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Abstract
This article provides a Li–Yau-type gradient estimate for a semilinear weighted
parabolic system of semilinear equations along an abstract geometric flow on a
smooth measure space. A Harnack-type inequality on the system is also derived at the
end.
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1 Introduction
In the field of modern geometric analysis, a challenging problem is to determine the in-
trinsic qualities of a heat type equation on an evolving manifold. Gradient estimation is
a standard technique to understand the local and global behavior of positive solutions to
the heat type equation. Heat type equations are very much well known in mathematics
and physics. This type of study becomes more interesting when different curvature re-
strictions were introduced. This estimation was popularized after the work of Li and Yau
[14], where they studied the equation

(� – q(x) – ∂t)u(x, t) = 0,

and stated a bound for the quantity ‖∇u‖
u , where � is the Laplace–Beltrami operator and ∇

is the gradient operator. Today this estimation is known as Li–Yau-type estimation. Next,
P. Souplet and Q. S. Zhang [21] established an elliptic type gradient estimate for bounded
solutions of the heat equation for complete noncompact manifold, by adding a logarith-
mic correction term. This is called the Souplet–Zhang-type gradient estimate. In [8, 9],
Hamilton developed a Harnack estimate on Riemannian manifold with weakly positive
Ricci tensor, which was used in solving the Poincaré conjecture. In recent days, Hui et al.
[12] studied Hamilton–Souplet–Zhang-type estimation along general geometric flow. In
[10] Hui et al. studied weighted elliptic equations on weighted Riemannian manifold not
evolving along any geometric flow. Next, for system of equations on Riemannian mani-
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folds, we can start with Shen and Ding’s [20] study on the system

⎧
⎨

⎩

ut = �um + k1(t)f1(v),

vt = �vn + k2(t)f2(u),

with nonlinear boundary conditions. They proved that the above system blows up in fi-
nite time using differential Sobolev inequality. Wu and Yang [24] established the global
existence and finite time blow up of the solution of the semilinear system

⎧
⎨

⎩

ut = �u + eαtvp,

vt = �v + eβtuq.
(1)

There are numerous applications of the relevant equations and inequalities. One can see
[7, 13, 16–18, 27] and the references therein for applications.

Motivated by the works of Wu [23], we consider a closed n-dimensional weighted Rie-
mannian manifold with Riemannian metric g denoted by (Mn, g, e–φdμ), also known as
smooth measure space, where e–φdμ is the weighted volume form and φ is a twice differ-
entiable function on M. Let the Riemannian metric g(t) be evolving along the geometric
flow

∂

∂t
gij = 2Sij, (2)

where S(ei, ej) := Sij(t) is a smooth symmetric 2-tensor on (M, g(t)). We denote S = tr(Sij) =
gijSij. Some important of geometric flows are the Ricci flow [8] when Sij = –Ricij, where
Ric is the Ricci tensor, Yamabe flow [6] when Sij = – 1

2 Rgij, where R is the scalar curva-
ture, Ricci–Bourguignon flow [5] when Sij = –Ricij + ρRgij, where ρ is constant. For any
twice differentiable function φ on M and any smooth function f , the weighted Laplacian
operator is defined by

�φ f = �f – ∇φ∇f ,

where � is the Laplace–Beltrami operator.
Differential Harnack estimations on system (1) have been studied by Wu [23] on hyper-

bolic spaces. We have already studied the Hamilton and Souplet–Zhang-type estimation
for positive solution [11] for positive solutions of the following system of weighted semi-
linear heat type equations

⎧
⎨

⎩

�φ f – ft = –eλ1thp,

�φh – ht = –eλ2t f q,
(3)

where p, q, λ1, λ2 are positive constants and f , h are smooth functions on M. In this article,
we consider the system (3) along the geometric flow (2), and we confined ourselves to Li–
Yau-type gradient estimate of (3) along (2). Our results are the generalization of the results
Wu [23].
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2 Preliminaries
This section contains some basic results and evolution formulas related to the gradient
estimation.

Lemma 1 [2] The weighted Bochner formula for any smooth function u is given by

1
2
�φ‖∇u‖2 = ‖Hess u‖2 + 〈∇�φu,∇u〉 + Ricφ(∇u,∇u),

where Ricφ := Ric + Hess φ, is called the Bakry–Émery–Ricci tensor and Hess is the Hessian
operator. For m > n, the (m – n)-Bakry–Émery–Ricci tensor [3] is given by

Ricm–n
φ := Ric + Hess φ –

∇φ ⊗ ∇φ

m – n
.

Lemma 2 [2] If a Riemannian manifold M evolves by the geometric flow (2), then for any
smooth function u, the expression ‖∇u‖2 evolves by

∂

∂t
‖∇u‖2 = –2S(∇u,∇u) + 2〈∇u,∇ut〉,

and the expression �φu evolves by

∂

∂t
(�φu) = �φut – 2Sij∇i∇ju – 〈2div Sij – ∇S,∇u〉 + 2S(∇φ,∇u) – 〈∇u,∇φt〉,

where div Sij denotes the divergence of Sij.

Lemma 3 [2] For any smooth function f and m > n, we have

‖Hess f ‖2 ≥ (�φ f )2

m
–

1
m – n

〈∇f ,∇φ〉2. (4)

Lemma 4 (Young’s inequality) [26] If a, b are nonnegative real numbers and p > 1, q > 1
are real numbers such that 1

p + 1
q = 1, then

ab ≤ ap

p
+

bq

q
. (5)

For any α > 0, we see that

ab ≤ αpap

p
+

bq

αqq
. (6)

The above inequality is a generalized version of Young’s inequality. For convenience, we
categorize both (5) and (6) as Young’s inequality.

