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1. Introduction

LetΩ⊂RN , N ≥ 1, be a bounded domain with Lipschitz boundary ∂Ω. As V =W1,p(Ω)

and V0 =W
1,p
0 (Ω), 1 < p <∞, we denote the usual Sobolev spaces with their dual spaces

V∗ = (W1,p(Ω))∗ and V∗
0 =W−1,q(Ω), respectively (q is the Hölder conjugate of p). In

this paper, we consider the following elliptic variational-hemivariational inequality

u∈ K :
〈−Δpu+F(u),v−u

〉
+
∫

Ω
j0(u;v−u)dx ≥ 0, ∀v ∈ K , (1.1)

where j0(s;r) denotes the generalized directional derivative of the locally Lipschitz func-
tion j :R→R at s in the direction r given by

j0(s;r)= limsup
y→s,t↓0

j(y + tr)− j(y)
t (1.2)

(cf. [1, Chapter 2]), and K ⊂ V0 is some closed and convex subset. The operator Δpu =
div(|∇u|p−2∇u) is the p-Laplacian, 1 < p <∞, and F denotes the Nemytskij operator
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related to the function f :Ω×R×R→R given by

F(u)(x)= f
(
x,u(x),u(x)

)
. (1.3)

In [2] the method of sub- and supersolutions was developed for variational-hemivaria-
tional inequalities of the form (1.1) with F(u) ≡ f ∈ V∗

0 . The aim of this paper is the
generalization for discontinuous Nemytskij operators F : Lp(Ω)→Lq(Ω). Let us consider
some special cases of problem (1.1) as follows.

(i) For f ∈ V∗
0 , (1.1) is also a variational-hemivariational inequality which is dis-

cussed in [2].
(ii) If f : Ω×R→R is a Carathéodory function satisfying some growth condition

and j = 0, then (1.1) is a classical variational inequality of the form

u∈ K :
〈−Δpu+F(u),v−u

〉≥ 0, ∀v ∈ K , (1.4)

for which the method of sub- and supersolutions has been developed in [3,
Chapter 5].

(iii) For K = V0, f ∈ V∗
0 , and j :R→R smooth, (1.1) becomes a variational equality

of the form

u∈V0 :
〈−Δpu+ f + j′(u),ϕ

〉= 0, ∀ϕ∈V0, (1.5)

for which the sub-supersolution method is well known.

2. Notations and hypotheses

For functions u,v :Ω→R, we use the notation u∧ v =min(u,v), u∨ v =max(u,v), K ∧
K = {u∧ v : u,v ∈ K}, K ∨K = {u∨ v : u,v ∈ K}, and u∧K = {u}∧K , u∨K = {u}∨
K and introduce the following definitions.

Definition 2.1. A function u∈V is called a subsolution of (1.1) if the following holds:
(1) u≤ 0 on ∂Ω and F(u)∈ Lq(Ω);
(2) 〈−Δpu+F(u),w−u〉+ ∫Ω j0(u;w−u)dx ≥ 0,∀w ∈ u∧K .

Definition 2.2. A function u∈V is called a supersolution of (1.1) if the following holds:
(1) u≥ 0 on ∂Ω and F(u)∈ Lq(Ω);
(2) 〈−Δpu+F(u),w−u〉+ ∫Ω j0(u;w−u)dx ≥ 0,∀w ∈ u∨K .

Definition 2.3. The multivalued operator ∂ j : R→2R \ {∅} is called Clarke’s generalized
gradient of j defined by

∂ j(s) := {ξ ∈R : j0(s;r)≥ ξr,∀r ∈R}. (2.1)

We impose the following hypotheses for j and the nonlinearity f in problem (1.1).
(A) There exists a constant c1 ≥ 0 such that

ξ1 ≤ ξ2 + c1
(
s2− s1

)p−1 (2.2)

for all ξi ∈ ∂ j(si), i= 1,2, and for all s1, s2 with s1 < s2.
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(B) There is a constant c2 ≥ 0 such that

ξ ∈ ∂ j(s) : |ξ| ≤ c2
(
1+ |s|p−1), ∀s∈R. (2.3)

(C) (i) x �→ f (x,r,u(x)) is measurable for all r ∈R and for all measurable functions
u :Ω→R.

