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Abstract
This paper deals with the attraction–repulsion chemotaxis system with nonlinear
productions and logistic source,

ut = ∇ · (D(u)∇u) –∇ · (�(u)∇v) +∇ · (�(u)∇w) + f (u),

vt =�v + αuk – βv, τwt =�w + γ ul – δw, τ ∈ {0, 1},

in a bounded domain 
 ⊂ R
n (n ≥ 1), subject to the homogeneous Neumann

boundary conditions and initial conditions, where D,�,� ∈ C2[0,∞) are
nonnegative with D(s)≥ (s + 1)p for s ≥ 0, �(s) ≤ χ sq, ξ sg ≤ �(s)≤ ζ sj , s≥ s0, for
s0 > 1, the logistic source satisfies f (s)≤ s(a – bsd), s > 0, f (0) ≥ 0, and the nonlinear
productions for the attraction and repulsion chemicals are described via αuk and γ ul ,
respectively. When k = l = 1, it is known that this system possesses a globally
bounded solution in some cases. However, there has been no work in the case k, l > 0.
This paper develops the global boundedness of the solution to the system in some
cases and extends the global boundedness criteria established by Tian, He, and
Zheng (2016) for the attraction–repulsion chemotaxis system.

Keywords: Chemotaxis; Attraction–repulsion; Nonlinear productions; Logistic
source; Boundedness; Fully parabolic

1 Introduction
In this paper, we consider the boundedness in the attraction–repulsion chemotaxis system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u) – ∇ · (�(u)∇v) + ∇ · (�(u)∇w) + f (u), (x, t) ∈ 
 × (0, T),
vt = �v + αuk – βv, (x, t) ∈ 
 × (0, T),
τwt = �w + γ ul – δw, (x, t) ∈ 
 × (0, T),
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= 0, (x, t) ∈ ∂
 × (0, T),
u(x, 0) = u0(x), v(x, 0) = v0(x), τw(x, 0) = w0(x), x ∈ 
,

(1.1)
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where 
 ⊂ R
n(n ≥ 1) is a bounded domain with smooth boundary ∂
, τ ∈ {0, 1}, ν de-

notes the outward normal vector to ∂
, and the parameters α,β ,γ , δ, k, l > 0. The nonlin-
ear nonnegative functions D, �, � satisfy

D,�,� ∈ C2[0,∞), (1.2)

D(s) ≥ (s + 1)p, s ≥ 0, (1.3)

0 ≤ �(s) ≤ χsq, s > 1, (1.4)

ξ sg ≤ �(s) ≤ ζ sj, s > 1, (1.5)

with χ , ξ , ζ > 0 and p, q, g, j ∈R. The logistic source f ∈ C2[0,∞) fulfills

f (0) ≥ 0 and f (s) ≤ s
(
a – bsd), s > 0, (1.6)

where a, b, d > 0. In model (1.1) the functions u, v, and w represent the cell density and
the concentrations of attractive and repulsive chemical substances, respectively. The pro-
ductions of v and w in the model are both nonlinear of the forms αuk and γ ul . This would
substantially affect the boundedness of solutions.

Model (1.1) is one of many types of the chemotaxis systems proposed by Keller and
Segel [1] (for guidance on various variants, we refer to Hillen and Painter [2]). For the
attraction–repulsion system with linear productions and logistic source, i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

ut = �u – χ∇ · (u∇v) + ξ∇ · (u∇w) + f (u), (x, t) ∈ 
 × (0, T),

τ1vt = �v + αu – βv, (x, t) ∈ 
 × (0, T),

τ2wt = �w + γ u – δw, (x, t) ∈ 
 × (0, T),

(1.7)

where τi ∈ {0, 1} (i = 1, 2), in the case τ1 = τ2 = 1 with f (u) = u(a – bu), the global bound-
edness was established in [3–6]. Among them, Jin and Wang [5] dealt with the one-
dimensional case. Also, the two- and three-dimensional settings were investigated by
Jin and Liu [4] under the condition χ = ξ . Furthermore, in the case τ1 = τ2 = 0 with
f (u) = u(a – bu) and a = b, Salako and Shen [7] derived the global boundedness under
some special conditions. Moreover, with f (u) ≤ u(a – bu), Zhang and Li [8] proved that
the problem possesses a globally bounded classical solution if one of the following holds:
(a) αχ – γ ξ ≤ b; (b) n ≤ 2; (c) n–2

n (αχ – γ ξ ) ≤ b with n ≥ 3.
Lately, we turn our eyes into the chemotaxis system with nonlinear productions. Wang

and Xiang [9] proved that for the chemotaxis system

⎧
⎨

⎩

ut = �u – χ∇ · (u∇v) + f (u), (x, t) ∈ 
 × (0, T),

0 = �v + αuk – βv, (x, t) ∈ 
 × (0, T),
(1.8)

with f (u) ≤ u(a – bud) and k, d > 0, the solutions are globally bounded if either d > k or
d = k with kn–2

kn χ < b. Moreover, Hong, Tian, and-Zheng [10] extended the above criteria
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for the attraction–repulsion system

⎧
⎪⎪⎨

⎪⎪⎩

ut = �u – χ∇ · (u∇v) + ξ∇ · (u∇w) + f (u), (x, t) ∈ 
 × (0, T),

0 = �v + αuk – βv, (x, t) ∈ 
 × (0, T),

0 = �w + γ ul – δw, (x, t) ∈ 
 × (0, T),

(1.9)

where f (u) ≤ u(a – bud), k, l, d > 0, k < max{l, d, 2
n } or k = max{l, d} ≥ 2

n with the following
assumptions: (a) k = l = d, kn–2

kn (αχ – γ ξ ) < b; (b) k = l > d, αχ – γ ξ < 0; (c) k = d > l,
kn–2

kn αχ < b.
Recently, Chiyo, Yokota, and Mizukami [11, 12] obtained some interesting results for a

fully parabolic attraction–repulsion chemotaxis system with signal-dependent sensitivity.
Concerning the attraction–repulsion chemotaxis system (1.1), our main results are the

following theorems.

Theorem 1 Let τ = 0, D,�,� and f satisfy (1.2)–(1.6) with nonnegative initial data u0 ∈
C(
̄) and v0 ∈ W 1,σ (
̄) (σ > n).

(i) If q + k < max{g + l, d + 1, 2
n + p + 1}, then Eq. (1.1) admits a globally bounded solution.

(ii) Assume q + k = max{g + l, d + 1} ≥ 2
n + p + 1 and there exist b0, θ0 such that one of the

following assumptions holds:
(a) q + k = g + l = d + 1 with b and γ ξ sufficiently large such that b + γ ξθ0 > 4b0;
(b) q + k = g + l > d + 1 with γ ξ sufficiently large such that γ ξθ0 > 4b0;
(c) q + k = d + 1 > g + l with b sufficiently large such that b > 4b0.
Then the solution of Eq. (1.1) is globally bounded.