Let T > 0 be any real number. For any two points x, y ∈ M and for any t ∈ [0, T], the
quantity d(x, y, t) denotes the geodesic distance between x and y under the metric g(t).
For any fixed x0 ∈ M and R > 0, we define a compact set Q2R,T = {(x, t) : d(x, x0, t) ≤ 2R, 0 ≤
t ≤ T} ⊂ Mn × (–∞, +∞).
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Let ψ : [0,∞) → [0, 1] be a C2-cut off function given by

ψ(s) =

⎧
⎨

⎩

1, s ∈ [0, 1],

0, s ∈ [2,∞),
(7)

satisfying ψ(s) ∈ [0, 1], –c0 ≤ ψ ′(s) ≤ 0, ψ ′′(s) ≥ –c1 and ‖ψ ′′(s)‖2

ψ(s) ≤ c1, where c1 is a con-
stant. For R > 1, we define

η(x, t) = ψ

(
r(x, t)

R

)

, (8)

where r(x, t) = d(x, x0, t). Since ψ is Lipschitz, so by Calabi’s argument [4], we can assume
that ψ is everywhere smooth and hence we can use maximum principle to find our esti-
mation. Using generalized Laplacian comparison theorem [15, 19, 25], we get

(i) �φr(x, t) ≤ (m – 1)
√

k1 coth(
√

k1r(x, t)),
(ii) �φη ≥ – c0

R (m – 1)(
√

k1 + 2
R ) – c1

R2 ,
(iii) ‖∇η‖2

∇η
≤ c1

R2 .

3 Li–Yau-type gradient estimation
In this section, we provide a detailed derivation of the Li–Yau-type estimation of the sys-
tem (3) along the flow (2). At the end, a Harnack-type inequality is also derived.

Fix x0 in M and let T > 0 be any real number. Throughout the paper, we consider (f , h) =
(eu, ev) as a positive solution to the system (3) with the restrictions

κ̃1 ≤ u ≤ κ1,

κ̃2 ≤ v ≤ κ2,

for some positive constants κ1, κ2, κ̃1, κ̃2. We define some nonnegative constants
sup

Q2R,T
‖∇φ‖ = m1, sup

Q2R,T
‖∇φt‖ = γ1,

sup
M×[0,T]

‖∇φ‖ = M1, sup
M×[0,T]

‖∇φt‖ = 
1,

Putting f = eu, h = ev in (3), we have

⎧
⎨

⎩

�φu – ut = –‖∇u‖2 – eλ1t+vp–u

�φv – vt = –‖∇v‖2 – eλ2t+uq–v.
(9)

Let ū = –eλ1t+vp–u and v̄ = –eλ2t+uq–v, hence system (9) reduces to

⎧
⎨

⎩

(�φ – ∂t)u = –‖∇u‖2 + ū

(�φ – ∂t)v = –‖∇v‖2 + v̄.
(10)

Lemma 5 Let (u, v) be a solution to the equation (10). If there exist positive constants k1,
k2, k3, k4 such that

Ricm–n
φ ≥ –(m – 1)k1g, –k2g ≤ S ≤ k3g, ‖∇S‖ ≤ k4
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on Q2R,T , then for any ε ∈ (0, 1
λ

), the function F1 := t(‖∇u‖2 – λ(ut + ū)) satisfies

(�φ – ∂t)F1 ≥ 2t(1 – λε)
(�φu)2

m
–

λtk2

2ε
‖∇u‖2 – 2λtk2ε‖∇φ‖2 – 2∇F1∇u –

F1

t

– 2t(1 – λε)(m – 1)k1‖∇u‖2 – 2t(λ – 1)k3‖∇u‖2 –
nλt
2ε

(k2 + k3)2

– 3λt
√

nk4‖∇u‖2 + H (11)

and the function F2 := t(‖∇v‖2 – λ(vt + v̄)) satisfies

(�φ – ∂t)F2 ≥ 2t(1 – λε)
(�φv)2

m
–

λtk2

2ε
‖∇v‖2 – 2λtk2ε‖∇φ‖2 – 2∇F2∇v –

F2

t

– 2t(1 – λε)(m – 1)k1‖∇v‖2 – 2t(λ – 1)k3‖∇v‖2 –
nλt
2ε

(k2 + k3)2

– 3λt
√

nk4‖∇v‖2 + K (12)

where H = –2t(λ – 1)∇ū∇u – λt∇u∇φt – λt�φ ū and K = –2t(λ – 1)∇ v̄∇v – λt∇v∇φt –
λt�φ v̄.

Proof Given that F1 = t(‖∇u‖2 – λ(ut + ū)). Using Lemma 1 we have

�φF1 = 2t‖Hess u‖2 + 2t〈∇�φu,∇u〉 + 2tRicφ(∇u,∇u) – λt�φut – λt�φ ū. (13)

From F1
t = ‖∇u‖2 – λ(ut + ū), we get

�φu = –
F1

t
– (λ – 1)(ut + ū), (14)

∇�φu = –
∇F1

t
– (λ – 1)(∇ut + ∇ū). (15)

Using (14) and (15) in (13) we deduce

�φF1 = 2t‖Hess u‖2 – 2∇F1∇u – 2t(λ – 1)(∇ut + ∇ū)∇u + 2tRicφ(∇u,∇u)

–λt�φut – λt�φ ū. (16)

From (14), we get ∂t(�φu) =
F1

t2 –
∂tF1

t
– (λ – 1)(utt + ūt). Thus (16) reduces to

�φF1 = 2t‖Hess u‖2 – 2∇F1∇u – 2t(λ – 1)(∇ut + ∇ū)∇u + 2tRicφ(∇u,∇u)

–
λF1

t
+ λ∂tF1 + λ(λ – 1)t(utt + ūt) – λt〈2div Sij – ∇S,∇u〉

–2λt〈S , Hess u〉 + 2λtS(∇φ,∇u) – λt〈∇u,∇φt〉 – λt�φ ū. (17)