(ii) r �→ f (x,r,s) is continuous for all s∈R and for almost all x ∈Ω.
(iii) s �→ f (x,r,s) is decreasing for all r ∈R and for almost all x ∈Ω.
(iv) For a given ordered pair of sub- and supersolutions u,u of problem (1.1),

there exists a function k1 ∈ L
q
+(Ω) such that | f (x,r,s)| ≤ k1(x) for all r,s∈

[u(x),u(x)] and for almost all x ∈Ω.

By [4] the mapping x �→ f (x,u(x),u(x)) is measurable for x �→ u(x) measurable, but
the associated Nemytskij operator F : Lp(Ω)→Lq(Ω) needs not necessarily be continuous.
In this paper we assume K has lattice structure, that is, K fulfills

K ∨K ⊂ K , K ∧K ⊂ K. (2.4)

We recall that the normed space Lp(Ω) is equipped with the natural partial ordering of
functions defined by u ≤ v if and only if v − u ∈ L

p
+(Ω), where L

p
+(Ω) is the set of all

nonnegative functions of Lp(Ω).

3. Preliminaries

Here we consider (1.1) for a Carathéodory function h :Ω×R→R (i.e., x �→ h(x,s) is mea-
surable in Ω for all s∈R and s �→ h(x,s) is continuous on R for almost all x ∈Ω), which
fulfills the following growth condition:

∣
∣h(x,s)

∣
∣≤ k2(x), ∀s∈ [u(x),u(x)] and for a.e. x ∈Ω, (3.1)

where k2 ∈ L
q
+(Ω) and [u,u] is some ordered pair in Lp(Ω), specified later. Note that

the associated Nemytskij operator H defined by H(u)(x)= h(x,u(x)) is continuous and
bounded from [u,u]⊂ Lp(Ω) to Lq(Ω) (cf. [5]). Next we introduce the indicator function
IK :V0→R∪{+∞} related to the closed convex set K �=∅ given by

IK (u)=
⎧
⎨

⎩
0 if u∈ K ,

+∞ if u �∈ K ,
(3.2)

which is known to be proper, convex, and lower semicontinuous. The variational-hemi-
variational inequality (1.1) can be rewritten as follows: find u∈V0 such that

〈−Δpu+H(u),v−u
〉
+ IK (v)− IK (u) +

∫

Ω
j0(u;v−u)dx ≥ 0, ∀v ∈V0. (3.3)

If H(u) ≡ h ∈ V∗
0 , problem (3.3) is a special case of the elliptic variational-hemivaria-

tional inequality in [3, Corollary 7.15] for which the method of sub- and supersolutions
was developed. In the next result, we show the existence of extremal solutions of (3.3) for
a Carathéodory function h= h(x,s).
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Lemma 3.1. Let hypotheses (A),(B), and (2.4) be satisfied and assume the existence of sub-
and supersolutions u and u satisfying u ≤ u, u∨K ⊂ K , and u∧K ⊂ K . Furthermore we
suppose that the Carathéodory function h :Ω×R→R satisfies (3.1). Then, (3.3) has a great-
est solution u∗ and a smallest solution u∗ such that

u≤ u∗ ≤ u∗ ≤ u, (3.4)

that is, u∗ and u∗ are solutions of (3.3) that satisfy (3.4), and if u is any solution of (3.3)
such that u≤ u≤ u, then u∗ ≤ u≤ u∗.

Proof. The proof follows the same ideas as in the proof for H(u)≡ h∈V∗
0 with an addi-

tional modification. We only introduce a truncation operator related to the functions u
and u defined by

Tu(x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x) if u(x) > u(x),

u(x) if u(x)≤ u(x)≤ u(x),

u(x) if u(x) < u(x).

(3.5)

The mapping T is continuous and bounded from V into V which follows from the fact
that the functions min(·,·) and max(·,·) are continuous from V to itself and that T
can be represented as Tu=max(u,u) +min(u,u)−u (cf. [6]). In the auxiliary problems
of the proof of [3, Corollary 7.15], we replace h ∈ V∗

0 by (H ◦ T)(u) and argue in an
analogous way. �

An important tool in extending the previous result to discontinuous Nemytskij oper-
ators is the next fixed point result. The proof of this Lemma can be found in [7, Theorem
1.1.1].

Lemma 3.2. Let P be a subset of an ordered normed space, G : P→P an increasing mapping,
and G[P]= {Gx | x ∈ P}.

(1) IfG[P] has a lower bound in P and the increasing sequences ofG[P] converge weakly
in P, then G has the least fixed point x∗, and x∗ =min{x |Gx ≤ x}.

