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Abstract
In this research, we introduce a novel optimization algorithm termed the dual-relaxed
inertial alternating direction method of multipliers (DR-IADM), tailored for handling
nonconvex and nonsmooth problems. These problems are characterized by an
objective function that is a composite of three elements: a smooth composite
function combined with a linear operator, a nonsmooth function, and a mixed
function of two variables. To facilitate the iterative process, we adopt a
straightforward parameter selection approach, integrate inertial components within
each subproblem, and introduce two relaxed terms to refine the dual variable update
step. Within a set of reasonable assumptions, we establish the boundedness of the
sequence generated by our DR-IADM algorithm. Furthermore, leveraging the
Kurdyka–Łojasiewicz (KŁ) property, we demonstrate the global convergence of the
proposed method. To validate the practicality and efficacy of our algorithm, we
present numerical experiments that corroborate its performance. In summary, our
contribution lies in proposing DR-IADM for a specific class of optimization problems,
proving its convergence properties, and supporting the theoretical claims with
numerical evidence.
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1 Introduction
The present paper deals with the following nonconvex and nonsmooth problem as in [5]:

min
(x,y)∈Rm×Rq

{
F(Ax) + G(y) + H(x, y)

}
, (1.1)

where F : Rp → R is a continuously Lipschitz differentiable function, G : Rq → R∪{+∞} is
a proper and lower semicontinuous function, H : Rm × Rq → R is a Frechet differentiable
function with Lipschitz continuous gradient, and A : Rm → Rp is a linear operator. Many
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application problems can be modeled as (1.1), e.g., in compressed sensing [2, 9], matrix
factorization [4], sparse approximations of signals and images [16, 19], and so on.

Obviously, when m = p and A is the identity operator, (1.1) can be written as

min
(x,y)∈Rm×Rq

{
F(x) + G(y) + H(x, y)

}
. (1.2)

A general method for addressing problem (1.2) is the alternating minimization method,
as mentioned in the literature [3, 17, 22]. In the context of nonconvex and nonsmooth
problems, Bolte et al. investigated a proximal alternating linearized minimization (PALM)
algorithm in [4]. Following this, Driggs et al. introduced a generic stochastic variant of the
PALM algorithm in [10], which allows for various variance-reduced gradient approxima-
tions. The PALM algorithm is essentially a blockwise implementation of the well-known
proximal forward–backward algorithm, as referenced in [8, 13],

min
x∈Rm

{
F(Ax) + H(x)

}
, (1.3)

where H : Rm → R is Frechet differentiable and possesses a Lipschitz continuous gradient.
In the convex case, the alternating direction method of multipliers (ADMM) [1, 3] and
linearized ADMMi [11, 18, 23, 24] have proven to be highly effective in solving problem
(1.3). Following that, Bot et al. [6] introduced a proximal linearized ADMM algorithm,
and Liu et al., as seen in [14], presented a two-block linearized ADMM and a multi-block
parallel linearized ADMM for the nonconvex case.

For the problem denoted by equation (1.1), Bot [5] converted it into a three-block non-
separable problem by introducing an additional variable:

min
(x,y,z)∈Rm×Rq×Rp

F(z) + G(y) + H(x, y)

such that Ax = z. (1.4)

The augmented Lagrangian function Lβ : Rm × Rq × Rp × Rp → R ∪ {+∞} associated with
problem (1.4) reads

Lβ(x, y, z, u) = F(z) + G(y) + H(x, y) + 〈u, Ax – z〉 +
β

2
‖Ax – z‖2, β > 0, (1.5)

where u is the Lagrangian multiplier and β is the penalty parameter. Bot gave a proximal
minimization algorithm (PMA) to solve it in [5], which takes the following iterative form:

yk+1 ∈ arg min
y∈Rq

{
G(y) +

〈∇yH
(
xk , yk), y

〉
+

μ

2
∥∥y – yk∥∥2

}
,

zk+1 ∈ arg min
z∈Rp

{
F(z) +

〈
uk , Axk – z

〉
+

β

2
∥∥Axk – z

∥∥2〉
}

,

xk+1 := xk – τ–1(∇xH
(
xk , yk+1) + AT uk + βAT(

Axk – zk+1)),

uk+1 := uk + σβ
(
Axk+1 – zk+1),

where τ > 0, 0 < σ < 1. In [5], sufficient conditions are established to ensure that the
sequence generated is bounded, and it is demonstrated that the global convergence is
achieved in accordance with the Kurdyka–Łojasiewicz inequality.
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Recently, numerous scholars have integrated the inertial effect with ADMM for vari-
ous nonconvex problems to enhance convergence [15, 25]. For example, Le et al. [12] in-
troduced an inertial Alternating Direction Method of Multipliers (iADMM) tailored for
tackling a category of nonconvex, nonsmooth multi-block composite optimization chal-
lenges characterized by linear constraints. In [23], an inertial proximal partially symmetric
ADMM was introduced by Wang for tackling linearly constrained multi-block nonconvex
separable optimization problems. This method involves updating the Lagrange multiplier
not once but twice and incorporates distinct relaxation factors [20, 21] at every iteration.
For the problem (1.3), Chao et al. [7] combined the inertial technique with ADMM and
employed the KŁ assumption to achieve global convergence in the nonconvex setting.

Motivated by the aforementioned algorithms, we are poised to present a novel approach
in this document. This approach is a dual-relaxed variant of the inertial proximal alternat-
ing direction method of multipliers, tailored for addressing the challenges posed by non-
convex and nonsmooth problems, specifically referring to problem (1.1). The key contri-
butions of this paper are delineated as follows:

(1) In contrast to the approach described in [5], our algorithm integrates the fundamen-
tal concepts of the ADMM with an inertial component applied uniformly across all sub-
problems, rather than selectively to certain subproblems. This strategic implementation
significantly enhances convergence rates.

(2) In contrast to the conventional ADMM or its variants, our proposed algorithm intro-
duces two relaxation terms (instead of merely one) during the dual variable update phase,
which consequently establishes a novel iterative dynamic for the dual ascent procedure.

(3) We provide straightforward sufficient conditions for the boundedness of the se-
quence generated by our algorithm. Unlike other studies, there is no need to assume that
the sequence generated by the algorithm is bounded a priori.

The structure of the paper is as follows. In Sect. 2, we compile a collection of useful
definitions and findings that will serve as a foundation for our convergence analysis. In
Sect. 3, we introduces a novel weak inertial proximal minimization algorithm and delves
into its convergence properties. A numerical experiment aimed at validating the efficacy
of our proposed algorithm is conducted in the fourth section. The paper concludes with
a summary of key points in the fifth section.