Theorem 2 Let τ = 1, D,�,� , and f satisfy (1.2)–(1.6) with nonnegative initial data u0 ∈
C(
̄) and v0, w0 ∈ W 1,σ (
̄) (σ > n).

(i) If q + k, g + l < max{d + 1, 2
n + p + 1}, then Eq. (1.1) admits a globally bounded solution.

(ii) Assume that q+k = d+1 and q+k, g + l ≥ 2
n +p+1 and that there exist b1, b2, b3, θ1, θ2 >

0 such that one of the following assumptions holds:
(a) q + k = d + 1 = g + l with b sufficiently large such that b–ξθ2

χθ1
> 1 + b1 and b–χθ1

ξθ2
> 1 + b2;

(b) q + k = d + 1 > g + l with b sufficiently large such that b
χθ1

> 2 + b3.
Then the solution of Eq. (1.1) is globally bounded.

Remark 1 Model (1.1) includes four mechanisms (a nonlinear diffusion, attraction, re-
pulsion, and logistic source) and two nonlinear productions (components v and w). The
behavior of the solution is determined by the interaction among them. It is known that be-
sides the attraction and corresponding production, all the other benefit the global bound-
edness of solutions.

Remark 2 Theorem 1 illustrates how the nonlinear exponents p, q, g, d, k, l > 0 influence
the evolution of solutions. More precisely, if the attraction is dominated by one of the
other mechanisms (q + k < max{g + l, d + 1, 2

n + p + 1}), then the solution will be globally
bounded. Under the balance situations with q + k = max{g + l, d + 1} and q + k ≥ 2

n + p + 1,
the solution boundedness will be determined by some related coefficients. Furthermore,
Theorem 1 extends the criteria for global boundedness established by Tian, He, and Zheng
[13] for the attraction–repulsion chemotaxis system.
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Remark 3 Theorem 2 also illustrates how the nonlinear exponents p, q, g, d, k, l > 0 influ-
ence the evolution of solutions. More precisely, if the attraction and repulsion are dom-
inated by one of the other mechanisms (q + k, g + l < max{d + 1, 2

n + p + 1}), then the
solution will be globally bounded. Under the balance situations with q + k = d + 1 and
q + k, g + l ≥ 2

n + p + 1, the solution boundedness will be determined by some related co-
efficients. However, in two cases, g + l > q + k ≥ d + 1 andg + l = q + k > d + 1, we have not
found a satisfactory way to explain the behavior of the solution.

2 Preliminaries
In this section, we introduce some results on the local solutions, some integral estimates,
and the maximal Sobolev regularity.

Lemma 1 (See [13, Lemma 2.1]) Let 
 ⊂ R
n(n ≥ 1) be a bounded domain with smooth

boundary, τ = 0, and let D, �, � , and f satisfy (1.2)–(1.6). Then for nonnegative u0 ∈ C0(
̄)

and v0 ∈ W 1,σ (
)(σ ≥ n), there exist nonnegative functions u, v, w ∈ C0(
̄ × [0, Tmax)) ∩
C2,1(
̄× (0, Tmax)) with Tmax ∈ (0,∞] that classically solve (1.1) in 
× (0, Tmax). Moreover,
if Tmax < ∞, then

lim
t→Tmax

∥
∥u(·, t)

∥
∥

L∞(
) = ∞.

The proof is similar to that of Lemma 1.1 in [14].

Lemma 2 Let 
 ⊂ R
n(n ≥ 1) be a bounded domain with smooth boundary, τ = 1, let D,

�, � , and f satisfy (1.2)–(1.6), and let u0 ∈ C0(
̄) and v0, w0 ∈ W 1,∞(
) be nonnegative
with u0 
≡ 0. Then there exist a maximal Tmax ∈ (0,∞] and a uniquely determined triplet
(u, v, w) of nonnegative functions

u ∈ C0(
̄ × [0, Tmax
)
) ∩ C2,1(
̄ × (0, Tmax)

)
,

v, w ∈ C0(
̄ × [0, Tmax
)
) ∩ C2,1(
̄ × (0, Tmax)

) ∩ L∞
loc

(
[0, Tmax

)
; W 1,∞)

that classically solve (1.1) in 
 × (0, Tmax). Moreover, if Tmax < ∞, then

lim sup
t→Tmax

∥
∥u(·, t)

∥
∥

L∞(
) = ∞.

Some basic properties are derived as follows.

Lemma 3 [10] Let (u, v, w) be a solution to (1.1) ensured by Lemma 1. Then for any l,η > 0
and θ > 1, there is c0 = c0(η, θ , l) > 0 such that

∫




wθ ≤ η

∫




ulθ + c0, t ∈ (0, Tmax). (2.1)

Moreover,

∫




u ≤ max

{∫




u0,
(

a
b

) 1
d |
|

}

:= M.
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Next, we prove a variation of the maximal Sobolev regularity. The idea is inspired by
[10, Lemma 4.1] and the work presented in [15].

Lemma 4 Let σ > 1. Consider the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

ςt = �ς – βς + h, (x, t) ∈ 
 × (0, T),
∂ς

∂ν
= 0, (x, t) ∈ ∂
 × (0, T),

ς(x, 0) = ς0(x), x ∈ 
,

for any ς0 ∈ W 2,σ (
) (σ > n), ∂ς0
∂ν

= 0 on ∂
, and all h ∈ Lσ ((0, T); Lσ (
)). Then it has a
unique solution

ς ∈ W 1,σ (
(0, T); Lσ (
)

) ∩ Lσ
(
(0, T); W 2,σ (
)

)
.

Moreover, if t0 ∈ [0, T), ς(·, t0) ∈ W 2,σ (σ > n) with ∂ς0
∂ν

= 0, then there exists Cσ > 0 such
that

∫ T

t0

∫




eβσ t|�ς |σ

≤ Cσ

∫ T

t0

∫




eβσ thσ + Cσ eβσ t0
(∥
∥ς(·, t0)

∥
∥σ

Lσ (
) +
∥
∥�ς(·, t0)

∥
∥σ

Lσ (
)

)
. (2.2)

Proof Let H̄(x, t) = eβtς(x, t). We have

⎧
⎪⎪⎨

⎪⎪⎩

H̄t = �H̄ + eβth, (x, t) ∈ 
 × (0, T),
∂H̄
∂ν

= 0, (x, t) ∈ ∂
 × (0, T),

H̄(x, 0) = H̄0(x), x ∈ 
.