(2) If G[P] has an upper bound in P and the decreasing sequences of G[P] converge
weakly in P, then G has the greatest fixed point x∗, and x∗ =max{x | x ≤Gx}.

4. Main results

One of our main results is the following theorem.

Theorem 4.1. Let hypotheses (A)–(C), (2.4) be satisfied and assume the existence of sub-
and supersolutions u and u satisfying u ≤ u, u∨ K ⊂ K , and u∧ K ⊂ K . If f is right-
continuous (resp., left-continuous) in the third argument, then there exists a greatest solution
u∗ (resp., a smallest solution u∗) of (1.1) in the order interval [u,u].

Proof. We choose a fixed element z ∈ [u,u] which is a supersolution of (1.1) satisfying
z∧K ⊂ K and consider the following auxiliary problem:

u∈ K :
〈−Δpu+Fz(u),v−u

〉
+
∫

Ω
j0(u;v−u)dx ≥ 0, ∀v ∈ K , (4.1)
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where Fz(u)(x)= f (x,u(x),z(x)). It is readily seen that the mapping (x,u) �→ f (x,u,z(x))
is a Carathéodory function satisfying some growth condition as in (3.1). Since Fz(z) =
F(z), z is also a supersolution of (4.1). By Definition 2.1, we have for a given subsolution
u of (1.1)

〈−Δpu+F(u),w−u
〉
+
∫

Ω
j0(u;w−u)dx ≥ 0, ∀w ∈ u∧K. (4.2)

Setting w = u− (u− v)+ for all v ∈ K and using the monotonicity of f with respect to s,
we get

0≥ 〈−Δpu+F(u),(u− v)+
〉−

∫

Ω
j0
(
u;−(u− v)+

)
dx

≥ 〈−Δpu+Fz(u),(u− v)+
〉−

∫

Ω
j0
(
u;−(u− v)+

)
dx, ∀v ∈ K ,

(4.3)

which shows that u is also a subsolution of (4.1). Lemma 3.1 implies the existence of a
greatest solution u∗ ∈ [u,z] of (4.1). Now we introduce the set A given by A := {z ∈ V :
z ∈ [u,u] and z is a supersolution of (1.1) satisfying z∧K ⊂ K} and define the operator
L : A→K by z �→ u∗ =: Lz. This means that the operator L assigns to each z ∈A the great-
est solution u∗ of (4.1) in [u,z]. In the next step we construct a decreasing sequence as
follows:

u0 := u

u1 := Lu0 with u1 ∈
[
u,u0

]

u2 := Lu1 with u2 ∈
[
u,u1

]

...

un := Lun−1 with un ∈
[
u,un−1

]
.

(4.4)

As un ∈ [u,un−1], we get un(x)↘ u(x) a.e. x∈Ω. Furthermore, the sequence un is bounded
in V0, that is, ‖un‖V0 ≤ C for all n and due to the monotony of un and the compact em-
bedding V0↩Lp(Ω), we obtain

un⇀ u inV0, un −→ u in Lp(Ω) and a.e. pointwise inΩ. (4.5)

The fact that un is a solution of (4.1) with z = un−1 and v = u∈ K results in

〈−Δpun,un−u
〉≤ 〈Fun−1 (un),u−un

〉
+
∫

Ω
j0
(
u;u−un

)
dx. (4.6)

Applying Fatou’s Lemma, (4.5), and the upper semicontinuity of j0(·,·) yields

limsup
n→∞

〈−Δpun,un−u
〉≤ limsup

n→∞
‖k‖Lq(Ω)

∥
∥u−un

∥
∥
Lp(Ω)

︸ ︷︷ ︸
→0

+
∫

Ω
limsup
n→∞

j0
(
u;u−un

)

︸ ︷︷ ︸
≤ j0(u;0)=0

dx≤0,

(4.7)
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which by the S+-property of −Δp on V0 along with (4.5) implies

un −→ u inV0. (4.8)

The right-continuity of f and the strong convergence of the decreasing sequence (un)
along with the upper semicontinuity of j0(·;·) allow us to pass to the limsup in (4.1),
where u (resp., z) is replaced by un (resp., un−1). We have

0≤ limsup
n→∞

〈−Δpun +Fun−1
(
un
)
,v−un

〉
+ limsup

n→∞

∫

Ω
j0
(
un;v−un

)
dx

≤ lim
n→∞

〈−Δpun +Fun−1
(
un
)
,v−un

〉
+
∫

Ω
limsup
n→∞

j0
(
un;v−un

)
dx

≤ 〈−Δpu+Fu(u),v−u
〉
+
∫

Ω
j0(u;v−u)dx, ∀v ∈ K.