By Lemma 2, the evolution of F1 is given by

∂tF1 =
F1

t
+ t(∂t‖∇u‖2 – λ(utt + ūt))

=
F1

t
+ t(–2S(∇u,∇u) + 2〈∇u,∇ut〉) – λt(utt + ūt). (18)



Li et al. Journal of Inequalities and Applications        (2024) 2024:131 Page 6 of 16

Combining (17) and (18), we have

(�φ – ∂t)F1 = 2t‖Hess u‖2 + 2tRicφ(∇u,∇u) – 2∇F1∇u –
F1

t
+ 2λtS(∇φ,∇u)

–2t(λ – 1)S(∇u,∇u) – λt〈2div Sij – ∇S,∇u〉 – 2λt〈S , Hess u〉

–2λt〈div Sij –
1
2
∇S,∇u〉 + H, (19)

where H = –2t(λ – 1)∇ū∇u – λt∇u∇φt – λt�φ ū.
Since –(k2 + k3)gij ≤ Sij ≤ (k2 + k3)gij implies ‖S‖2 ≤ n(k2 + k3)2, hence for any ε ∈ (0, 1

λ
)

using Young’s inequality we get

〈S , Hess u〉 ≤ ε‖Hess u‖2 +
n
4ε

(k2 + k3)2, (20)

2λtS(∇φ,∇u) ≥ –
λtk2

2ε
‖∇u‖2 – 2λtk2ε‖∇φ‖2. (21)

In similar way we find

‖divSij –
1
2
∇S‖ ≤ 3

2
√

nk4, (22)

and using Lemma 3 we get

‖Hess u‖2 ≥ (�φu)2

m
–

1
m – n

〈∇u,∇φ〉2. (23)

Using (20) to (23) in (19) we have (11).
Due to the symmetry in the system of equations (10), replacing F1 by F2, u with v and

H by K in (11) we obtain (12). �

Theorem 1 If k1, k2, k3, k4 are positive constants such that

Ricm–n
φ ≥ –(m – 1)k1g, –k2g ≤ S ≤ k3g, ‖∇S‖ ≤ k4

on Q2R,T and (f , h) is a positive solution to the system (3) along the flow (2), then for any for
any λ > 1 and ε ∈ (0, 1

λ
) we have

‖∇f ‖2

f 2 – λ

(
ft

f
– eλ1thp

)

≤ 4mλ2

3t(1 – λε)
+

2mλ2

3(1 – λε)
(2� + (ū∗ + v̄∗)) + D1, (24)

‖∇h‖2

h2 – λ

(
ht

h
– eλ2t f q

)

≤ 4mλ2

3t(1 – λε)
+

2mλ2

3(1 – λε)

(
11
4

� + (ū∗ +
7
4

v̄∗)

)

+ D̃1, (25)

where

D1 =
4
3

√
mλ2

2(1 – λε)
(E2 + Ẽ2) +

mλ2pū∗
2(1 – λε)

,

D̃1 =

√
mλ2

2(1 – λε)

(
4
3
√

E2 +
7
3

√

Ẽ2

)

+
mλ2p

2(1 – λε)

(

ū∗ +
1
4

v̄∗
)

,
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E2 = 2λk2εm2
1 +

nλ

2ε
(k2 + k3)2 +

1
4
λ2γ 2

1 +
mλ2E2

0
8(1 – λε)(λ – 1)2 ,

Ẽ2 = 2λk2εm2
1 +

nλ

2ε
(k2 + k3)2 +

1
4
λ2γ 2

1 +
mλ2Ẽ2

0
8(1 – λε)(λ – 1)2 ,

E0 =
ληk2

2ε
+ 2η(1 – λε)(m – 1)k1 + 2ηk3(λ – 1) + 3ηλ

√
nk4

+(3λ – 2)ū∗η + pηū∗λ + ū∗(n – 1) + 1,

Ẽ0 =
ληk2

2ε
+ 2η(1 – λε)(m – 1)k1 + 2ηk3(λ – 1) + 3ηλ

√
nk4

+(3λ – 2)v̄∗η + pηv̄∗λ + v̄∗(n – 1) + 1,

ū∗ = –eλ1t+pκ2–κ̃1 = –ū∗,

v̄∗ = –eλ2t+qκ1–κ̃2 = –v̄∗.

Proof Let G1 = ηF1 and G2 = ηF2, where η is defined in (8). Fix T1 ∈ (0, T] and assume
G1, G2 achieve maximum at (x0, t0) ∈ Q2R,T1 . If G1 ≤ 0, G2 ≤ 0, then the proof is trivial. So
assume that G1(x0, t0) ≥ 0, G2(x0, t0) ≥ 0. Thus at (x0, t0) we have

∇G1 = 0, �G1 ≤ 0, ∂tG1 ≥ 0, (26)

∇G2 = 0, �G2 ≤ 0, ∂tG2 ≥ 0. (27)

Therefore,

∇F1 = –
F1

η
∇η, (28)

∇F2 = –
F2

η
∇η, (29)

and

0 ≥ (�φ – ∂t)G1 = F1(�φ – ∂t)η + η(�φ – ∂t)F1 + 2〈∇η,∇F1〉, (30)

0 ≥ (�φ – ∂t)G2 = F2(�φ – ∂t)η + η(�φ – ∂t)F2 + 2〈∇η,∇F2〉. (31)

By [22], there is a constant c2 such that

–F1ηt ≥ –c2k2F1, (32)

–F2ηt ≥ –c2k2F2. (33)

Using (28), (32) and generalized Laplacian comparison theorem in (30) we get

0 ≥ –
(

c0

R
(m – 1)(

√
k1 +

2
R

) +
3c1

R2 + c2k2

)