By the standard Sobolev regularity there exists Cσ > 0 such that

∫ T

0

∫




|�H̄|σ ≤ Cσ

∫ T

0

∫




∣
∣eβth

∣
∣σ + Cσ

(‖H̄0‖σ
Lσ (
) + ‖�H̄0‖σ

Lσ (
)

)
,

and thus
∫ T

0

∫




eβσ t|�ς |σ ≤ Cσ

∫ T

0

∫




eβσ thσ + Cσ

(‖ς0‖σ
Lσ (
) + ‖�ς0‖σ

Lσ (
)

)
.

For any t0 > 0, replacing ς(t) by ς(t + t0), we get

∫ T

t0

∫




eβσ t|�ς |σ ≤ Cσ

∫ T

t0

∫




eβσ thσ + Cσ eβσ t0
(∥
∥ς(·, t0)

∥
∥σ

Lσ (
) +
∥
∥�ς(·, t0)

∥
∥σ

Lσ (
)

)
. �

Given t0 ∈ (0, Tmax) with t0 ≤ 1, from the regularity principle stated by Lemma 1, we
know that u(·, t0), v(·, t0) ∈ C2(
̄) with ∂v(·,t0)

∂ν
= 0 on ∂
. So we can pick M̄1 > 0 such that

sup
0≤t≤t0

∥
∥u(·, t)

∥
∥

L∞(
) ≤ M̄1,

sup
0≤t≤t0

∥
∥v(·, t)

∥
∥

L∞(
) ≤ M̄1 and
∥
∥�v(·, t0)

∥
∥

L∞(
) ≤ M̄1.
(2.3)
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Similarly, by Lemma 2 we know that u(·, t0), v(·, t0), w(·, t0) ∈ C2(
̄) with ∂v(·,t0)
∂ν

, ∂w(·,t0)
∂ν

= 0
on ∂
. So we can pick M̄2 > 0 such that

sup
0≤t≤t0

∥
∥u(·, t)

∥
∥

L∞(
) ≤ M̄2,

sup
0≤t≤t0

∥
∥v(·, t)

∥
∥

L∞(
) ≤ M̄2 and
∥
∥�v(·, t0)

∥
∥

L∞(
) ≤ M̄2,

sup
0≤t≤t0

∥
∥w(·, t)

∥
∥

L∞(
) ≤ M̄2 and
∥
∥�w(·, t0)

∥
∥

L∞(
) ≤ M̄2.

(2.4)

3 Proof of Theorem 1
In this section, we deal with the parabolic–parabolic–elliptic case (with τ = 0) to prove
Theorem 1. For simplicity, the variable of integration in an integral will be omitted with-
out ambiguity; e.g., we write the integral

∫



f (x) dx as

∫



f (x). Hereafter, ci, i = 1, 2, 3, . . . ,

denote generic constants, which may change from one line to another.

Proof of Theorem 1 We first prove that for any r > 1, there is c = c(r) > 0 such that

∫




ur ≤ c, t ∈ (0, Tmax). (3.1)

Without loss of generality, suppose r > max{2, 1 – q, 1 – g, 1 – p, 1 – j} and assume that
∇u · ∇v > 0 and ∇u · ∇w > 0. Taking ur–1 as a test function for the first equation of (1.1),
we have

1
r

d
dt

∫




ur = – (r – 1)
∫




ur–2D(u)|∇u|2 + (r – 1)
∫




ur–2�(u)∇u · ∇v

– (r – 1)
∫




ur–2�(u)∇u · ∇w + a
∫




ur – b
∫




ur+d

≤ χ(r – 1)
∫




ur+q–2∇u · ∇v – ξ (r – 1)
∫




ur+g–2∇u · ∇w

+ a
∫




ur – b
∫




ur+d

= –
χ(r – 1)

r + q – 1

∫




ur+q–1�v +
ξ (r – 1)

r + g – 1

∫




ur+g–1�w + a
∫




ur

– b
∫




ur+d, t ∈ (t0, Tmax),

(3.2)

and, combining it with the third equation of (1.1),

1
r

d
dt

∫




ur ≤ –
χ(r – 1)

r + q – 1

∫




ur+q–1�v –
γ ξ (r – 1)

r + g – 1

∫




ur+g+l–1

+
δξ (r – 1)

r + g – 1

∫




ur+g–1w + a
∫




ur – b
∫




ur+d, t ∈ (t0, Tmax).

By Young’s inequality, for any ε > 0, there exists c1 = c1(r, ε) such that

δξ (r – 1)

r + g – 1

∫




ur+g–1w ≤ ε

2

∫




ur+g+l–1 + c1

∫




w
r+g+l–1

l , t ∈ (t0, Tmax),
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and combining this with (2.1) and letting η = ε
2c1

, we get

δξ (r – 1)

r + g – 1

∫




ur+g–1w ≤ ε

∫




ur+g+l–1 + c2, t ∈ (t0, Tmax),

where c2 = c2(r, ε) > 0. By Young’s inequality,

–
χ(r – 1)

r + q – 1

∫




ur+q–1�v ≤ χ(r – 1)

r + q – 1

(∫




ur+q+k–1 +
∫




|�v| r+q+k–1
k

)

, t ∈ (t0, Tmax),

and thus

1
r

d
dt

∫




ur ≤ χ(r – 1)

r + q – 1

(∫




ur+q+k–1 +
∫




|�v| r+q+k–1
k

)

–
(

γ ξ (r – 1)

r + g – 1
– ε

)∫




ur+g+l–1

+ a
∫




ur – b
∫




ur+d + c2, t ∈ (t0, Tmax).

(3.3)

Case 1: q + k < max{g + l, d + 1, 2
n + p + 1}.

Let q + k < d + 1. By Young’s inequality, for any η1 > 0, there is c3 = c3(r,η1) > 0 such that

χ(r – 1)

r + q – 1

(∫




ur+q+k–1 +
∫




�v
r+q+k–1

k

)

≤ b
2

∫




ur+d + η1

∫




|�v|σ1 + c3, t ∈ (t0, Tmax),

where σ1 = r+d
k . Taking ε = γ ξ (r–1)

r+g–1 in (3.3), we get

1
r

d
dt

∫




ur ≤ η1

∫




|�v|σ1 –
b
2

∫




ur+d + a
∫




ur + c4

= –
βσ1

r

∫




ur + η1

∫




|�v|σ1 –
b
2

∫




ur+d

+
(

a +
βσ1

r

)∫




ur + c4, t ∈ (t0, Tmax),

where c4 = c2 + c3 > 0. By Young’s inequality,

(

a +
βσ1

r

)∫




ur ≤ b
4

∫




ur+d + c5, t ∈ (t0, Tmax),

where c5 = c5(r) > 0. Thus there exists c6 = c4 + c5 > 0 such that

1
r

d
dt

∫




ur ≤ –
βσ1

r

∫




ur + η1

∫




|�v|σ1 –
b
4

∫




ur+d + c6, t ∈ (t0, Tmax),
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and applying the variation-of-constants formula, we have