(4.9)

This shows that u is a solution of (1.1) in the order interval [u,u]. Now, we still have
to prove that u is the greatest solution of (1.1) in [u,u]. Let ũ be any solution of (1.1)
in [u,u]. Because of the fact that K has lattice structure, ũ is also a subsolution of (1.1),
respectively, a subsolution of (4.1). By the same construction as in (4.4), we obtain

ũ0 := u

ũ1 := Lu0 with ũ1 ∈
[
ũ,u0

]

ũ2 := Lu1 with ũ2 ∈
[
ũ,u1

]

...

ũn := Lun−1 with ũn ∈
[
ũ,un−1

]
.

(4.10)

Obviously, the sequences in (4.4) and (4.10) create the same extremal solutions un and
ũn, which implies that ũ≤ ũn = un for all n. Passing to the limit delivers the assertion. The
existence of a smallest solution can be shown in a similar way. �

In the next theorem we will prove that only the monotony of f in the third argument
is sufficient for the existence of extremal solutions. The function f needs neither be right-
continuous nor left-continuous.

Theorem 4.2. Assume that hypotheses (A)–(C), (2.4) are valid and let u and u be sub-
and supersolutions of (1.1) satisfying u ≤ u, u∨K ⊂ K , and u∧K ⊂ K . Then there exist
extremal solutions u∗ and u∗ of (1.1) with u≤ u∗ ≤ u∗ ≤ u.

Proof. As in the proof of Theorem 4.1, we consider the following auxiliary problem:

u∈ K :
〈−Δpu+Fz(u),v−u

〉
+
∫

Ω
j0(u;v−u)dx ≥ 0, ∀v ∈ K , (4.11)

where Fz(u)(x) = f (x,u(x),z(x)). We define again the set A := {z ∈ V : z ∈ [u,u] and z
is a supersolution of (1.1) satisfying z∧K ⊂ K} and introduce the fixed point operator
L : A→K by z �→ u∗ =: Lz. For a given supersolution z ∈ A, the element Lz is the greatest
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solution of (4.11) in [u,z], and thus it holds that u ≤ Lz ≤ z for all z ∈ A which implies
L : A→[u,u]. Because of (2.4), Lz is also a supersolution of (4.11) satisfying

〈−ΔpLz+Fz(Lz),w−Lz
〉
+
∫

Ω
j0(Lz;w−Lz)dx ≥ 0, ∀w ∈ Lz∨K. (4.12)

By the monotonicity of f with respect to Lz ≤ z and using the representation w = Lz +
(v−Lz)+ for any v ∈ K , we obtain

0≤ 〈−ΔpLz+Fz(Lz),(v−Lz)+
〉
+
∫

Ω
j0
(
Lz; (v−Lz)+

)
dx

≤ 〈−ΔpLz+FLz(Lz),(v−Lz)+
〉
+
∫

Ω
j0
(
Lz; (v−Lz)+

)
dx, ∀v ∈ K.

(4.13)

Consequently, Lz is a supersolution of (1.1). This shows L : A→A.
Let v1,v2 ∈A and assume that v1 ≤ v2. Then we have

Lv1 ∈ [u,v1] is the greatest solution of

〈−Δpu+Fv1 (u),v−u
〉
+
∫

Ω
j0(u;v−u)dx ≥ 0, ∀v ∈ K ,

(4.14)

Lv2 ∈ [u,v2] is the greatest solution of

〈−Δpu+Fv2 (u),v−u
〉
+
∫

Ω
j0(u;v−u)dx ≥ 0, ∀v ∈ K.

(4.15)

Since v1 ≤ v2, it follows that Lv1 ≤ v2 and due to (2.4), Lv1 is also a subsolution of (4.14),
that is, (4.14) holds, in particular, for v ∈ Lv1∧K , that is,

〈−ΔpLv1 +Fv1
(
Lv1
)
,
(
Lv1− v

)+〉−
∫

Ω
j0
(
Lv1;−

(
Lv1− v

)+)
dx ≤ 0, ∀v ∈ K.