F1 + η(�φ – ∂t)F1. (34)

Similarly, using (29), (33) and generalized Laplacian comparison theorem in (31) we have

0 ≥ –
(

c0

R
(m – 1)(

√
k1 +

2
R

) +
3c1

R2 + c2k2

)

F2 + η(�φ – ∂t)F2. (35)
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Following the same techniques as in [2], we set

ξ1 =
‖∇u‖2

F1

∥
∥
∥
∥

(x0,t0)

≥ 0, (36)

ξ2 =
‖∇v‖2

F2

∥
∥
∥
∥

(x0,t0)

≥ 0. (37)

We now consider (34) and (36). Then, at (x0, t0), we have

‖∇u‖ =
√

ξ1F1, (38)

(ξ1 –
t0ξ1 – 1

λt0
)F1 = ‖∇u‖2 – (ut + ū), (39)

η〈∇u,∇F1〉 ≤
√c1

R
η

1
2 F1‖∇u‖, (40)

3λ
√

nk4‖∇u‖ ≤ 2k4‖∇u‖2 +
9
8

nλ2k4. (41)

Using (11) of Lemma 5 we get

0 ≥ –�F – 1 + 2ηt0(1 – λε)
1
m

(

ξ1 –
t0ξ1 – 1

t0λ

)2

F2
1 –

ληt0k2

2ε
‖∇u‖2

–2ηλt0k2ε‖∇φ‖2 – 2ηt0(1 – λε)(m – 1)k1‖∇u‖2 – 2η∇F1∇u –
ηF1

t0

–2ηt0(λ – 1)k3‖∇u‖2 –
nλt0

2ε
η(k2 + k3)2 – 3ηλt0

√
nk4‖∇u‖2 + ηH(t0), (42)

where � = c0
R (m – 1)(

√
k1 + 2

R ) + 3c1
R2 + c2k2, H(t0) = –2t0(λ– 1)∇ū∇u –λt0∇u∇φt –λt0�φ ū.

Multiplying (42) with ηt0 we get

0 ≥ –�t0G1 + 2t2
0

1 – λε

m

(

ξ1 –
t0ξ1 – 1

λt0

)2

G2
1 –

ληt2
0k2

2ε
ξ1G1 – 2λt2

0η
2k2εm2

1

–2ηt2
0(1 – λε)(m – 1)k1ξ1G1 – 2η2t0∇F1∇u – ηG1 – 2ηt2

0k3(λ – 1)ξ1G1

–
nλt2

0
2ε

η2(k2 + k3)2 – 3ηt2
0λ

√
nk4ξ1G1 + η2t0H(t0). (43)

We can find

2η2t0〈∇F1,∇u〉 ≤ 2ηt0

√c1

R
η

1
2 F1‖∇u‖

=
2t0

√c1

R
G

3
2
1 ξ

1
2

1 . (44)

We now find a bound for η2t0H. Given that ū = –eλ1t+pv–u. Thus

∇ū = –eλ1t+pv–u(p∇v – ∇u),

�φ ū = –ū(p2‖∇v‖2 + ‖∇u‖2 – 2p〈∇v,∇u〉 + p�φv – �φu).
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Hence

–λη2t2
0�φ ū = ūλt2

0

{

p2ηξ2G2 + ηξ1G1 – pηξ
1
2

1 ξ
1
2

2 G
3
2
1 G

3
2
2 + pη2�φv – η2�φu

}

, (45)

2(λ – 1)t2
0η

2 – ū(p〈∇v,∇u〉 – ‖∇u‖2) ≥ –2(λ – 1)t2
0 ū

{

pηG
1
2
1 G

1
2
2 ξ

1
2

1 ξ
1
2

2 – ηG1ξ1

}

, (46)

–λt2
0η

2〈∇u,∇φt〉 ≥ –λt2
0η

2‖∇u‖‖∇φt‖

≥ –λt2
0η

3
2 G

1
2
1 ξ

1
2

1 γ1. (47)

Combining the above three equations we get a lower bound for η2t0H given by

η2t0H ≥ –2t2
0(λ – 1)ūpηG

1
2
1 G

1
2
2 ξ

1
2

1 ξ
1
2

2 + 2(λ – 1)t2
0 ūηG1ξ1 – λt2

0η
3
2 G

1
2
1 ξ

1
2

1 γ1

+ūλt2
0

{

pηξ2G2 + ηξ1G1 – pηξ
1
2

1 ξ
1
2

2 G
1
2
1 G

1
2
2 + pη2�φv – η2�φu

}

≥ –(3λ – 2)pηūt2
0ξ

1
2

1 ξ
1
2

2 G
1
2
1 G

1
2
2 + (3λ – 2)ūηt2

0G1ξ1 + λt2
0η

3
2 G

1
2
1 ξ

1
2

1 γ1

+pηūλt2
0G2ξ2 + pūλt2

0η
2�φv – ūλt2

0η
2�φu. (48)

From the definition of ξ1 and ξ2, we get

⎧
⎨

⎩

–�φu =
(
ξ1 – t0ξ1–1

λt0

)
F1,

–�φv =
(
ξ2 – t0ξ2–1

λt0

)
F2,

(49)

or equivalently

⎧
⎨

⎩

η2�φu = – 1
λt0

G1 – λ–1
λ

ξ1G1,

η2�φv = – 1
λt0

G2 – λ–1
λ

ξ2G2.
(50)