1
r

∫




ur ≤ e–βσ1(t–t0) 1
r

∫




ur(·, t0) + η1

∫ t

t0

∫




e–βσ1(t–s)|�v|σ1

–
b
4

∫ t

t0

∫




e–βσ1(t–s)ur+d + c6

∫ t

t0

e–βσ1(t–s)

≤ η1e–βσ1t
∫ t

t0

∫




eβσ1s|�v|σ1 –
b
4

e–βσ1t
∫ t

t0

∫




eβσ1sur+d + c7, t ∈ (t0, Tmax),

where c7 = 1
r eβσ1t0

∫



ur(·, t0) + c6

βσ1
(1 + eβσ1t0 ), which is independent of t. By (2.2) this yields

that

η1e–βσ1t
∫ t

t0

∫




eβσ1s|�v|σ1 ≤ η1e–βσ1tCσ1α
σ1

∫ t

t0

∫




eβσ1sur+d

+ η1e–βσ1tCσ1 eβσ1t0
∥
∥v(·, t0)

∥
∥σ1

W 2,σ1 , t ∈ (t0, Tmax),

and thus

1
r

∫




ur ≤ –
(

b
4

– η1Cσ1α
σ1

)

e–βσ1t
∫ t

t0

∫




eβσ1sur+d

+ η1e–βσ1(t–t0)Cσ1

∥
∥v(·, t0)

∥
∥σ1

W 2,σ1 + c7, t ∈ (t0, Tmax),
(3.4)

which gives (3.1) by taking η1 = b
4(cσ1 ασ1 ) .

Let q + k < g + l. By Young’s inequality, for any η2 > 0, there is c8 = c8(r,η2) > 0 such that

χ(r – 1)

r + q – 1

(∫




ur+q+k–1 +
∫




�v
r+q+k–1

k

)

≤ γ ξ (r – 1)

2(r + g – 1)

∫




ur+g+l–1

+ η2

∫




|�v| r+g+l–1
k + c8, t ∈ (t0, Tmax).

By (3.3) with ε = γ ξ (r–1)
4(r+g–1) we have

1
r

d
dt

∫




ur ≤ η2

∫




|�v|σ2 –
γ ξ (r – 1)

4(r + g – 1)

∫




ur+g+l–1 + a
∫




ur + c9

= –
βσ2

r

∫




ur + η2

∫




|�v|σ2 –
γ ξ (r – 1)

4(r + g – 1)

∫




ur+g+l–1

+
(

a +
βσ2

r

)∫




ur + c9, t ∈ (t0, Tmax),

where c9 = c2 + c8 > 0 and σ2 = r+g+l–1
k . Since g + l > d + 1 > 0, there is c10 = c10(r) > 0 such

that

(

a +
βσ2

r

)∫




ur ≤ γ ξ (r – 1)

8(r + g – 1)

∫




ur+g+l–1 + c10, t ∈ (t0, Tmax).
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Similarly to (3.4), we have

1
r

∫




ur ≤ –
(

γ ξ (r – 1)

8(r + g – 1)
– η2Cσ2α

σ2

)

e–βσ2t
∫ t

t0

∫




eβσ2sur+g+l–1

+ η2e–βσ2(t–t0)Cσ2

∥
∥v(·, t0)

∥
∥σ2

W 2,σ2 + c12, t ∈ (t0, Tmax),

where c12 = 1
r eβσ2t0

∫



ur(·, t0) + c11

βσ2
(1 + eβσ2t0 ) independent of t, and c11 = c9 + c10 > 0. Then

(3.1) follows by taking η2 = γ ξ (r–1)
8(r+g–1)cσ2 ασ2 .

Let q + k < 2
n + p + 1. Without loss of generality, we suppose q + k ≥ max{g + l, d + 1}. Take

(u + 1)r+1 as a test function for the first equation in (1.1). Similarly, to obtain (3.2), we have

1
r

d
dt

∫




(u + 1)r

= –(r – 1)
∫




(u + 1)r–2D(u)|∇u|2 + (r – 1)
∫




(u + 1)r–2�(u)∇u · ∇v

– (r – 1)
∫




(u + 1)r–2�(u)∇u · ∇w + a
∫




u(u + 1)r–1 – b
∫




ud+1(u + 1)r–1

≤ –(r – 1)
∫




(u + 1)r–2D(u)|∇u|2 + χ(r – 1)
∫




(u + 1)r+q–2∇u · ∇v

– ξ (r – 1)
∫




(u + 1)r+g–2∇u · ∇w + a
∫




u(u + 1)r–1 – b
∫




ud+1(u + 1)r–1,

and then

1
r

d
dt

∫




(u + 1)r

≤ –
4(r – 1)

(r + p)2

∫




∣
∣∇(u + 1)

r+p
2

∣
∣2 –

χ(r – 1)

r + q – 1

∫




(u + 1)r+q–1�v

+
ξ (r – 1)

r + g – 1

∫




(u + 1)r+g–1�w + a
∫




u(u + 1)r–1, t ∈ (t0, Tmax). (3.5)

By Young’s inequality we have

–
χ(r – 1)

r + q – 1

∫




ur+q–1�v ≤ χ

(∫




ur+q+k–1 +
∫




|�v| r+q+k–1
k

)

, t ∈ (t0, Tmax).

Similarly, replacing u in the second equation of (1.1) by u + 1 to obtain (3.3), we have

1
r

d
dt

∫




(u + 1)r ≤ –
4(r – 1)

(r + p)2

∫




∣
∣∇(u + 1)

r+p
2

∣
∣2 + χ

∫




|�v| r+q+k–1
k

+ χ

∫




(u + 1)r+q+k–1

–
(

γ ξ (r – 1)

r + g – 1
– ε

)∫




ur+g+l–1 + a
∫




u(u + 1)r–1

+ c2, t ∈ (t0, Tmax).
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Taking ε = γ ξ (r–1)
r+g–1 , we further have

1
r

d
dt

∫




(u + 1)r ≤ –
4(r – 1)

(r + p)2

∫




∣
∣∇(u + 1)

r+p
2

∣
∣2 + χ

∫




|�v| r+q+k–1
k

+ χ

∫




(u + 1)r+q+k–1

+ a
∫




u(u + 1)r–1 + c2, t ∈ (t0, Tmax).