(4.16)

Using the monotonicity of f with respect to s yields

0≥ 〈−ΔpLv1 +Fv1
(
Lv1
)
,
(
Lv1− v

)+〉−
∫

Ω
j0
(
Lv1;−

(
Lv1− v

)+)
dx

≥ 〈−ΔpLv1 +Fv2
(
Lv1
)
,
(
Lv1− v

)+〉−
∫

Ω
j0
(
Lv1;−

(
Lv1− v

)+)
dx, ∀v ∈ K ,

(4.17)

and hence Lv1 is a subsolution of (4.15). By Lemma 3.1, we know there exists a greatest
solution of (4.15) in [Lv1,v2]. But Lv2 is the greatest solution of (4.15) in [u,v2]⊇ [Lv1,v2]
and therefore, Lv1 ≤ Lv2. This shows that L is increasing.

In the last step we have to prove that any decreasing sequence of L(A) converges weakly
in A. Let (un)= (Lzn)⊂ L(A)⊂ A be a decreasing sequence. The same argument as in the
proof of Theorem 4.1 delivers un(x)↘ u(x) a.e. x ∈Ω. The boundedness of un in V0, and
the compact imbedding V0↩Lp(Ω) along with the monotony of un implies

un⇀ u inV0, un −→ u in Lp(Ω) and a.e. x ∈Ω. (4.18)
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Since un ∈ K solves (4.11), it follows u∈ K . From (4.11) with u replaced by un and v by
u and with the fact that (s,r) �→ j0(s;r) is upper semicontinuous, we obtain by applying
Fatou’s Lemma

limsup
n→∞

〈−Δpun,un−u
〉≤ limsup

n→∞

〈
Fzn
(
un
)
,u−un

〉
+ limsup

n→∞

∫

Ω
j0
(
un;u−un

)
dx

≤ limsup
n→∞

〈
Fzn
(
un
)
,u−un

〉

︸ ︷︷ ︸
→0

+
∫

Ω
limsup
n→∞

j0
(
un;u−un

)

︸ ︷︷ ︸
≤ j0(u;0)=0

dx ≤ 0.

(4.19)

The S+-property of −Δp provides the strong convergence of (un) in V0. As Lzn = un is
also a supersolution of (4.11), Definition 2.2 yields

〈−Δpun +Fzn
(
un
)
,
(
v−un

)+〉
+
∫

Ω
j0
(
un;
(
v−un

)+)
dx ≥ 0, ∀v ∈ K. (4.20)

Due to zn ≥ un ≥ u and the monotonicity of f , we get

0≤ 〈−Δpun +Fzn
(
un
)
,
(
v−un

)+〉
+
∫

Ω
j0
(
un;
(
v−un

)+)
dx

≤ 〈−Δpun +Fu
(
un
)
,
(
v−un

)+〉
+
∫

Ω
j0
(
un;
(
v−un

)+)
dx, ∀v ∈ K ,

(4.21)

and, since the mapping u �→ u+ =max(u,0) is continuous from V0 to itself (cf. [6]), we
can pass to the upper limit on the right-hand side for n→∞. This yields

〈−Δpu+Fu(u),(v−u)+
〉
+
∫

Ω
j0
(
u;
(
v−u

)+)
dx ≥ 0, ∀v ∈ K , (4.22)

which shows that u is a supersolution of (1.1), that is, u∈ A. As u is an upper bound of
L(A), we can apply Lemma 3.2, which yields the existence of a greatest fixed point u∗ of
L in A. This implies that u∗ must be the greatest solution of (1.1) in [u,u]. By analogous
reasoning, one shows the existence of a smallest solution u∗ of (1.1). This completes the
proof of the theorem. �

Application. In the last part, we give an example of the construction of sub- and super-
solutions of problem (1.1). We denote by λ1 > 0 the first eigenvalue of (−Δp,V0) and by
ϕ1 the eigenfunction of (−Δp,V0) corresponding to λ1 satisfying ϕ1 ∈ int(C1

0(Ω)+) and
‖ϕ‖p = 1 (cf. [8]). Here, int(C1

0(Ω)+) describes the interior of the positive cone C
1
0(Ω)+

given by

int
(
C1
0(Ω)+

)=
{
u∈ C1

0(Ω) : u(x) > 0,∀x ∈Ω, and
∂u

∂n
(x) < 0,∀x ∈ ∂Ω

}
. (4.23)

We suppose the following conditions for f and Clarke’s generalized gradient of j, where
λ > λ1 is any fixed constant:
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(D) (i)

lim
|s|→∞

(
f (x,s,s)
|s|p−2s

)
= +∞, (4.24)

uniformly with respect to a.a. x ∈Ω,
(ii)

lim
s→0

(
f (x,s,s)
|s|p−2s

)
=−λ, (4.25)

uniformly with respect to a.a. x ∈Ω,
(iii)

lim
s→0

(
ξ

|s|p−2s
)
= 0, (4.26)

uniformly with respect to a.a. x ∈Ω, for all ξ ∈ ∂ j(s),
(iv) f is bounded on bounded sets.