2 Notation and preliminaries
In the following, Rn stands for the n-dimensional Euclidean space,

〈x, y〉 = xT y =
n∑

i=1

xiyi, ‖x‖ =
√〈x, x〉,

where T stands for the transpose operation. For a set S ⊂ Rn and a point x ∈ Rn, let
dist(x, S) = infy∈S ‖y – x‖2. If S = ∅, we set dist(x, S) = +∞ for ∀x ∈ Rn.

Definition 2.1 (Lipschitz differentiability) Function f (x) is said to be Lf Lipschitz differ-
entiable if for all x, y we have

∥∥∇f (x) – ∇f (y)
∥∥ ≤ Lf ‖x – y‖.
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Lemma 2.1 ([17] (Descent lemma)) Let f : Rn → R be Frechet differentiable such that its
gradient is Lipschitz continuous with constant � > 0. Then, for ∀x, y ∈ Rn and z = {(1 – t)x +
ty : t ∈ [0, 1]} ∈ [x, y], it holds that

f (y) ≤ f (x) +
〈∇f (z), y – x

〉
+

�

2
‖y – x‖2.

Lemma 2.2 ([23]) Suppose the sequence of real numbers {ak}k≥0 is bounded from below,
{bk}k≥0 is a sequence of real nonnegative numbers, and for ∀k ≥ 0,

ak+1 + bk ≤ ak .

Then the following statements are valid:
(i) The sequence {ak}k≥0 is monotonically decreasing and convergent.
(ii) The sequence {bk}k≥0 is summable, namely

∑
k≥0 bk < ∞.

Lemma 2.3 ([23]) Let {ak}k∈N and {bk}k∈N be nonnegative real sequences such that
∑

k∈N bk < ∞ and ak+1 ≤ a · ak + b · ak–1 + bk , for ∀k ≥ 1, where a ∈ R, b ≥ 0 and a + b < 1.
Then

∑
k∈N ak < ∞.

We proceed to introduce a function that exhibits the Kurdyka–Łojasiewicz property.
This particular class of functions will be integral in establishing the convergence outcomes
for our recommended algorithm.

Definition 2.2 ([2]) Let η ∈ (0, +∞]. We use �η to denote the set of all concave and con-
tinuous functions ϕ : [0,η) → [0, +∞). A function ϕ belonging to the set �η for η ∈ (0, +∞]

is called a desingularization function if it satisfies the following conditions:
(i) ϕ(0) = 0.
(ii) ϕ is continuously differentiable on (0,η) and continuous at 0.
(iii) ϕ′(s) > 0 for any s ∈ (0,η).

Definition 2.3 ([2] (Kurdyka–Łojasiewicz property)) Let f : Rn → R ∪ {+∞} be proper
and lower semicontinuous. The function f is said to have the Kundyka–Łojasiewicz (KŁ)
property at a point v̂ ∈ dom ∂f := {v ∈ Rn : ∂f (v) �= ∅} if there exists η ∈ (0, +∞], a neigh-
borhood V of v̂, and a function ϕ ∈ fη such that

ϕ′(f (v) – f (v̂)
) · dist

(
0, ∂f (v)

) ≥ 1,

for any

v ∈ V ∩ {
v ∈ Rn : f (v̂) < f (v) < f (v̂) + η

}
.

If f satisfies the KŁproperty at each point of dom ∂f , then f is called a KŁ function. Next,
we recall the following result which is called the uniformized KŁproperty.

Lemma 2.4 ([2] (Uniformized KŁproperty)) Let 
 be a compact set and f : Rn → R∪{+∞}
be a proper and lower semicontinuous function. Assume that f is constant on 
 and satisfies
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the KŁ property at each point of 
. Then there exist ε > 0, η > 0, and ϕ ∈ fη such that

ϕ′(f (v) – f (v̂)
) · dist

(
0, ∂f (v)

) ≥ 1,

for any v̂ ∈ 
 and every element v in the intersection

{
v ∈ Rn : dist(v,
) < ε

} ∩ {
v ∈ Rd : f (v̂) < f (v) < f (v̂) + η

}
.

Definition 2.4 ([2] (Subdifferentials)) Let f : Rn → (–∞, +∞] be a proper and lower semi-
continuous function. Suppose

lim inf
y�=x

f (y) – f (x) – 〈u, y – x〉
‖y – x‖ ≥ 0.

When x /∈ dom f , we set ∂̂f (x) = ∅.
(ii) The limiting-subdifferential, or simply the subdifferential, of f at x ∈ Rn, written

∂f (x), is defined through the following closure process ∂f (x) := {u ∈ Rn : ∃xk → x, f (xk) →
f (x) and uk ∈ ∂̂f (xk) → u as k → ∞}.

3 Algorithm and its convergence
In this section, we put forward a synchronized approach for solving the optimization prob-
lem (1.1) through an inertial proximal minimization algorithm with dual relaxation and
subsequently examine its convergence properties.

Algorithm 3.1 Let α, β , τ > 0, 0 < θ < 1. For the starting points (x0, y0, z0) = (x1, y1, z1) ∈
Rm × Rq × Rp and u1 ∈ Rp. The sequence {(xk , yk , zk , uk)}k≥0 for ∀k ≥ 1 is generated by:

yk+1 = arg min
{

G(y) + H
(
xk , y

)
+ τ

∥∥y – zk
y
∥∥2}, (3.1a)

zk+1 = arg min

{
F(z)+ < uk , Axk – z > +

β

2
∥∥Axk – z

∥∥2 + τ
∥∥z – zk

z
∥∥2

}
, (3.1b)

xk+1 = arg min

{
H

(
x, yk+1)+ < uk , Ax – zk+1 > +

β

2
∥∥Ax – zk+1∥∥2

+
α

2
∥∥x – xk∥∥2 + τ

∥∥x – zk
x
∥∥2

}
, (3.1c)

uk+1 = uk – β
(
zk+1 – Axk+1) – 2τ

(
zk+1 – zk

z
)
, (3.1d)

where

zk
x = xk – θ

(
xk – xk–1),

zk
y = yk – θ

(
yk – yk–1),

zk
z = zk – θ

(
zk – zk–1).

Remark 3.1 Inertial terms τ‖·‖2 are added into the y-, z-, and x- subproblem, respectively,
and there exist two relaxed terms β(zk+1 – Axk+1) and 2τ (zk+1 – zk

z ) in the dual update step
in (3.1d). Hence we call our algorithm as dual-relaxed inertial proximal ADMM.
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We will analyze the convergence of Algorithm 3.1 under the following assumptions:

Assumption A (i) The function F is Lipschitz differentiable, i.e.,

∥∥∇F(z) – ∇F
(
z′)∥∥2 ≤ l2

F
∥∥z – z′∥∥2.

