
re-2a) ’ ’
D} f(z) = (2.26)
Zli/\ Az —
F(Z—A)e , B=0,
in Theorems 2.3 and 2.5.
If B =0, then
1 _ 1 1-1 Az
DZf(Z)_F(Z—A)Z e
1 = Al
T TR2- )t( z n—l)' ) (2.27)
V)= L 1, 3 Te=AI(n+1) )
b (z)_F(Z—A)(Z +§2 Tnt1-4) )
which gives
n—1 _
A" T(n+1-1) (2.28)

=T Dnln—1)
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If B#0, then
1 _
D} f(z) = r(z_k)z‘—l(HBz)(A B/
. o (A—B
:4[‘(2_A) Zl*/\_i_ngz nlil anlznf/l , (2‘29)
PR S RISl (.5 ) (R
b: (Z)_r(z—)t)(z1 +,§2 T(ntl-A) % )
which gives
A-B
a, = T B”*lw
SR nll(2 - 1)
_(A-B)(A-2B)(A-3B)---(A-(n—1)B)[(n+1-1) (2.30)
- nll(2—1)
(2= My (’“ . )
=7 1\ (A_ B) >
(D, JHI !

where (a),, denotes the Pochhammer symbol defined by

1 (7’120, a:,'éo),
(@), = (2.31)
a(a+1)(a+2)---(a+n—-1) (n=1,2,3,...),
SO
I(n+1-1) o
oo S ME=A=Dm-1-2) 21 = 2= Ay (2.32)

We note that, by giving specific values to A and B, we obtain the distortion and coef-
ficient inequalities for the classes & (1,—1), ¥ (1,0), I3 (B,—B) (0 << 1), F¥(1,-1+
/M) (M >1/2),and ¥} (1 -2f3,-1) (0 = f < 1).
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