Proposition 4.3. Assume hypotheses (A), (B), (C)(i)–(iv), and (D). Then there exists a
constant aλ such that aλe and −aλe are supersolution and subsolution of problem (1.1),
where e ∈ int(C1

0(Ω)+) is the unique solution of −Δpu = 1 in V0. Moreover, −εϕ1 is a su-
persolution and εϕ1 is a subsolution of (1.1) provided that ε > 0 is sufficiently small.

Proof. A sufficient condition for a subsolution u ∈ V of problem (1.1) is u ≤ 0 on ∂Ω,
F(u)∈ Lq(Ω), and

−Δpu+F(u) + ξ ≤ 0 inV∗
0 ,∀ξ ∈ ∂ j(u). (4.27)

Multiplying (4.27) with (u− v)+ ∈ V0∩ L
p
+(Ω) and using the fact j0(u;−1)≥−ξ, for all

ξ ∈ ∂ j(u), yield

0≥ 〈−Δpu+F(u) + ξ, (u− v)+
〉= 〈−Δpu+F(u),(u− v)+

〉
+
∫

Ω
ξ(u− v)+dx

≥ 〈−Δpu+F(u),(u− v)+
〉−

∫

Ω
j0(u;−1)(u− v)+dx

= 〈−Δpu+F(u),(u− v)+
〉−

∫

Ω
j0(u;−(u− v)+)dx, ∀v ∈ K ,

(4.28)

and thus, u is a subsolution of (1.1). Analogously, u ∈ V is a supersolution of problem
(1.1) if u≥ 0 on ∂Ω, F(u)∈ Lq(Ω), and if the following inequality is satisfied,

−Δpu+F(u) + ξ ≥ 0 inV∗
0 , ∀ξ ∈ ∂ j(u). (4.29)

The main idea of this proof is to show the applicability of [9, Lemmas 2.1–2.3]. We put
g(x,s) = f (x,s,s) + ξ + λ|s|p−2s for ξ ∈ ∂ j(s) and notice that in our considerations the
nonlinearity g needs not be a continuous function. In view of assumption (B), we see at
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once that

|ξ|
|s|p−1 ≤ c, for|s| ≥ k > 0, ∀ξ ∈ ∂ j(s), (4.30)

where c is a positive constant. This fact and the condition (D) yield the following limit
values:

lim
|s|→∞

g(x,s)
|s|p−2s = +∞, lim

s→0

g(x,s)
|s|p−2s = 0. (4.31)

By [9, Lemmas 2.1–2.3], we obtain a pair of positive sub- and supersolutions given by
u = εϕ1 and u = aλe, respectively, a pair of negative sub- and supersolutions given by
u=−aλe and u=−εϕ1. �

In order to apply Theorem 4.2, we need to satisfy the assumptions

u∨K ⊂ K , u∧K ⊂ K , K ∨K ⊂ K , K ∧K ⊂ K , (4.32)

which depend on the specific K . For example, we consider an obstacle problem given by

K = {v ∈V0 : v(x)≤ ψ(x) for a .e. x ∈Ω
}
, ψ ∈ L∞(Ω), ψ ≥ C > 0, (4.33)

where C is a positive constant. One can show that for the positive pair of sub- and su-
persolutions in Proposition 4.3, all these conditions in (4.32) with respect to the closed
convex set K defined in (4.33) can be satisfied.

Example 4.4. The function f :R×R→R defined by

f (r,s)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−(λ+1)|s|p−2s+ |r|p−1r for s <−1,
−λ|s|p−2s+ |r|p−1r for − 1≤ s≤ 1,

−(λ+1)|s|p−2s+ |r|p−1r for s > 1

(4.34)

fulfills the assumption (C)(i)–(iv) with respect to u, u defined in Proposition 4.3. More-
over f satisfies the conditions (D)(i)-(ii), (D)(iv), where λ > λ1 is fixed.
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[7] S. Carl and S. Heikkilä, Nonlinear Differential Equations in Ordered Spaces, Chapman &
Hall/CRC, Boca Raton, Fla, USA, 2000.
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