(ii) The function Lβ is bounded from below and there exists a constant L such that

L := inf
(x,y,λ)∈Rm×Rq×Rp×Rp

{
Lβ(x, y, z, u)

}
> –∞.

(iii) For any fixed y ∈ Rq, there exists �1(y) ≥ 0 such that

∥∥∇yH(x, y) – ∇yH
(
x′, y

)∥∥ ≤ �1(y)
∥∥x – x′∥∥, ∀x, x′ ∈ Rm.

Furthermore, there exists �1,+ > 0 such that supy∈Rq �1(y) ≤ �1,+.
(iv) The parameters satisfy

0 < θ < 0.5, τ > 0, β >
3(1 + τ )l2

F + 2τ + 2τθ2

(1 – 2θ )τ
,

α > –2(1 – 2θ )τ + 12β(1 + τ )‖A‖2.

(v) Let T := Rm × Rq × Rp × Rp. The set {ω ∈ T : Lβ (ω) ≤ Lβ(ω1)} is bounded.

Lemma 3.1 By the definitions of zk
x , zk

y , zk
z , it holds that

∥∥xk – zk
x
∥∥2 –

∥∥xk+1 – zk
x
∥∥2 ≤ –(1 – θ )

∥∥xk – xk+1∥∥2 + θ
∥∥xk – xk–1∥∥2, (3.2a)

∥∥yk – zk
y
∥∥2 –

∥∥yk+1 – zk
y
∥∥2 ≤ –(1 – θ )

∥∥yk – yk+1∥∥2 + θ
∥∥yk – yk–1∥∥2 and (3.2b)

∥∥zk – zk
z
∥∥2 –

∥∥zk+1 – zk
z
∥∥2 ≤ –(1 – θ )

∥∥zk – zk+1∥∥2 + θ
∥∥zk – zk–1∥∥2. (3.2c)

Proof By the definition of ‖xk – zk
x‖2, we have

∥∥xk – zk
x
∥∥2 –

∥∥xk+1 – zk
x
∥∥2 ≤ θ2∥∥xk – xk–1∥∥2 –

∥∥xk – xk+1 – θ
(
xk – xk–1)∥∥2

= –
∥∥xk – xk+1∥∥2 + 2θ

〈
xk – xk+1, xk – xk–1〉

≤ –
∥∥xk – xk+1∥∥2 + θ

∥∥xk – xk+1∥∥2 + θ
∥∥xk – xk–1∥∥2

= –(1 – θ )
∥∥xk – xk+1∥∥2 + θ

∥∥xk – xk–1∥∥2.

Similarly, we get

∥∥yk – zk
y
∥∥2 –

∥∥yk+1 – zk
y
∥∥2 ≤ –(1 – θ )

∥∥yk – yk+1∥∥2 + θ
∥∥yk – yk–1∥∥2 and

∥∥zk – zk
z
∥∥2 –

∥∥zk+1 – zk
z
∥∥2 ≤ –(1 – θ )

∥∥zk – zk+1∥∥2 + θ
∥∥zk – zk–1∥∥2.

The proof is completed. �
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The following Lemmas 3.2 and 3.3 provide the descent properties of the key function
defined in (3.11) and are important for the convergence.

Lemma 3.2 Suppose that Assumption A holds, while Lβ is defined as (1.5). Then,

Lβ

(
xk+1, yk+1, zk+1, uk+1) +

(
3β(1 + τ )‖A‖2 + θτ

)∥∥xk+1 – xk∥∥2 + θτ
∥∥yk+1 – yk∥∥2

+
(

2τθ2

β
+ θτ

)∥∥zk+1 – zk∥∥2 + C1
∥∥xk+1 – xk∥∥2 + C2

∥∥yk+1 – yk∥∥2 + C3
∥∥zk+1 – zk∥∥2

≤ Lβ

(
xk , yk , zk , uk) +

(
3β(1 + τ )‖A‖2 + θτ

)∥∥xk – xk–1∥∥2

+ θτ
∥∥yk – yk–1∥∥2 +

(
2τθ2

β
+ θτ

)∥∥zk – zk–1∥∥2,

where

C1 =
α

2
+ (1 – θ )τ – 6β(1 + τ )‖A‖2 – θτ ,

C2 = (1 – θ )τ – θτ ,

C3 = (1 – θ )τ –
(1 + τ )3l2

F
β

–
2τ

β
–

2τθ2

β
– θτ .

Proof From (3.1a), (3.1b), and (3.1c), we have

G
(
yk+1) + H

(
xk , yk+1) + τ

∥∥yk+1 – zk
y
∥∥2 ≤ G

(
yk) + H

(
xk , yk) + τ

∥∥yk – zk
y
∥∥2, (3.3)

F
(
zk+1) +

〈
uk , Axk – zk+1〉 +

β

2
∥∥Axk – zk+1∥∥2 + τ

∥∥zk+1 – zk
z
∥∥2

≤ F
(
zk) +

〈
uk , Axk – zk 〉 +

β

2
∥∥Axk – zk∥∥2 + τ

∥∥zk – zk
z
∥∥2, (3.4)

and

H
(
xk+1, yk+1) +

〈
uk , Axk+1 – zk+1〉 +

β

2
∥∥Axk+1 – zk+1∥∥2

+
α

2
∥∥xk+1 – xk∥∥2 + τ

∥∥xk+1 – zk
x
∥∥2

≤ H
(
xk , yk+1) +

〈
uk , Axk – zk+1〉 +

β

2
∥∥Axk – zk+1∥∥2 + τ

∥∥xk – zk
x
∥∥2, (3.5)

respectively. Adding (3.3), (3.4) and (3.5) yields

F
(
zk+1) + G

(
yk+1) + H

(
xk+1, yk+1) +

〈
uk , Axk+1 – zk+1〉

+
β

2
∥∥Axk+1 – zk+1∥∥2 + τ

∥∥xk+1 – zk
x
∥∥2 + τ

∥∥yk+1 – zk
y
∥∥2

+
α

2
∥∥xk+1 – xk∥∥2 + τ

∥∥zk+1 – zk
z
∥∥2

≤ F
(
zk) + G

(
yk) + H

(
xk , yk) +

〈
uk , Axk – zk 〉

+
β

2
∥∥Axk – zk∥∥2 + τ

∥∥xk – zk
x
∥∥2 + τ

∥∥yk – zk
y
∥∥2 + τ

∥∥zk – zk
z
∥∥2.
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By the definition of Lβ , we have

Lβ

(
xk+1, yk+1, zk+1, uk) + τ

∥∥xk+1 – zk
x
∥∥2 + τ

∥∥yk+1 – zk
y
∥∥2

+ τ
∥∥zk+1 – zk

z
∥∥2 +

α

2
∥∥xk+1 – xk∥∥2

≤ Lβ

(
xk , yk , zk , uk) + τ

∥∥xk – zk
x
∥∥2 + τ

∥∥yk – zk
y
∥∥2 + τ

∥∥zk – zk
z
∥∥2.