Using (44), (48), (49), (50) in (43) we get

0 ≥ –�t0G1 + 2t2
0

1 – λε

m

(

ξ1 –
t0ξ1 – 1

λt0

)2

G2
1 – λ

ηt2
0k2

2ε
ξ1G1 – 2λt2

0η
2k2εm2

1

–2ηt2
0(1 – λε)(m – 1)k1ξ1G1 – 2ηt0

√c1

R
G

3
2
1 ξ

1
2

1 – ηG1 – 2ηt2
0k3(λ – 1)G1ξ1

–
nλt2

0
2ε

η2(k2 + k3)2 – 3ηt2
0λ

√
nk4G1ξ1 – (3λ – 2)pηūt2

0G
1
2
1 G

1
2
2 ξ

1
2

1 ξ
1
2

2

+(3λ – 2)ūηt2
0ξ1G1 + λt2

0η
3
2 G

1
2
1 ξ

1
2

1 γ1 + pηūλt2
0G2ξ2

+pūλt2
0

(

–
1

λt0
G2 –

λ – 1
λ

ξ2G2

)

– ūλt2
0

(

–
1

λt0
G1 –

λ – 1
λ

ξ1G1

)

. (51)

By Young’s inequality we have

2ηt0

√c1

R
G

1
2
1 ξ

1
2

1 G1 ≤ 4(1 – λε)(λ – 1)

mλ2 t2
0ξ1G2

1 +
t0mλ2c1

4R2(1 – λε)(λ – 1)
G1. (52)
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Let

E1 = �t0 + 1 + ū∗t0, where ū∗ = –eλ1t0+pκ2–κ̃1 ,

E2 = 2λk2εm2
1 +

nλ

2ε
(k2 + k3)2,

E0 =
ληk2

2ε
+ 2η(1 – λε)(m – 1)k1 + 2ηk3(λ – 1) + 3ηλ

√
nk4 + ū∗(3λ – 2)η

+pηū∗λ + ū∗(λ – 1)

and Ẽ = pū∗(ηλ – λ + 1).

By Young’s inequality we have

λt2
0η

3
2 G

1
2
1 ξ

1
2

1 γ1 ≤ (t0λγ1)2

4
+ t2

0G1ξ1. (53)

Using (52) and (53) in (51) we get

0 ≥ 2(1 – λε)

mλ2 G2
1 +

2t2
0(1 – λε)(λ – 1)2

mλ2 ξ 2
1 G2

1 –
t0mλ2c1

4R2(1 – λε)(λ – 1)
G1 – E1G1

–t2
0E2 – E0t2

0ξ1G1 + Ẽξ2G2 + pt0ū∗G2 – (3λ – 2)pū∗t2
0G

1
2
1 G

1
2
2 ξ

1
2

1 ξ
1
2

2 . (54)

By Young’s inequality, we have

((3λ – 2)pū∗t2
0G

1
2
1 ξ

1
2

1 )G
1
2
2 ξ

1
2

2 ≤ (3λ – 2)2p2(ū∗)2t2
0

4Ẽ
G1ξ1 + t2

0G2ξ2Ẽ. (55)

Using (55) in (54) and updating E0, E1 and E2 we obtain

0 ≥ 2(1 – λε)

mλ2 G2
1 +

2t2
0(1 – λε)(λ – 1)2

mλ2 ξ 2
1 G2

1 – E1G1 – t2
0E2

–E0t2
0ξ1G1 + pt0ū∗G2. (56)

Applying Young’s inequality on the term E0t2
0ξ1G1 we find

E0t2
0ξ1G1 ≤ E2

0t2
0mλ2

8(1 – λε)(λ – 1)2 + ξ 2
1 G2

1
2t2

0(1 – λε)(λ – 1)2

mλ2 . (57)

Using (57) in (56) we infer

0 ≥ 2(1 – λε)

mλ2 G2
1 – E1G1 – t2

0E2 + pt0ū∗G2. (58)

Similarly, using (35) and (37), we can deduce

0 ≥ 2(1 – λε)

mλ2 G2
2 – Ẽ1G2 – t2

0 Ẽ2 + qt0v̄∗G1, (59)

or equivalently

0 ≥ 2(1 – λε)

mλ2 G2
1 – E1G1 –

(
t2
0E2 + pt0ū∗G2

)
, (60)
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0 ≥ 2(1 – λε)

mλ2 G2
2 – Ẽ1G2 –

(
t2
0 Ẽ2 + qt0v̄∗G1

)
, (61)

where the terms E1, Ẽ1, E2Ẽ2, E0, Ẽ0 are defined as follows

E1 = �t0 + 1 – ū∗t0

Ẽ1 = �t0 + 1 – v̄∗t0,

E2 = 2λk2εm2
1 +

nλ

2ε
(k2 + k3)2 +

1
4
λ2γ 2

1 +
mλ2E2

0
8(1 – λε)(λ – 1)2 ,

Ẽ2 = 2λk2εm2
1 +

nλ

2ε
(k2 + k3)2 +

1
4
λ2γ 2

1 +
mλ2Ẽ2

0
8(1 – λε)(λ – 1)2 ,

E0 =
ληk2

2ε
+ 2η(1 – λε)(m – 1)k1 + 2ηk3(λ – 1) + 3ηλ

√
nk4

+(3λ – 2)ū∗η + pηū∗λ + ū∗(n – 1) + 1,

Ẽ0 =
ληk2

2ε
+ 2η(1 – λε)(m – 1)k1 + 2ηk3(λ – 1) + 3ηλ

√
nk4

+(3λ – 2)v̄∗η + pηv̄∗λ + v̄∗(n – 1) + 1.