By the Gagliardo–Nirenberg inequality there exist c13 = c13(r) > 0 and c14 = c14(r) > 0 such
that

∫




(u + 1)r+q+k–1 =
∥
∥(u + 1)

r+p
2

∥
∥

2(r+q+k–1)
r+p

L
2(r+q+k–1)

r+p (
)

≤ c13
∥
∥∇(u + 1)

r+p
2

∥
∥

2(r+q+k–1)
r+p z

L2(
)

∥
∥(u + 1)

r+p
2

∥
∥

2(r+q+k–1)
r+p (1–z)

L
2

r+p (
)

+ c13
∥
∥(u + 1)

r+p
2

∥
∥

2(r+q+k–1)
r+p

L
2

r+p (
)

≤ c14
∥
∥∇(u + 1)

r+p
2

∥
∥

2(r+q+k–1)
r+p z

L2(
)
+ c14, t ∈ (t0, Tmax),

where z = ( n(r+p)
2 – n(r+p)

2(r+q+k–1) )/(1 – n
2 + n(r+p)

2 ) ∈ (0, 1).
Now let q + k < 2

n + p + 1. Then 2(r+q+k–1)
r+p z ≤ 2. By Young’s inequality, for any η̄ > 0,

∫




(u + 1)r+q+k–1 ≤ η̄
∥
∥∇(u + 1)

r+p
2

∥
∥2

L2(
) + c15, t ∈ (t0, Tmax), (3.6)

where c15 = c15(r, η̄) > 0. Thus

1
r

d
dt

∫




(u + 1)r ≤ –
(

4(r – 1)

η̄(r + p)2 – χ

)∫




(u + 1)r+q+k–1 + χ

∫




|�v|σ3

+ a
∫




(u + 1)r + c16, t ∈ (t0, Tmax),

where c16 = c2 + c15 > 0 and σ3 = r+q+k–1
k . Applying the variation-of-constants formula and

(2.2), we have

1
r

∫




(u + 1)r ≤ –
(

4(r – 1)

η̄(r + p)2 – χ – a –
βσ3

r
– χCσ3α

σ3

)

× e–βσ3t
∫ t

t0

∫




eβσ3s(u + 1)r+q+k–1

+ χe–βσ3(t–t0)Cσ3

∥
∥v(·, t0)

∥
∥σ3

W 2,σ3 (
) + c17, t ∈ (t0, Tmax),

where c17 = c17(r, η̄). This gives (3.1) with η̄ small enough.
Case 2: q + k = max{g + l, d + 1} and q + k ≥ 2

n + p + 1.
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(a) Let q + k = g + l = d + 1. By (3.3) we have

1
r

d
dt

∫




ur ≤ χ(r – 1)

r + q – 1

(∫




ur+q+k–1 +
∫




�vσ3

)

–
(

b +
γ ξ (r – 1)

r + g – 1
– ε

)∫




ur+q+k–1

+ a
∫




ur + c2, t ∈ (t0, Tmax).

By Young’s inequality, for any η3 > 0, there exists c18 = c18(r,η3) > 0 such that

χ(r – 1)

r + q – 1

(∫




ur+q+k–1 +
∫




�vσ3

)

≤
(

γ ξ (r – 1)

2(r + g – 1)
+

b
2

)∫




ur+q+k–1

+ η3

∫




|�v|σ3 + c18, t ∈ (t0, Tmax),

and thus we get

1
r

d
dt

∫




ur ≤ –
(

b
2

+
γ ξ (r – 1)

2(r + g – 1)
– ε

)∫




ur+q+k–1 + η3

∫




|�v|σ3 + a
∫




ur + c19

= – β
σ3

r

∫




ur –
(

b
2

+
γ ξ (r – 1)

2(r + g – 1)
– ε

)∫




ur+q+k–1 + η3

∫




|�v|σ3

+
(

a + β
σ3

r

)∫




ur + c19, t ∈ (t0, Tmax),

where c19 = c2 + c18. By Young’s inequality,

(

a + β
σ3

r

)∫




ur ≤
(

b
4

+
γ ξ (r – 1)

4(r + g – 1)

)∫




ur+q+k–1 + c20, t ∈ (t0, Tmax),

where c20 = c20(r) > 0. Then

1
r

d
dt

∫




ur ≤ – β
σ3

r

∫




ur –
(

b
4

+
γ ξ (r – 1)

4(r + g – 1)
– ε

)∫




ur+q+k–1

+ η3

∫




|�v|σ3 + c21, t ∈ (t0, Tmax),

where c21 = c19 + c20. Applying the variation-of-constants formula and (2.2), we have

1
r

∫




ur ≤ –
(

b
4

+
γ ξ (r – 1)

4(r + g – 1)
– ε – η3Cσ3α

σ3

)

e–βσ3t
∫ t

t0

∫




eβσ3sur+q+k–1

+ η3e–βσ3(t–t0)Cσ3

∥
∥v(·, t0)

∥
∥σ3

W 2,σ3 (
) + c22, t ∈ (t0, Tmax),
(3.7)

where c22 = c22(r, ε). Let

b0 = b0(r) = inf
η3>0

(
η3Cσ3α

σ3
)
,

θ0 = θ0(r) =
r – 1

r + g – 1
.

Then we can choose ε and η3 small enough such that 1
4 (b + γ ξθ0) – ε – b0 > 0, provided

that b + γ ξθ0 > 4b0, and, consequently, (3.1) is true.



Wang and Yan Journal of Inequalities and Applications        (2024) 2024:130 Page 12 of 19

(b) Let q + k = g + l > d + 1. Then (3.3) becomes

1
r

d
dt

∫




ur ≤ χ(r – 1)

r + q – 1

(∫




ur+q+k–1 +
∫




�vσ3

)

–
(

γ ξ (r – 1)

r + g – 1
– ε

)∫




ur+q+k–1

+ a
∫




ur + c2, t ∈ (t0, Tmax).

Following the same arguments as those for getting (3.7), we can find c23 = c23(r, ε) > 0 such
that

1
r

∫




ur ≤ –
(

γ ξ (r – 1)

4(r + g – 1)
– ε – η3Cσ3α

σ3

)

e–βσ3t
∫ t

t0

∫




eβσ3sur+q+k–1

+ η3e–βσ3(t–t0)Cσ3

∥
∥v(·, t0)

∥
∥σ3

W 2,σ3 (
) + c23, ∈ (t0, Tmax).

Then we can choose ε and η3 small enough such that 1
4γ ξθ0 – ε – b0 > 0, provided that

γ ξθ0 > 4b0, and thus (3.1) is true.
(c) Let q + k = d + 1 > g + l. Taking ε = γ ξ (r–1)

r+g–1 , by (3.3) we have

1
r

d
dt

∫




ur ≤ χ(r – 1)

r + q – 1

(∫




ur+q+k–1 +
∫




�vσ3

)

+ a
∫




ur – b
∫




ur+d

+ c2, t ∈ (t0, Tmax).