Then,

Lβ

(
xk+1, yk+1, zk+1, uk)

≤ Lβ

(
xk , yk , zk , uk) + τ

∥∥xk – zk
x
∥∥2 – τ

∥∥xk+1 – zk
x
∥∥2 –

α

2
∥∥xk+1 – xk∥∥2

+ τ
∥∥yk – zk

y
∥∥2 – τ

∥∥yk+1 – zk
y
∥∥2 + τ

∥∥zk – zk
z
∥∥2 – τ

∥∥zk+1 – zk
z
∥∥2

≤ Lβ

(
xk , yk , zk , uk) +

(
–(1 – θ )τ –

α

2

)∥∥xk+1 – xk∥∥2 + θτ
∥∥xk – xk–1∥∥2

+
(
–(1 – θ )τ

)∥∥yk+1 – yk∥∥2 + θτ
∥∥yk – yk–1∥∥2

+
(
–(1 – θ )τ

)∥∥zk+1 – zk∥∥2 + θτ
∥∥zk – zk–1∥∥2. (3.6)

The optimality condition for (3.1b) implies

∇F
(
zk+1) – uk + β

(
zk+1 – Axk) + 2τ

(
zk+1 – zk

z
)

= 0. (3.7)

Combing (3.7) and (3.1d), we obtain

uk+1 = ∇F
(
zk+1) + β

(
Axk+1 – Axk). (3.8)

Hence,

∥∥uk+1 – uk∥∥2 =
∥∥∇F

(
zk+1) – ∇F

(
zk) + β

(
Axk+1 – Axk) – β

(
Axk – Axk–1)∥∥2

≤ 3l2
F
∥∥zk+1 – zk∥∥2 + 3β2‖A‖2∥∥xk+1 – xk∥∥2 + 3β2‖A‖2∥∥xk – xk–1∥∥2. (3.9)

Inserting the u-updating rule (3.1d), we get

Lβ

(
xk+1, yk+1, zk+1, uk+1) – Lβ

(
xk+1, yk+1, zk+1, uk)

=
〈
uk+1 – uk , Axk+1 – zk+1〉

=
1
β

〈
uk+1 – uk , uk+1 – uk + 2τ

(
zk+1 – zk

z
)〉

=
1
β

∥∥uk+1 – uk∥∥2 +
2τ

β

〈
uk+1 – uk , zk+1 – zk

z
〉

≤ 1
β

∥∥uk+1 – uk∥∥2 +
τ

β

∥∥uk+1 – uk∥∥2 +
τ

β

∥∥zk+1 – zk
z
∥∥2

≤ (1 + τ )

β

∥∥uk+1 – uk∥∥2 +
2τ

β

∥∥zk+1 – zk∥∥2 +
2τθ2

β

∥∥zk – zk–1∥∥2. (3.10)
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From (3.9), (3.10), and (3.6), we have

Lβ

(
xk+1, yk+1, zk+1, uk+1)

≤ Lβ

(
xk+1, yk+1, zk+1, uk) +

1 + τ

β

(
3l2

F
∥∥zk+1 – zk∥∥2 + 3β2‖A‖2∥∥xk+1 – xk∥∥2

+ 3β2‖A‖2∥∥xk – xk–1∥∥2) +
2τ

β

∥∥zk+1 – zk∥∥2 +
2τθ2

β

∥∥zk – zk–1∥∥2

= Lβ

(
xk+1, yk+1, zk+1, uk) +

(
(1 + τ )3l2

F
β

+
2τ

β

)∥∥zk+1 – zk∥∥2

+ 3β(1 + τ )‖A‖2∥∥xk+1 – xk∥∥2

+ 3β(1 + τ )‖A‖2∥∥xk – xk–1∥∥2 +
2τθ2

β

∥∥zk – zk–1∥∥2

≤ Lβ

(
xk , yk , zk , uk) +

(
3β(1 + τ )‖A‖2 – (1 – θ )τ –

α

2

)∥∥xk+1 – xk∥∥2

+
(
3β(1 + τ )‖A‖2 + θτ

)∥∥xk – xk–1∥∥2 +
(
–(1 – θ )τ

)∥∥yk+1 – yk∥∥2

+ θτ
∥∥yk – yk–1∥∥2 +

(
(1 + τ )3l2

F
β

+
2τ

β
– (1 – θ )τ

)∥∥zk+1 – zk∥∥2

+
(

2τθ2

β
+ θτ

)∥∥zk – zk–1∥∥2,

which can be written as

Lβ

(
xk+1, yk+1, zk+1, uk+1) +

(
3β(1 + τ )‖A‖2 + θτ

)∥∥xk+1 – xk∥∥2 + θτ
∥∥yk+1 – yk∥∥2

+
(

2τθ2

β
+ θτ

)∥∥zk+1 – zk∥∥2 + C1
∥∥xk+1 – xk∥∥2

+ C2
∥∥yk+1 – yk∥∥2 + C3

∥∥zk+1 – zk∥∥2

≤ Lβ

(
xk , yk , zk , uk) +

(
3β(1 + τ )‖A‖2 + θτ

)∥∥xk – xk–1∥∥2

+ θτ
∥∥yk – yk–1∥∥2 +

(
2τθ2

β
+ θτ

)∥∥zk – zk–1∥∥2,

where

C1 =
α

2
+ (1 – θ )τ – 6β(1 + τ )‖A‖2 – θτ ,

C2 = (1 – θ )τ – θτ ,

C3 = (1 – θ )τ –
(1 + τ )3l2

F
β

–
2τ

β
–

2τθ2

β
– θτ .

The proof is completed. �

Remark 3.2 Obviously, Assumption A(iv) implies C1 > 0, C2 > 0, and C3 > 0.
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Based on Lemma 3.2, we define the following key function (the regularized augmented
Lagrangian function)

L̂β

(
ω̂k) = Lβ

(
xk , yk , zk , uk) + η1

∥∥xk – xk–1∥∥2 + η2
∥∥yk – yk–1∥∥2 + η3

∥∥zk – zk–1∥∥2, (3.11)

where η1 = 3β(1 + τ )‖A‖2 + θτ , η2 = θτ , and η3 = 2τθ2

β
+ θτ .

Let ω̂ = (x, y, z, u, x′, y′, z′), ω̂k = (xk , yk , zk , uk , xk–1, yk–1, zk–1), ωk = (xk , yk , zk , uk). Then the
following lemma implies that the sequence {L̂β(ω̂k)}k≥1 is decreasing. It is of great impor-
tance for the following convergence analysis.