For any a > 0 and b, c ≥ 0 the equation ax2 – bx – c ≤ 0 implies x ≤ b
a +

√
c
a . Hence from

(60) and (61), we get

G1 ≤ mλ2E1

2(1 – λε)
+

√
mλ2

2(1 – λε)
(t2

0E2 + pt0ū∗G2), (62)

G2 ≤ mλ2Ẽ1

2(1 – λε)
+

√
mλ2

2(1 – λε)
(t2

0 Ẽ2 + pt0v̄∗G1). (63)

Using an elementary inequality √x + y ≤ √
x + √y for nonnegative x, y, in (62) and (63)

we obtain

G1 ≤ mλ2E1

2(1 – λε)
+

√
mλ2

2(1 – λε)
t2
0E2 +

√
mλ2

2(1 – λε)
pt0ū∗G2, (64)

G2 ≤ mλ2Ẽ1

2(1 – λε)
+

√
mλ2

2(1 – λε)
t2
0 Ẽ2 +

√
mλ2

2(1 – λε)
qt0v̄∗G1. (65)

Applying Young’s inequality in (64) and (65), we get

G1 ≤ mλ2E1

2(1 – λε)
+

√

mλ2t2
0E2

2(1 – λε)
+

1
4

(
mλ2pt0ū∗
2(1 – λε)

)

+ G2

≤ mλ2E1

2(1 – λε)
+

√

mλ2t2
0E2

2(1 – λε)
+

1
4

(
mλ2pt0ū∗
2(1 – λε)

)

+
mλ2Ẽ1

2(1 – λε)

+

√

mλ2t2
0 Ẽ2

2(1 – λε)
+

√
mλ2pt0v̄∗
2(1 – λε)

√
G1

≤ 2mλ2

3(1 – λε)
(E1 + Ẽ1) +

4
3

√

mλ2t2
0

2(1 – λε)
(
√

E2 +
√

Ẽ2)
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+
mλ2pt0ū∗
2(1 – λε)

. (66)

Again, using Young’s inequality in (65) and using (66) we have

G2 ≤ mλ2Ẽ1

2(1 – λε)
+

√

mλ2t2
0 Ẽ2

2(1 – λε)
+

1
4

(
mλ2pt0v̄∗
2(1 – λε)

)

+
2mλ2

3(1 – λε)
(E1 + Ẽ1)

+
4
3

√

mλ2t2
0

2(1 – λε)
(
√

E2 +
√

Ẽ2) +
mλ2pt0ū∗
2(1 – λε)

. (67)

Setting

D1 =
4
3

√
mλ2

2(1 – λε)
(E2 + Ẽ2) +

mλ2pū∗
2(1 – λε)

,

D̃1 =

√
mλ2

2(1 – λε)

(
4
3
√

E2 +
7
3

√

Ẽ2

)

+
mλ2p

2(1 – λε)

(

ū∗ +
1
4

v̄∗
)

,

(66) and (67) reduces to

⎧
⎨

⎩

G1 ≤ 2mλ2

3(1–λε) (E1 + Ẽ1) + t0D1,

G2 ≤ 2mλ2

3(1–λε) (E1 + 7
4 Ẽ1) + t0D̃1.

(68)

We have η = 1 whenever d(x, x0, T1) ≤ R. To obtain the result on F1, F2, we put η = 1 and
thus

‖∇u‖2 – λ(ut + ū)

∥
∥
∥
∥

(x,T1)

=
F1(x, T1)

T1
≤ G1(x0, t0)

T1
≤ 2mλ2

3T1(1 – λε)
(E1 + Ẽ1) + D1,

‖∇v‖2 – λ(vt + v̄)

∥
∥
∥
∥

(x,T1)

=
F2(x, T1)

T1
≤ G2(x0, t0)

T1
≤ 2mλ2

3T1(1 – λε)
(E1 +

7
4

Ẽ1) + D̃1.

The rest of the proof is clear as T1 is chosen arbitrarily. �

The above theorem gives the local Li–Yau-type gradient estimation. The following
Corollary gives the global Li–Yau-type gradient estimation.

Corollary 1 If k1, k2, k3, k4 are positive constants such that

Ricm–n
φ ≥ –(m – 1)k1g, –k2g ≤ S ≤ k3g, ‖∇S‖ ≤ k4

on M × [0, T] and (f , h) is a positive solution to the system (3) along the flow (2), then for
any λ > 1 and ε ∈ (0, 1

λ
) we have

‖∇f ‖2

f 2 – λ

(
ft

f
– eλ1thp

)

≤ 4mλ2

3t(1 – λε)
+

2mλ2

3(1 – λε)
(2c2k2 + ū∗ + v̄∗) + D̂1, (69)

‖∇h‖2

h2 – λ

(
ht

h
– eλ2t f q

)

≤ 4mλ2

3t(1 – λε)
+

2mλ2

3(1 – λε)

(
11
4

c2k2 + ū∗ +
7
4

v̄∗
)

+ ˆ̃D1, (70)
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where

D̂1 =
4
3

√
mλ2

2(1 – λε)
(Ê2 + ˆ̃E2) +

mλ2pū∗
2(1 – λε)

,

ˆ̃D1 =

√
mλ2

2(1 – λε)

(
4
3

√

Ê2 +
7
3

√
ˆ̃E2

)

+
mλ2p

2(1 – λε)

(

ū∗ +
1
4

v̄∗
)

,

Ê2 = 2λk2εM2
1 +

nλ

2ε
(k2 + k3)2 +

1
4
λ2
2

1 +
mλ2E2

0
8(1 – λε)(λ – 1)2 ,

ˆ̃E2 = 2λk2εM2
1 +

nλ

2ε
(k2 + k3)2 +

1
4
λ2
2

1 +
mλ2Ẽ2

0
8(1 – λε)(λ – 1)2 ,

E0 =
ληk2

2ε
+ 2η(1 – λε)(m – 1)k1 + 2ηk3(λ – 1) + 3ηλ

√
nk4

+(3λ – 2)ū∗η + pηū∗λ + ū∗(n – 1) + 1,

Ẽ0 =
ληk2

2ε
+ 2η(1 – λε)(m – 1)k1 + 2ηk3(λ – 1) + 3ηλ

√
nk4

+(3λ – 2)v̄∗η + pηv̄∗λ + v̄∗(n – 1) + 1,

ū∗ = –eλ1t+pκ2–κ̃1 = –ū∗,

v̄∗ = –eλ2t+qκ1–κ̃2 = –v̄∗.