Following the same arguments as those for getting (3.7), we can find c24 = c24(r) > 0 such
that

1
r

∫




ur ≤ –
(

b
4

– η3Cσ3α
σ3

)

e–βσ3t
∫ t

t0

∫




eβσ3sur+q+k–1

+ η3e–βσ3(t–t0)Cσ3

∥
∥v(·, t0)

∥
∥σ3

W 2,σ3 (
) + c24, t ∈ (t0, Tmax).

Then we can choose η3 small enough such that 1
4 b – b0 > 0, provided that b > 4b0, and

hence (3.1) is proved.
If ∇u · ∇v < 0 and ∇u · ∇w > 0, then similarly to (3.2), we derive

1
r

d
dt

∫




ur = – (r – 1)
∫




ur–2D(u)|∇u|2 + (r – 1)
∫




ur–2�(u)∇u · ∇v

– (r – 1)
∫




ur–2�(u)∇u · ∇w + a
∫




ur – b
∫




ur+d

≤ – ξ (r – 1)
∫




ur+g–2∇u · ∇w + a
∫




ur – b
∫




ur+d

=
ξ (r – 1)

r + g – 1

∫




ur+g–1�w + a
∫




ur – b
∫




ur+d, t ∈ (t0, Tmax).

Combining THIS with the third equation of (1.1), we have

1
r

d
dt

∫




ur ≤ –
γ ξ (r – 1)

r + g – 1

∫




ur+g+l–1 +
δξ (r – 1)

r + g – 1

∫




ur+g–1w

+ a
∫




ur – b
∫




ur+d, t ∈ (t0, Tmax).
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By Young’s inequality, for any ε > 0, there exists c25 = c25(r, ε) such that

δξ (r – 1)

r + g – 1

∫




ur+g–1w ≤ ε

2

∫




ur+g+l–1 + c25

∫




w
r+g+l–1

l , t ∈ (t0, Tmax).

Combining this with (2.1) and letting η = ε
2c25

, we get

δξ (r – 1)

r + g – 1

∫




ur+g–1w ≤ ε

∫




ur+g+l–1 + c26, t ∈ (t0, Tmax),

where c26 = c26(r, ε) > 0. Thus

1
r

d
dt

∫




ur ≤ –
(

γ ξ (r – 1)

r + g – 1
– ε

)∫




ur+g+l–1 + a
∫




ur – b
∫




ur+d

+ c26, t ∈ (t0, Tmax).

Taking ε = γ ξ (r–1)
r+g–1 , by (3.3) we derive (3.1).

If ∇u · ∇v > 0 and ∇u · ∇w < 0, then we have

1
r

d
dt

∫




ur = – (r – 1)
∫




ur–2D(u)|∇u|2 + (r – 1)
∫




ur–2�(u)∇u · ∇v

– (r – 1)
∫




ur–2�(u)∇u · ∇w + a
∫




ur – b
∫




ur+d

≤ χ(r – 1)
∫




ur+q–2∇u · ∇v – ζ (r – 1)
∫




ur+j–2∇u · ∇w

+ a
∫




ur – b
∫




ur+d

= –
χ(r – 1)

r + q – 1

∫




ur+q–1�v +
ζ (r – 1)

r + j – 1

∫




ur+j–1�w + a
∫




ur

– b
∫




ur+d, t ∈ (t0, Tmax).

Similarly to the case where ∇u · ∇v > 0 and ∇u · ∇w > 0, we derive (3.1).
If ∇u · ∇v < 0 and ∇u · ∇w < 0, then we have

1
r

d
dt

∫




ur = – (r – 1)
∫




ur–2D(u)|∇u|2 + (r – 1)
∫




ur–2�(u)∇u · ∇v

– (r – 1)
∫




ur–2�(u)∇u · ∇w + a
∫




ur – b
∫




ur+d

≤ – ζ (r – 1)
∫




ur+j–2∇u · ∇w + a
∫




ur – b
∫




ur+d

=
ζ (r – 1)

r + j – 1

∫




ur+j–1�w + a
∫




ur – b
∫




ur+d, t ∈ (t0, Tmax).

Similarly to the case where ∇u · ∇v < 0 and ∇u · ∇w > 0, we derive (3.1).
We have proved claim (3.1) for all cases of Theorem 1.
Furthermore, by a standard Alikakos–Moser iteration [16] and (2.3) we get that

∥
∥u(·, t)

∥
∥

L∞(
) ≤ C for all t ∈ (0, Tmax)

with some C > 0.
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The boundedness of v can be obtained by the standard parabolic regularity theory.
By Lemma 1 we conclude Tmax = ∞. �

4 Proof of Theorem 2
In this section, we deal with the fully parabolic case (with τ = 1) to prove Theorem 2.

Proof of Theorem 2 Just as in the proof of Theorem 1, we first claim that for any r > 1,
there exists c = c(r) > 0 such that (3.1) holds for some cases. Without loss of generality,
suppose r > max{2, 1 – q, 1 – g, 1 – p, 1 – j} and assume that ∇u · ∇v > 0 and ∇u · ∇w > 0.

Case 1: q + k, g + l < max{d + 1, 2
n + p + 1}.

Let q + k < d + 1, g + l < d + 1. By (3.2) and Young’s inequality we have

–
χ(r – 1)

r + q – 1

∫




ur+q–1�v

≤ χ(r – 1)

r + q – 1

(∫




ur+q+k–1 +
∫




|�v| r+q+k–1
k

)

, t ∈ (t0, Tmax),

ξ (r – 1)

r + g – 1

∫




ur+g–1�w

≤ ξ (r – 1)

r + g – 1

(∫




ur+g+l–1 +
∫




|�w| r+g+l–1
l

)

, t ∈ (t0, Tmax).

(4.1)

Then, by Young’s inequality again, for any η4 > 0 and η5 > 0, we have

χ(r – 1)

r + q – 1

(∫




ur+q+k–1 +
∫




�v
r+q+k–1

k

)

≤ b
4

∫




ur+d + η4

∫




|�v| r+d
k + c27, t ∈ (t0, Tmax),

ξ (r – 1)

r + g – 1

(∫




ur+g+l–1 +
∫




|�w| r+g+l–1
l

)

≤ b
4

∫




ur+d + η5

∫




|�w| r+d
l + c28, t ∈ (t0, Tmax),

with c27 = c27(r) > 0, c28 = c28(r) > 0. Together with (3.2), this gives

1
r

d
dt

∫




ur ≤ η4

∫




|�v|σ4 + η5

∫




|�w|σ5 –
b
2

∫




ur+d + a
∫




ur + c29

= – (βσ4 + δσ5)
1
r

∫




ur + η4

∫




|�v|σ4 + η5

∫




|�w|σ5 –
b
2

∫




ur+d

+
(

a + (βσ4 + δσ5)
1
r

)∫




ur + c29, t ∈ (t0, Tmax),

where σ4 = r+d
k , σ5 = r+d

l , and c29 = c27 + c28 > 0. By Young’s inequality we have

(

a + (βσ4 + δσ5)
1
r

)∫




ur ≤ b
4

∫




ur+d + c30, t ∈ (t0, Tmax),
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with c30 = c30(r) > 0. Thus