Lemma 3.3 (Descent property) Suppose that Assumption A holds. Let L̂β(ω̂k) be defined
as in (3.11). Then we have C1, C2, C3 > 0 such that

L̂β

(
ω̂k+1) + C1

∥∥xk+1 – xk∥∥2 + C2
∥∥yk+1 – yk∥∥2 + C3

∥∥zk+1 – zk∥∥2 ≤ L̂β

(
ω̂k). (3.12)

Proof The result follows directly from Lemma 3.2 and Remark 3.2. The proof is completed.
�

Theorem 3.1 (Boundedness) Suppose that Assumption A holds. Suppose {ωk}k≥0 is a se-
quence generated by Algorithm 3.1, then the following statements are true:

(i) The sequence {L̂β(ω̂k)}k≥1 is bounded from below and convergent.
(ii) One has

xk+1 – xk → 0, yk+1 – yk → 0,

zk+1 – zk → 0, and uk+1 – uk → 0 as k → +∞.

(iii) The sequence {Lβ(ωk)}k≥1 is convergent.
(iv) The sequence {(xk , yk , zk , uk)}k≥0 is bounded.

Proof For η1 > 0, η2 > 0, η3 > 0, one can obtain

Lβ

(
xk , yk , zk , uk) ≤ Lβ

(
xk , yk , zk , uk) + η1

∥∥xk – xk–1∥∥2 + η2
∥∥yk – yk–1∥∥2

+ η3
∥∥zk – zk–1∥∥2,

that is,

Lβ

(
ωk) ≤ L̂β

(
ω̂k). (3.13)

From Assumption A(ii), we know that L̂β (ω̂k) ≥ L, which implies that the sequence
{L̂β(ω̂k)}k≥1 is bounded from below. Combining (3.12) and Lemma 2.1, it is easy to get
that the sequence {L̂β(ω̂k)}k≥1 is convergent and also that

xk+1 – xk → 0, yk+1 – yk → 0, zk+1 – zk → 0 as k → ∞.

Then, according to (3.9), it follows that uk+1 – uk → 0 as k → ∞. By the definition of
{L̂β(ω̂k)}k≥1, we obtain that {Lβ(ωk)} is convergent. From (3.12), we have that L̂β(ω̂k) ≤



Liu et al. Journal of Inequalities and Applications        (2024) 2024:117 Page 11 of 20

L̂β(ω̂1), for ∀k > 0. In addition, L̂β(ω̂1) = Lβ(ω1) due to x0 = x1, y0 = y1, and z0 = z1. So,
from (3.13), we get

Lβ

(
ωk) ≤ Lβ

(
ω1) ∀k > 0.

Therefore, it follows that the sequence {(xk , yk , zk , uk)}k≥0 generated by Algorithm 3.1 is
bounded by Assumption A(v). The proof is completed. �

The next lemma provides upper estimates for the limiting subgradients of L̂β (ω̂k).

Lemma 3.4 Suppose that Assumption A holds. Denote νk = (xk , yk , zk). Then there exists
ζ > 0 such that

dist
(
0, ∂L̂β

(
ω̂k+1)) ≤ ζ

(∥∥νk+1 – νk∥∥ +
∥∥νk – νk–1∥∥)

. (3.14)

Proof Let k ≥ 1 be fixed. Applying the calculus rules of the limiting subdifferential, we
get

∂xL̂β

(
ω̂k+1) = ∇xH

(
xk+1, yk+1) + AT uk+1 + βAT(

Axk+1 – zk+1)

+ 2η1
(
xk+1 – xk), (3.15a)

∂yL̂β

(
ω̂k+1) = ∂G

(
yk+1) + ∇yH

(
xk+1, yk+1) + 2η2

(
yk+1 – yk), (3.15b)

∂zL̂β

(
ω̂k+1) = ∇F

(
zk+1) – uk+1 – β

(
Axk+1 – zk+1) + 2η3

(
zk+1 – zk), (3.15c)

∂uL̂β

(
ω̂k+1) = Axk+1 – zk+1 =

1
β

(
uk+1 – uk + 2τ

(
zk+1 – zk

z
))

, (3.15d)

∂x′ L̂β

(
ω̂k+1) = –2η1

(
xk+1 – xk), (3.15e)

∂y′ L̂β

(
ω̂k+1) = –2η2

(
yk+1 – yk), (3.15f)

∂z′ L̂β

(
ω̂k+1) = –2η3

(
zk+1 – zk). (3.15g)

By the optimality condition for (3.1c), we have

∇xH
(
xk+1, yk+1) + AT uk + βAT(

Axk+1 – zk+1) + 2τ
(
xk+1 – zk

x
)

+ α
(
xk+1 – xk) = 0.

Substituting it into (3.15a) leads to

∂xL̂β

(
ω̂k+1) = AT uk+1 – AT uk + 2η1

(
xk+1 – xk) – 2τ

(
xk+1 – zk

x
)

– α
(
xk+1 – xk).

By the optimality condition for (3.1a), we have

0 ∈ ∂G
(
yk+1) + ∇yH

(
xk , yk+1) + 2τ

(
yk+1 – zk

y
)
.

Substituting it into (3.15b) leads to

∂yL̂β

(
yk+1) = ∇yH

(
xk+1, yk+1) – ∇yH

(
xk , yk+1) + (2η2 – 2τ )

(
yk+1 – yk) + 2τθ

(
yk – yk–1).
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Substituting (3.7) into (3.15c) leads to

∂zL̂β

(
xk+1) = uk – uk+1 – βA

(
xk+1 – xk) + (2η3 – 2τ )

(
zk+1 – zk) + 2τθ

(
zk – zk–1).

Let Dk = (dk+1
x , dk+1

y , dk+1
z , dk+1

u , dk+1
x′ , dk+1

y′ , dk+1
z′ ), where

dk+1
x = AT uk+1 – AT uk + (2η1 – α – 2τ )

(
xk+1 – xk) – 2τ

(
xk+1 – zk

x
)
,

dk+1
y = ∇yH

(
xk+1, yk+1) – ∇yH

(
xk , yk+1) + (2η2 – 2τ )

(
yk+1 – yk) + 2τθ

(
yk – yk–1),

dk+1
z = uk – uk+1 – βA

(
xk+1 – xk) + (2η3 – 2τ )

(
zk+1 – zk) + 2τθ

(
zk – zk–1),

dk+1
u =

1
β

(
uk+1 – uk + 2τ

(
zk+1 – zk) – 2τθ

(
zk – zk–1)),

dk+1
x′ = –2η1

(
xk+1 – xk),

dk+1
y′ = –2η2

(
yk+1 – yk),

dk+1
z′ = –2η3

(
zk+1 – zk).