Proof Taking R → ∞ in (24), (25) and using the global bounds of ‖∇φ‖, ‖∇φt‖ we have
(69) and (70), respectively. �

Theorem 2 (Harnack-type inequality) If k1, k2, k3, k4 are positive constants such that

Ricm–n
φ ≥ –(m – 1)k1g, –k2g ≤ S ≤ k3g, ‖∇S‖ ≤ k4

on M and (f , h) is a positive solution to (3) along (2), then we have the Harnack-type in-
equality given by

f (y1, s1)

f (y2, s2)
≤

(
s2

s1

) 4mλ
3(1–λε)

exp
{
C[(y1, s1), (y2, s2)] +

∫ s2

s1

Qdt
}

, (71)

h(y1, s1)

h(y2, s2)
≤

(
s2

s1

) 11mλ2
6(1–λε)

exp
{
C[(y1, s1), (y2, s2)] +

∫ s2

s1

Q̃dt
}

, (72)

where

Q = ū∗ +
2mλ

3(1 – λε)
(2c2k2 + ū∗ + v̄∗) +

D1

λ
,

Q̃ = v̄∗ +
2mλ

3(1 – λε)

(
11
4

c2k2 + ū∗ +
7
4

v̄∗
)

+
D̃1

λ

and C[(y1, s1), (y2, s2)] =
λ

4
sup

ν

∫ s2

s1

‖ν ′(t)‖2dt, the supremum is taken over all possible curves

joining (y1, s1), (y2, s2) over M.
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Proof Let (y1, s1), (y2, s2) ∈ M × (0, T] be two points such that s1 < s2. Choose a geodesic
path ν : [s1, s2] → M satisfying ν(s1) = y1, ν(s2) = y2. Hence for f = eu, h = ev, we have from
Corollary 1

u(y1, s1) – u(y2, s2) = –
∫ s2

s1

d
dt

u(ν(t), t)dt

= –
∫ s2

s1

∂tudt –
∫ s2

s1

〈∇u,ν ′(t)〉dt

≤ –
∫ s2

s1

(‖∇u‖2

λ
+ 〈∇u,ν ′(t)〉

)

dt

+
4mλ

3(1 – λε)
ln(

s2

s1
) +

∫ s2

s1

Qdt, (73)

and

v(y1, s1) – v(y2, s2) = –
∫ s2

s1

d
dt

v(ν(t), t)dt

= –
∫ s2

s1

∂tvdt –
∫ s2

s1

〈∇v,ν ′(t)〉dt

≤ –
∫ s2

s1

(‖∇v‖2

λ
dt + 〈∇v,ν ′(t)〉

)

dt

+
4mλ

3(1 – λε)
ln(

s2

s1
) +

∫ s2

s1

Q̃dt. (74)

We know that –ax2 – bx ≤ b2

4a . Setting x = ∇u, a = 1
λ

, b = ν ′(t) we deduce

–
‖∇u‖2

λ
– 〈ν ′(t),∇u〉 ≤ λ‖ν ′(t)‖2

4
. (75)

Similarly, putting x = ∇v a = 1
λ

, b = ν ′(t) we get

–
‖∇v‖2

λ
– 〈ν ′(t),∇v〉 ≤ λ‖ν ′(t)‖2

4
. (76)

Combining (75) and (73) we get

u(y1, s1) – u(y2, s2) ≤ λ

4

∫ s2

s1

‖ν ′(t)‖2dt +
4mλ

3(1 – λε)
ln(

s2

s1
) +

∫ s2

s1

Qdt.

Taking supremum on the right-hand side of the above equation over all possible curves ν ,
joining (y1, s1), (y2, s2) we find

u(y1, s1) – u(y2, s2) ≤ C[(y1, s1), (y2, s2)] +
4mλ

3(1 – λε)
ln(

s2

s1
) +

∫ s2

s1

Qdt.

Taking exponent on both sides by putting u = ln f , v = ln h we get (71). In similar way, using
(76) and (74) we get

v(y1, s1) – v(y2, s2) ≤ λ

4

∫ s2

s1

‖ν ′(t)‖2dt +
4mλ

3(1 – λε)
ln(

s2

s1
) +

∫ s2

s1

Q̃dt.
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Again, taking supremum on the right-hand side just like before, we derive

v(y1, s1) – v(y2, s2) ≤ C[(y1, s1), (y2, s2)] +
4mλ

3(1 – λε)
ln(

s2

s1
) +

∫ s2

s1

Q̃dt.

Taking exponent on both sides after putting u = ln f , v = ln h, we get (72). This completes
the proof. �

4 Concluding remark
In this paper, we have presented a detailed work on finding certain bounds for the
quantities ‖∇f ‖2

f 2 – λ
(

ft
f – eλ1thp

)
and ‖∇h‖2

h2 – λ
(

ht
h – eλ2t f q

)
on a smooth measure space

(Mn, g, e–φdμ), evolving along the geometric flow (2), where p, q, λ1, λ2 are positive con-
stants, λ > 1 is a real number and (f , h) is a positive solution to the system (3) along (2).
We have also derived a Harnack-type inequality given by (71) and (72), which provides
information about the amount of heat located in two different places of the manifold in
two different time. As future work, we suggest to extend this method of deriving gradient
estimates for single as well as for system of heat type equations to space-times. As future
work, one can extend these results to heat equations on Finsler manifold (see [1]).

Acknowledgements
We gratefully acknowledge the constructive comments from the editor and the anonymous referees. The author (Sujit
Bhattacharyya) gratefully acknowledges The Government of West Bengal, India for the award of JRF State
Funded-Fellowship.