1
r

d
dt

∫




ur ≤ – (βσ4 + δσ5)
1
r

∫




ur + η4

∫




|�v|σ4 + η5

∫




|�w|σ5

–
b
4

∫




ur+d + c31, t ∈ (t0, Tmax),

for c31 = c29 + c30 > 0. Applying the variation-of-constants formula, we have

1
r

∫




ur ≤ e–(βσ4+δσ5)(t–t0) 1
r

∫




ur(·, t0) + η4e–(βσ4+δσ5)t
∫ t

t0

∫




e(βσ4+δσ5)s|�v|σ4

+ c31e–(βσ4+δσ5)t
∫ t

t0

e(βσ4+δσ5)s + η5e–(βσ4+δσ5)t
∫ t

t0

∫




e(βσ4+δσ5)s|�w|σ5

–
b
4

e–(βσ4+δσ5)t
∫ t

t0

∫




e(βσ4+δσ5)sur+d

≤ η4e–βσ4t
∫ t

t0

∫




eβσ4s|�v|σ4 + η5e–δσ5t
∫ t

t0

∫




eδσ5s|�w|σ5

–
b
8

e–(βσ4+δσ5)t+δσ5t0

∫ t

t0

∫




eβσ4sur+d

–
b
8

e–(βσ4+δσ5)t+βσ4t0

∫ t

t0

∫




eδσ5sur+d + c32

≤ η4e–βσ4t
∫ t

t0

∫




eβσ4s|�v|σ4 + η5e–δσ5t
∫ t

t0

∫




eδσ5s|�w|σ5

–
b
8

e–βσ4t
∫ t

t0

∫




eβσ4sur+d

–
b
8

e–δσ5t
∫ t

t0

∫




eδσ5sur+d + c32, t ∈ (t0, Tmax),

where c32 = e(βσ4+δσ5)t0 1
r
∫



ur(·, t0) + c31

βσ4+δσ5
(1 + e(βσ4+δσ5)t0 ). Then by the maximal Sobolev

regularity (Lemma 2) we get

1
r

∫




ur ≤ –
(

b
8

– η4Cσ4α
σ4

)

e–βσ4t
∫ t

t0

∫




eβσ4sur+d

–
(

b
8

– η5Cσ5γ
σ5

)

e–δσ5t
∫ t

t0

∫




eδσ5sur+d

+ η4e–βσ4(t–t0)Cσ4

∥
∥v(·, t0)

∥
∥σ4

W 2,σ4 + η5e–δσ5(t–t0)Cσ5

∥
∥w(·, t0)

∥
∥σ5

W 2,σ5

+ c32, t ∈ (t0, Tmax).

This gives (3.1) by taking η4 = b
8(cσ4 ασ4 ) and η5 = b

8(cσ5 ασ5 ) .
Now let q + k < 2

n + p + 1 and g + l < 2
n + p + 1. Without loss of generality, suppose q + k ≥

max{g + l, d + 1}. By (3.5) and Young’s inequality we have

–
χ(r – 1)

r + q – 1

∫




ur+q–1�v ≤ χ

(∫




ur+q+k–1 +
∫




|�v| r+q+k–1
k

)

, t ∈ (t0, Tmax),
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ξ (r – 1)

r + g – 1

∫




ur+g–1�w ≤ ξ

(∫




ur+g+l–1 +
∫




|�w| r+g+l–1
l

)

, t ∈ (t0, Tmax),

and thus, replacing u in the second and third equations of (1.1) by u + 1, we have

1
r

d
dt

∫




(u + 1)r ≤ –
4(r – 1)

(r + p)2

∫




∣
∣∇(u + 1)

r+p
2

∣
∣2 + χ

∫




|�v| r+q+k–1
k + χ

∫




(u + 1)r+q+k–1

+ ξ

∫




|�w| r+g+l–1
l + ξ

∫




(u + 1)r+q+k–1

+ a
∫




u(u + 1)r–1, t ∈ (t0, Tmax).

By (3.6) we have

1
r

d
dt

∫




(u + 1)r ≤ –
(

4(r – 1)

η̄(r + p)2 – χ – ξ

)∫




(u + 1)r+q+k–1 + χ

∫




|�v|σ6

+ ξ

∫




|�w|σ7

+ a
∫




(u + 1)r + c16, t ∈ (t0, Tmax),

where σ6 = r+q+k–1
k and σ7 = r+g+l–1

l . Applying the variation-of-constants formula and (2.2),
we have

1
r

∫




(u + 1)r ≤ –
(

4(r – 1)

η̄(r + p)2 – χCσ6α
σ6 – ξCσ7γ

σ7 – a
)

× e–(βσ6+δσ7)t
∫ t

t0

∫




e(βσ6+δσ7)s(u + 1)r+q+k–1

+ e–(βσ6+δσ7)(t–t0)
(
χCσ6

∥
∥v(·, t0)

∥
∥σ6

W 2,σ6 (
)
+ ξCσ7

∥
∥w(·, t0)

∥
∥σ7

W 2,σ7 (
)

)

+ c33, t ∈ (t0, Tmax),

with c33 = c33(r, η̄) > 0. Letting η̄ small enough, we obtain (3.1).
Case 2: q + k = d + 1 and q + k, g + l ≥ 2

n + p + 1.
(a) Let q + k = d + 1 = g + l. Similarly to (4.1), by Young’s inequality and (3.2) we have

–
χ(r – 1)

r + q – 1

∫




ur+q–1�v ≤ χ(r – 1)

r + q – 1

(∫




ur+d +
∫




|�v|σ7

)

, t ∈ (t0, Tmax),

ξ (r – 1)

r + g – 1

∫




ur+g–1�w ≤ ξ (r – 1)

r + g – 1

(∫




ur+d +
∫




|�w|σ5

)