Then it follows that Dk+1 ∈ ∂L̂β (ω̂k+1) and (dk+1
x , dk+1

y , dk+1
z , dk+1

u ) ∈ ∂Lβ (ωk+1).
Thus dist2(0, ∂L̂β (ωk+1)) ≤ ‖Dk+1‖2. By Assumption A(iii), we have

∥∥∇yH
(
xk+1, yk+1) – ∇yH

(
xk , yk+1)∥∥ ≤ �1,+

∥∥xk+1 – xk∥∥.

Then, there exists ζ1 > 0 such that

dist2(0, ∂L̂β

(
ω̂k+1)) ≤ ∥∥Dk+1∥∥2

≤ ζ 2
1
(∥∥xk+1 – xk∥∥2 +

∥∥yk+1 – yk∥∥2 +
∥∥zk+1 – zk∥∥2

+
∥∥uk+1 – uk∥∥2 +

∥∥yk – yk–1∥∥2 +
∥∥xk – xk–1∥∥2 +

∥∥zk – zk–1∥∥2).

Thus, by (3.9), there exists ζ > 0 such that

dist2(0, ∂L̂β

(
ω̂k+1)) ≤ ζ 2(∥∥xk+1 – xk∥∥2 +

∥∥yk+1 – yk∥∥2 +
∥∥zk+1 – zk∥∥2

+
∥∥xk – xk–1∥∥2 +

∥∥yk – yk–1∥∥2 +
∥∥zk – zk–1∥∥2). (3.16)

For νk = (xk , yk , zk), it follows that

∥∥νk – νk–1∥∥2 =
∥∥xk – xk–1∥∥2 +

∥∥yk – yk–1∥∥2 +
∥∥zk – zk–1∥∥2.

Combining with (3.16), the latter gives

dist
(
0, ∂L̂β

(
ω̂k+1)) ≤

√
ζ 2

(∥∥νk+1 – νk
∥∥2 +

∥∥νk – νk–1
∥∥2)

≤ ζ
(∥∥νk+1 – νk∥∥ +

∥∥νk – νk–1∥∥)
.

The proof is completed. �
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Now we prove that any cluster point of {(xk , yk , zk , uk)}k≥0 is a KKT point of the opti-
mization problem (1.1). Let 
 and 
̂ denote the cluster point set of the sequences {ωk}
and {ω̂k}, respectively.

Theorem 3.2 (Subsequence convergence) Suppose that Assumption A holds. Then we
have that

(i) 
̂ is nonempty, compact, and connected.
(ii) dist(ω̂k , 
̂) → 0 as k → ∞.
(iii) If {(xkj , ykj , zkj , ukj )}j≥0 is a subsequence of {(xk , yk , zk , uk)}k≥0 that converges to

(x∗, y∗, z∗, u∗) as k → +∞ and ω̂ ∈ 
̂, then

lim
k→+∞

L̂β

(
ω̂k) = L̂β

(
x∗, y∗, z∗, u∗, x∗, y∗, z∗) = inf

k
L̂β

(
ω̂k). (3.17)

(iv) 
̂ ⊂ crit L̂β(ω̂).
(v) The function L̂β takes on 
̂ the value

L̂∗
β = lim

k→+∞
L̂β

(
ω̂k) = lim

k→+∞
{

F
(
zk) + G

(
yk) + H

(
xk , yk)}.

Proof By the definition of 
 and 
̂, (i) and (ii) are trivial.
(iii) Let {ωkj} be a subsequence of {ωk} such that ωkj → ω∗, j → ∞. Since Lβ(·) is lower

semicontinuous, we have

lim
j→∞ inf Lβ

(
ωkj

) ≥ Lβ

(
ω∗). (3.18)

On the other hand, the definition of xk+1 shows that

F
(
zk+1) +

〈
uk , Axk – zk+1〉 +

β

2
∥∥Axk – zk+1∥∥2 + τ

∥∥zk+1 – zk
z
∥∥2

≤ F
(
z∗) +

〈
uk , Axk – z∗〉 +

β

2
∥∥Axk – z∗∥∥2 + τ

∥∥z∗ – zk
z
∥∥2,

from which we get

Lβ

(
xk , yk , zk+1, uk) + τ

∥∥zk+1 – zk
z
∥∥2 – τ

∥∥z∗ – zk
z
∥∥2 ≤ Lβ

(
xk , yk , z∗, uk).

Replacing xk , yk , zk+1, uk by xkj , ykj , zkj+1, ukj , we get

Lβ

(
xkj , ykj , zkj+1, ukj

)
+ τ

∥∥zkj+1 – zkj
z
∥∥2 – τ

∥∥z∗ – zkj
z
∥∥2 ≤ Lβ

(
xkj , ykj , z∗, ukj

)
.

Combining with Theorem 3.1(ii), it follows that

∥
∥ωk+1 – ωk∥∥ → 0 as k → ∞,

and then we have

∥∥ωkj+1 – ωkj
∥∥ → 0 and

∥∥ωkj – ω∗∥∥ → 0 as j → ∞,
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which implies that

lim
j→∞ sup Lβ

(
xkj , ykj , zkj+1, ukj

) ≤ Lβ

(
ω∗).

From zk+1 – zk → 0 as k → ∞, it is easy to get

lim
j→∞ sup Lβ

(
xkj , ykj , zkj+1, ukj

)
= lim

j→∞ sup Lβ

(
ωkj

)
.

Then, we have

lim
j→∞ sup Lβ

(
ωkj

) ≤ Lβ

(
ω∗). (3.19)

Therefore, from (3.18) and (3.19), it follows that

lim
j→+∞ Lβ

(
ωkj

)
= Lβ

(
ω∗).

By the definition of L̂β(ω̂k) and ‖ωk – ωk–1‖ → 0 as k → ∞, and since the sequence
{L̂β(ω̂k)}k≥1 is convergent, so we have

lim
k→+∞

L̂β

(
ω̂k) = L̂β

(
x∗, y∗, z∗, u∗, x∗, y∗, z∗) = inf

k
L̂β

(
ω̂k).

(iv) For the sequence Dk defined in Lemma 3.4, for any j ≥ 1, we have Dkj ∈ ∂L̂β (ω̂kj ).
Then it also holds that

Dkj → 0 as j → ∞,

and thus

ω̂kj → ω̂∗ and L̂β

(
ω̂kj

) → L̂β

(
ω̂∗) as j → ∞.

The closedness criterion of the limiting subdifferential guarantees that 0 ∈ ∂L̂β (ω̂kj ), or,
in other words, ω̂∗ ∈ crit(L̂β).