Author contributions
Yanlin Li, Sujit Bhattacharyya, Shahroud Azami and Shyamal Kumar Hui wrote the main manuscript text. All authors
reviewed the manuscript.

Funding
This research was funded by National Natural Science Foundation of China (Grant No. 12101168) and Zhejiang Provincial
Natural Science Foundation of China (Grant No. LQ22A010014).

Data Availability
No datasets were generated or analysed during the current study.

Code availability
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1School of Mathematics, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. 2Department of
Mathematics, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India. 3Department of Pure
Mathematics, Imam Khomeini International University, Qazvin, Iran.

Received: 31 May 2024 Accepted: 4 October 2024



Li et al. Journal of Inequalities and Applications        (2024) 2024:131 Page 16 of 16

References
1. Azami, S.: Gradient estimates of a parabolic equation under the Finsler-geometric flow. Int. J. Geom. Methods Mod.

Phys. 19(08) (2022)
2. Azami, S.: Gradient estimates for a weighted parabolic equation under geometric flow. Rev. R. Acad. Cienc. Exactas

Fís. Nat., Ser. A Mat. 117, 74 (2023). https://doi.org/10.1007/s13398-023-01408-8
3. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Seminaire de Probabilities XIX 1983/84. Lecture Notes in Math.,

Springer, Berlin, vol. 1123, pp. 177–206 (1985)
4. Calabi, E.: An extension of E. Hopf’s maximum principle with an application to Riemannian geometry. Duke Math. J.

25(1), 45–56 (1958)
5. Catino, G., Cremaschi, L., Djadli, Z., Montegazza, C., Mazzier, L.: The Ricci-Bourguignon flow. Pac. J. Math. 287(2),

337–370 (2017)
6. Chow, B.: The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature. Commun. Pure Appl.

Math. 45(8), 1003–1014 (1992)
7. Feng, Y.-H., Liu, C.-M.: Stability of steady-state solutions to Navier-Stokes-Poisson systems. J. Math. Anal. Appl. 462(2),

1679–1694 (2018)
8. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)
9. Hamilton, R.: The Harnack estimate for the Ricci flow. J. Differ. Geom. 37, 225–243 (1993)
10. Hui, S.K., Abolarinwa, A., Bhattacharyya, S.: Gradient estimations for nonlinear elliptic equations on weighted

Riemannian manifolds. Lobachevskii J. Math. 44, 1341–1349 (2023)
11. Hui, S.K., Azami, S., Bhattacharyya, S.: Hamilton and Souplet-Zhang type estimations on semilinear parabolic system

along geometric flow. Indian J. Pure Appl. Math. (2024). https://doi.org/10.1007/s13226-024-00586-4
12. Hui, S.K., Saha, A., Bhattacharyya, S.: Hamilton and Souplet-Zhang type gradient estimate along geometric flow.

Filomat 37(12), 3935–3945 (2023)
13. Li, F., Bao, Y.: Uniform stability of the solution for a memory type elasticity system with nonhomogeneous boundary

control condition. J. Dyn. Control Syst. 23(2), 301–315 (2017)
14. Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)
15. Li, X.D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Anal. Appl.

84(10), 1295–1361 (2005)
16. Li, Y., Aquib, M., Khan, M., Al-Dayel, I., Masood, K.: Analyzing the Ricci Tensor for Slant Submanifolds in Locally Metallic

Product Space Forms with a Semi-Symmetric Metric Connection. Axioms 13, 454 (2024)
17. Li, Y., Aquib, M., Khan, M., Al-Dayel, I., Youssef, M.: Geometric Inequalities of Slant Submanifolds in Locally Metallic

Product Space Forms. Axioms 13, 486 (2024)
18. Li, Y., Gezer, A., Karakas, E.: Exploring Conformal Soliton Structures in Tangent Bundles with Ricci-Quarter Symmetric

Metric Connections. Mathematics 12, 2101 (2024)
19. Scohen, R., Yau, S.-T.: Lecture on Differential Geometry. International Press, Cambridge (1994)
20. Shen, X., Ding, J.: Blow-up phenomena in porous medium equation systems with nonlinear boundary conditions.

Comput. Math. Appl. 77, 3250–3263 (2019)
21. Souplet, P., Zhang, Q.S.: Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact

manifolds. Bull. Lond. Math. Soc. 38, 1045–1053 (2006)
22. Sun, J.: Gradient estimates for positive solutions of the heat equation under geometric flow. Pac. J. Math. 253(2),

489–510 (2011)
23. Wu, H.: Differential Harnack estimates for a semilinear parabolic system. Hindawi J. Funct. Spaces (2019). https://doi.

org/10.1155/2019/1314268
24. Wu, H., Yang, X.: Global existence and finite time blow-up for a parabolic system on hyperbolic space. J. Math. Phys.

59, 1–11 (2018)
25. Wu, J.-Y.: Li-Yau type estimates for a nonlinear parabolic equation on complete manifolds. J. Math. Anal. Appl. 369,

400–407 (2010)
26. Young, W.H.: On classes of summable functions and their Fourier series. Proc. R. Soc. A 87(594), 225–229 (1912)
27. Zheng, X., Shang, Y., Di, H.: The time-periodic solutions to the modified Zakharov equations with a quantum

correction. Mediterr. J. Math. 14, 1–17 (2017)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s13398-023-01408-8
https://doi.org/10.1007/s13226-024-00586-4
https://doi.org/10.1155/2019/1314268
https://doi.org/10.1155/2019/1314268

	Li-Yau type estimation of a semilinear parabolic system along geometric flow
	Abstract
	Keywords

	Introduction
	Preliminaries
	Li–Yau-type gradient estimation
	Concluding remark
	References