, t ∈ (t0, Tmax),

and thus

1
r

d
dt

∫




ur ≤ – (b – χθ1 – ξθ2)
∫




ur+d + χθ1

∫




|�v|σ7 + ξθ2

∫




|�w|σ5 + a
∫




ur

= – (βσ7 + δσ5)
1
r

∫




ur – (b – χθ1 – ξθ2)
∫




ur+d + χθ1

∫




|�v|σ7

+ ξθ2

∫




|�w|σ5 +
(

a + (βσ7 + δσ5)
1
r

)∫




ur , t ∈ (t0, Tmax),
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where θ1 = θ1(r, q) = r–1
r+q–1 and θ2 = θ2(r, g) = r–1

r+g–1 . By Young’s inequality we have

(

a + (βσ7 + δσ5)
1
r

)∫




ur ≤ 1
2

(b – χθ1 – ξθ2)
∫




ur+d + c34, t ∈ (t0, Tmax),

with c34 = c34(r) > 0. We directly have

1
r

d
dt

∫




ur ≤ – (βσ7 + δσ5)
1
r

∫




ur –
1
2

(b – χθ1 – ξθ2)
∫




ur+d

+ χθ1

∫




|�v|σ7 + ξθ2

∫




|�w|σ5 + c34, t ∈ (t0, Tmax),

Applying the variation-of-constants formula, we get

1
r

∫




ur ≤ e–βσ7tχθ1

∫ t

t0

∫




eβσ7s|�v|σ7 –
1
4

e–βσ7t(b – χθ1 – ξθ2)
∫ t

t0

∫




eβσ7sur+d

+ e–δσ5tξθ2

∫ t

t0

∫




eδσ5s|�w|σ5 –
1
4

e–δσ5t(b – χθ1 – ξθ2)
∫ t

t0

∫




eδσ5sur+d

+ c35, t ∈ (t0, Tmax),

where c35 = e(βσ7+δσ5)t0 1
r
∫



ur(·, t0) + c34

βσ7+δσ5
(1 + e(βσ7+δσ5)t0 ). According to (2.2), we obtain

1
r

∫




ur ≤ –
(

1
4

(b – χθ1 – ξθ2) – χθ1Cσ7α
σ7

)

e–βσ7t
∫ t

t0

∫




eβσ7sur+d

–
(

1
4

(b – χθ1 – ξθ2) – ξθ2Cσ5γ
σ5

)

e–δσ5t
∫ t

t0

∫




eδσ5sur+d

+ χθ1e–βσ7(t–t0)Cσ7

∥
∥v(·, t0)

∥
∥σ7

W 2,σ7 + ξθ2e–δσ5(t–t0)Cσ5

∥
∥w(·, t0)

∥
∥σ5

W 2,σ5

+ c35, t ∈ (t0, Tmax),

where

b1 = 4Cσ7α
σ7 , b2 = 4Cσ5γ

σ5 .

Choosing b large enough such that 1
4 (b – χθ1 – ξθ2) – χθ1Cσ7α

σ7 > 0 and 1
4 (b – χθ1 – ξθ2) –

ξθ2Cσ5γ
σ5 > 0, under the conditions b–ξθ2

χθ1
> 1 + b1 and b–χθ1

ξθ2
> 1 + b2, we can derive (3.1).

(b) Let q + k = d + 1 > g + l. By Young’s inequality we have

–
χ(r – 1)

r + q – 1

∫




ur+q–1�v ≤ χ(r – 1)

r + q – 1

(∫




ur+d +
∫




|�v|σ7

)

, t ∈ (t0, Tmax),

ξ (r – 1)

r + g – 1

∫




ur+g–1�w ≤ ξ (r – 1)

r + g – 1

(∫




ur+g+l–1 +
∫




|�w|σ5

)

, t ∈ (t0, Tmax).

By Young’s inequality and (3.2), for any η6 > 0, we have

ξ (r – 1)

r + g – 1

(∫




ur+g+l–1 +
∫




|�w| r+g+l–1
l

)

≤ b
2

∫




ur+d + η6

∫




|�w|σ5

+ c36, t ∈ (t0, Tmax),
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where c36 = c36(r) > 0. Thus

1
r

d
dt

∫




ur ≤ –
1
2

(b – 2χθ1 – 2η6)
∫




ur+d + χθ1

∫




|�v|σ7 + η6

∫




|�w|σ5 + a
∫




ur

= – (βσ7 + δσ5)
1
r

∫




ur –
1
2

(b – 2χθ1 – 2η6)
∫




ur+d + χθ1

∫




|�v|σ7

+ η6

∫




|�w|σ5 +
(

a + (βσ7 + δσ5)
1
r

)∫




ur + c36, t ∈ (t0, Tmax).

By Young’s inequality we have

(

a + (βσ7 + δσ5)
1
r

)∫




ur ≤ 1
4

(b – 2χθ1)
∫




ur+d + c37, t ∈ (t0, Tmax),

where c37 = c37(r) > 0. We have

1
r

d
dt

∫




ur ≤ – (βσ7 + δσ5)
1
r

∫




ur –
1
4

(b – 2χθ1 – 4η6)
∫




ur+d + χθ1

∫




|�v|σ7

× η6

∫




|�w|σ5 + c38, t ∈ (t0, Tmax),

where c38 = c36 + c37 > 0. Applying the variation-of-constants formula, we get

1
r

∫




ur ≤ e–βσ7tχθ1

∫ t

t0

∫




eβσ7s|�v|σ7 –
1
8

e–βσ7t(b – 2χθ1 – 4η6)
∫ t

t0

∫




eβσ7sur+d

+ e–δσ5tη6

∫ t

t0

∫




eδσ5s|�w|σ5 –
1
8

e–δσ5t(b – 2χθ1 – 4η6)
∫ t

t0

∫




eδσ5sur+d

+ c39, t ∈ (t0, Tmax),

where c39 = e(βσ7+δσ5)t0 1
r
∫



ur(·, t0) + c38

βσ7+δσ5
(1 + e(βσ7+δσ5)t0 ). Combining this with (2.2), we

get

1
r

∫




ur ≤ –
(

1
8

(b – 2χθ1 – 4η6) – χθ1Cσ7α
σ7

)

e–βσ7t
∫ t

t0

∫




eβσ7sur+d

–
(

1
8

(b – 2χθ1 – 4η6) – η6Cσ5γ
σ5

)

e–δσ5t
∫ t

t0

∫




eδσ5sur+d

+ χθ1e–βσ7(t–t0)Cσ7

∥
∥v(·, t0)

∥
∥σ7

W 2,σ7 + η6e–δσ5(t–t0)Cσ5

∥
∥w(·, t0)

∥
∥σ5

W 2,σ5

+ c39, t ∈ (t0, Tmax),

where

b3 = 8Cσ7α
σ7 .

Choosing η6 sufficiently small and b sufficiently large, we can ensure that b
χθ1

> 2 + b3 and
b > 2χθ1. This guarantees the derivation of (3.1).



Wang and Yan Journal of Inequalities and Applications        (2024) 2024:130 Page 19 of 19

We have established the Lr-boundedness (3.1) for certain cases. From this, employing a
standard Alikakos–Moser iteration [16] and (2.4), we deduce

∥
∥u(·, t)

∥
∥

L∞(
) ≤ C for all t ∈ (0, Tmax)

with some C > 0. The boundedness can be derived using the standard parabolic regularity
theory. This, in conjunction with Lemma 2, establishes Theorem 2. �
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