(v) Due to Theorem 3.1(ii) and the fact that {un}n≥0 is bounded, the sequences
{L̂β(ω̂k)}k≥0 and {F(zk) + G(yk) + H(xk , yk)}k≥0 have the same limit:

L̂∗
β = lim

k→+∞
L̂β

(
ω̂k) = lim

k→+∞
{

F
(
zk) + G

(
yk) + H

(
xk , yk)}.

The conclusion follows by taking into consideration the statements (iii) and (iv). The proof
is completed. �

Theorem 3.3 (Strong convergence) Let νk = (xk , yk , zk). Assume that L̂β(ω̂k) is a KŁ func-
tion and Assumption A is satisfied. Then we have

(i) The sequence {ωk} has finite length, namely,
∑∞

k=1 ‖ωk+1 – ωk‖ < ∞.
(ii) The sequence {ωk} converges to a critical point of Lβ (ω∗).
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Proof (i) From the proof of Theorem 3.2, it follows that limk→+∞ L̂β(ω̂k) = L̂β(ω̂∗). We
consider two cases.

Case 1. There exists an integer k0 > 0 such that L̂β(ω̂k0 ) = L̂β(ω̂∗).
Since {L̂β(ω̂k)} is decreasing, we know that for all k > k0,

η1
∥∥xk – xk–1∥∥2 + η2

∥∥yk – yk–1∥∥2 + η3
∥∥zk – zk–1∥∥2 ≤ L̂β

(
ω̂∗) – L̂β

(
ω̂∗) = 0,

which implies that xk+1 = xk , yk+1 = yk , zk+1 = zk for ∀k > k0. Then, from (3.6), we get
uk+1 = uk , for ∀k > k0 + 1. Thus, ωk+1 = ωk , the result is obtained.

Case 2. One has L̂β (ω̂k) > L̂β(ω̂∗) for ∀k > 0.
Since dist(ω̂k , 
̂) → 0, for ∀ε1 > 0 there exists k1 > 0 such that, for ∀k > k1, dist(ω̂k , 
̂) <

ε1. Due to limk→+∞ L̂β(ω̂k) = L̂β(ω̂∗), for ∀ε2 > 0 there exists k2 > 0 such that L̂β(ω̂k) <
L̂β(ω̂∗) + ε2, for ∀k > k2. Therefore, for ∀ε1, ε2 > 0, when k > k̃ = max{k1, k2}, we have
dist(ω̂k , 
̂) < ε1, L̂β(ω̂∗) < L̂β (ω̂k) < L̂β(ω̂∗) + ε2. Since {ωk} is bounded, by Theorem 3.2, we
know that 
̂ is a nonempty compact set and L̂β (·) is constant on 
̂. Applying Lemma 2.4,
we deduce that, for ∀k > k̃,

ϕ′(L̂β

(
ω̂k) – L̂β

(
ω̂∗))dist

(
0, ∂L̂β

(
ω̂k)) ≥ 1.

Since ϕ′(L̂β(ω̂k) – L̂β (ω̂∗)) > 0, then

1
ϕ′(L̂β(ω̂k) – L̂β(ω̂∗))

≤ dist
(
0, ∂L̂β

(
ω̂k)).

Making use of the concavity of ϕ, we get that

ϕ
(
L̂β

(
ω̂k) – L̂β

(
ω̂∗)) – ϕ

(
L̂β

(
ω̂k+1) – L̂β

(
ω̂∗))

≥ ϕ′(L̂β

(
ω̂k) – L̂β

(
ω̂∗))(L̂β

(
ω̂k) – L̂β

(
ω̂k+1)).

Combining with the KŁ property, it follows that

L̂β

(
ω̂k) – L̂β

(
ω̂k+1)

≤ ϕ(L̂β(ω̂k) – L̂β(ω̂∗)) – ϕ(L̂β(ω̂k+1) – L̂β(ω̂∗))

ϕ′(L̂β(ω̂k) – L̂β(ω̂∗))

≤ dist
(
0, ∂L̂β

(
ω̂k))(ϕ

(
L̂β

(
ω̂k) – L̂β

(
ω̂∗)) – ϕ

(
L̂β

(
ω̂k+1) – L̂β

(
ω̂∗))). (3.20)

By Lemma 3.4, we get

dist
(
0, ∂L̂β

(
ω̂k)) ≤ ζ

(∥∥νk – νk–1∥∥ +
∥∥νk–1 – νk–2∥∥)

. (3.21)

From Lemma 3.2, we have

L̂β

(
ω̂k) – L̂β

(
ω̂k+1) ≥ η1

∥∥xk – xk–1∥∥2 + η2
∥∥yk – yk–1∥∥2 + η3

∥∥zk – zk–1∥∥2

≥ η
∥∥νk+1 – νk∥∥2, (3.22)
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where η = min{η1,η2,η3}. Putting (3.21) and (3.22) into (3.20), we obtain

η
∥∥νk+1 – νk∥∥2 ≤ √

ζ
(∥∥νk – νk–1∥∥ +

∥∥νk–1 – νk–2∥∥)

× (
ϕ
(
L̂β

(
ω̂k) – L̂β

(
ω̂∗)) – ϕ

(
L̂β

(
ω̂k+1) – L̂β

(
ω̂∗))). (3.23)

Set bk =
√

ζ

η
(ϕ(L̂β(ω̂k) – L̂β (ω̂∗)) – ϕ(L̂β(ω̂k+1) – L̂β(ω̂∗))) ≥ 0, ak = ‖νk – νk–1‖ ≥ 0. Then

(3.23) can be equivalently rewritten as

a2
k+1 ≤ bk(ak + ak–1). (3.24)

Since ϕ ≥ 0, we know that

∞∑

k=1

bk ≤
√

ζ

η
ϕ
(
L̂β

(
ω̂1) – L̂β

(
ω̂∗)),

hence
∑∞

k=1 bk < ∞. Note that from (3.24) we have

ak+1 ≤ √
bk(ak + ak–1) ≤ 1

4
(ak + ak–1) + bk .

So Lemma 2.4 gives that
∑∞

k=1 ak < ∞. Then,

∞∑

k=1

∥∥xk – xk–1∥∥ < ∞,
∞∑

k=1

∥∥yk – yk–1∥∥ < ∞,
∞∑

k=1

∥∥zk – zk–1∥∥ < ∞.

Combining it with (3.8), we get

∞∑

k=1

∥∥uk – uk–1∥∥ < ∞.

(ii) Statement (i) indicates that {ωk} is a Cauchy sequence. So {ωk} is convergent. Let ωk →
ω∗, k → ∞. According to Theorem 3.2(iv), it is clear that ω̂∗ ∈ 
̂ ⊂ crit L̂β(ω̂). Thus ω̂∗ is a
critical point of L̂β (ω̂). Therefore, by the definition of L̂β , {ωk} converges to a critical point
of Lβ(ω∗). The proof is completed. �

4 Numerical experiments
In this section, we illustrate two computational instances to contrast the efficacy of our
methodology with the PMA technique detailed in [5]. The computational trials are exe-
cuted on 64-bit MATLAB R2019b installed on a 64-bit computer equipped with an In-
tel(R) Core(TM) i7-6700HQ CPU operating at 2.6 GHz and possessing 32 GB of RAM.

Example 4.1 We consider the following optimization problem:

min
x,y

1
2
‖Ax – b‖2 + c1‖y‖ 1

2
1
2

+
c2

2
‖Bx – y‖2,
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which can be written as

min
x,y,z

1
2
‖z – b‖2 + c1‖y‖ 1

2
1
2

+
c2

2
‖Bx – y‖2

such that Ax = z.

Select random matrices A = (aij)p×m and B = (bij)q×m, where aij, bij ∈ (0, 1). Let m, p, q be
three positive integers with m = q. Take the initial points, x0 = x–1 = zeros(m, 1), y0 = y–1 =
zeros(q, 1), z0 = z–1 = zeros(p, 1), u0 = zeros(p, 1) for Algorithm 3.1. The parameters are set
as lF = 1, τ = 10, β = 67, α = 6.6×107, c1 = c2 = 1. The initial points for PMA in [5] are also
set as the previous x0, y0, z0, u0, and the parameter is taken as σ = 0.1. Define ‖Ax – z‖2 as
the error, and select ‖Ax – z‖2 < 10–4 as the stopping criterion. The results are presented
in Table 1 for clarity and, to provide a clear evaluation of the algorithm’s performance, we
also depict the error curve. The respective outcomes are illustrated in Figs. 1 and 2. In the
table, k denotes the number of iterations, s denotes the computing time.

Considering Table 1 and Fig. 1, we observe that the inclusion of an inertial factor pos-
itively impacts the convergence of Algorithm 3.1. Furthermore, a comparison between
Table 1 and Fig. 2 suggests that our algorithm requires fewer iterations and achieves con-
vergence at a faster rate compared to the PMA. In summary, empirical evidence indicates

Figure 1 The performance of Algorithm 3.1 withm = q = 100 and p = 300 with different inertial factor

Figure 2 A comparison of Algorithm 3.1 and PMA withm = q = 100 and p = 400
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Table 1 Numerical results of two algorithms for Example 4.1 under different inertial values and
dimensions

m = q = 100; p = 200 m = q = 100; p = 300 m = q = 100; p = 500

Algorithm 3.1
θ = 0.1

k = 31; s = 0.4375 k = 33; s = 0.5781 k = 34; s = 1.6719

Algorithm 3.1
θ = 0.3

k = 24; s = 0.3906 k = 24; s = 0.5156 k = 33; s = 1.4844

Algorithm 3.1
θ = 0.45

k = 20; s = 0.4531 k = 20; s = 0.4844 k = 21; s = 1.0156

PMA k = 521; s = 1.1719 k = 528; s = 1.5625 k = 558; s = 4.6563

that our algorithm, which incorporates an inertial approach, outperforms the PMA as re-
ported in [5].

Example 4.2 In the second example, we consider the SCAD-l2, which takes the form of

min
n∑

i=1

fk
(|zi|

)
+ ‖y‖2 + ‖Mx – My – c‖2

such that Ax = z,

where A ∈ Rm×n, c ∈ Rm, and fk(|zi|) is defined by

fk(t) =

⎧
⎪⎪⎨

⎪⎪⎩

kt, t ≤ k,
–t2+2akt–k2

2(a+1) , k < t ≤ ak,
(a+1)k2

2 , t > ak,

with a > 2 and k > 0 being the knots of a quadratic spline function. We select random
m × n matrices A, D ∼ N(0, 1), and all columns are normalized. We select random sparse
vectors in Rm with the density 0.01 as x∗, y∗ and the vector c = Mx∗ – My∗ + Q with the
noise vector Q ∼ N(0, 10–3I). For the sole purpose of showing the numerical efficiency, we
fix the parameters k = 3, a = 4 as constants for fk(|zi|). In addition, we set lF = 3, τ = 10,
β = 36.43, α = 1.99 × 104 in Algorithm 3.1, and select σ = 9.17 × 10–4, β = 1.67 × 103, τ =
4.33×104, μ = 276 in PMA [5]. The initial points are selected as x0 = x–1 = zeros(m, 1), y0 =
y–1 = zeros(q, 1), z0 = z–1 = rand(p, 1), u = ones(p, 1) in Algorithm 3.1, and x0 = zeros(m, 1),
y0 = zeros(q, 1), z0 = rand(p, 1), u = ones(p, 1) in PMA [5]. The stopping criterion is taken
as Error = ‖Ax – z‖2 < 10–4.

Figures 3 and 4 show the results of evolution of the Error with respect to iterations when
we run Algorithm 3.1 and PMA in [5]. Figure 4 shows that the Error of Algorithm 3.1
decreases faster than that of PMA. One can see that for larger values of θ , Algorithm 3.1
has a smaller error value in Table 2 and Fig. 3.

5 Conclusion
This paper presents a dual-relaxed inertial proximal minimization algorithm designed
for addressing a specific category of structured nonconvex and nonsmooth optimization
problems. The objective function in these problems is characterized by being the sum of
a composite function, a nonsmooth function, and a mixed function. The algorithm in-
troduced herein features an update mechanism for each subproblem that incorporates
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Figure 3 The performance of our algorithm withm = q = 1200, p = 1100

Figure 4 The performance of Algorithms 3.1 and PMA withm = q = 1200, p = 1100 and θ = 0.1

Table 2 Numerical results of two algorithms for Example 4.2 under different inertial values and
dimensions

m = q = 800; p = 1100 m = q = 900; p = 1100 m = q = 1200; p = 1100

Algorithm 3.1
θ = 0.1

k = 53; s = 10.1563 k = 55; s = 13.6875 k = 57; s = 38.7969

Algorithm 3.1
θ = 0.2

k = 51; s = 10.2031 k = 54; s = 13.9375 k = 55; s = 30.9219

Algorithm 3.1
θ = 0.4

k = 48; s = 10.2188 k = 50; s = 12.6406 k = 52; s = 30.5313

PMA k = 219; s = 7.7969 k = 204; s = 10.2031 k = 195; s = 13.4531

inertial effects and employs two relaxed terms during the dual update phase. Additionally,
the parameters within our algorithm are determined using a straightforward approach.
Computational experiments demonstrate that our algorithm is both practical and effec-
tive.
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