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Abstract
In this study, we firstly derive a Wirtinger-type result, which gives the connection in
between the integral of square of a function and the integral of square of its Caputo
fractional derivatives with the help of left-sided and right-sided fractional Taylor’s
Formulas. Afterward, we provide a more general inequality involving Caputo fractional
derivatives for Lr norm with r > 1 via Hölder’s inequality. Also, similar inequalities for
Riemann–Liouville fractional derivatives are presented by means of a relation
between Caputo fractional derivatives and Riemann–Liouville fractional derivatives.
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1 Introduction
Fractional calculus is one of the most important topics of mathematical analysis and its
history is as old as that of differential calculus. In the 20th century, the theory of fractional
integrals and derivatives swiftly developed by interested researchers, due to the abundance
of application areas in different disciplines. During the last few decades, different types of
these fractional integrals and derivatives have been defined and applied in many fields,
such as viscoelasticity, optics, optimization, atmospheric and statistical physics, electri-
cal and mechanical engineering, control theory, bioengineering, etc. Moreover, with the
development of the theory of fractional integral and derivative of arbitrary order, the frac-
tional integral inequalities that are usually used in optimization problems are improved
by a lot of researchers in recent years. Also, a fractional generalization of Taylor’s for-
mula, which gives an approximation of a higher order differentiable function is provided by
Anastassiou in [5] and it is named as right-sided Caputo fractional Taylor formula (CFTF).
Afterward, some authors examined Ostrowski and Hermite–Hadamard-type inequalities
involving fractional derivatives via right-sided CFTF. For instance, Sarikaya provided some
Ostrowski type integral inequalities for functions whose Caputo fractional derivatives be-
long to Lp with 1 ≤ p ≤ ∞ by means of right-sided CFTF in [29]. In addition, Anastassiou
gave some results of Ostrowski type for functions whose Caputo fractional derivatives are
bounded in [6]. In [15], Hermite–Hadamard-type results for higher-order differentiable
mappings were obtained via Caputo fractional derivatives.
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On the other side, theory of inequality plays a key role in many application areas of
mathematics such as optimization, special means, estimations of integrals, etc. Wirtinger’s
inequality, which was first used to establish the isoperimetric inequality in 1904, is one
of the most important inequalities in literature. What makes this result so important is
that it compares integrals involving a function and its derivative. The classical Wirtinger
inequality compares the integral of square of a function with the integral of square of its
derivative. In other words, this inequality [18] expresses that if ψ ∈ C1 ([λ,μ]) satisfies
ψ (λ) = ψ (μ) = 0, then

μ∫

λ

(ψ (t))2 dt ≤
μ∫

λ

(
ψ ′ (t)

)2 dt. (1)

A large number of researchers focus on Wirtinger-type inequalities such as Bessel,
Blaschke, Beesack, Poincare and Sobolev owing to importance of Wirtinger inequality.
For example, Beesack extended the inequality (1) as follows:

Theorem 1 [8] For any ψ ∈ C2 ([λ,μ]) providing ψ (λ) = ψ (μ) = 0, following inequality
holds:

μ∫

λ

ψ4 (t)dt ≤ 4
3

μ∫

λ

(
ψ ′ (t)

)4 dt. (2)

Beesack and other results are used in many issues such as the convergence of series,
estimations of integrals and determination of the minimal eigenvalues of differential op-
erators. To illustrate, the best constant in the Poincare inequality, which is a more gen-
eral form of classical Wirtinger inequality, is known as the first eigenvalue of the Laplace
operator and this result has been the motivation of diverse geometric works (see, e.g.
[16, 20, 25, 33]). Furthermore, Böttcher and Widom [11] examined a sequence of constants
which appear in some problems by considering the best constant Wirtinger–Sobolev in-
equality given the relation between the integral of the square of a function and the integral
of the square of its higher-order derivative. Also, you can look over the references [4], [3],
[9, 10, 12, 14] [23], [31, 32] to learn more about Wirtinger type inequalities and their ap-
plication areas.

Sarikaya proved some generalized versions of Wirtinger-type inequalities in [30].

Theorem 2 [30] Let ψ ∈ C1 ([λ,μ]) satisfy ψ (λ) = ψ (μ) = 0 and ψ ′ ∈ L2 [λ,μ], then we
have the following inequality

μ∫

λ

|ψ (t)|2 dt ≤ (μ – λ)2

6

μ∫

λ

∣∣ψ ′ (t)
∣∣2 dt. (3)

The main purpose of this paper is to establish Wirtinger-type results, which give the con-
nection between the integral of a function and the integral of its derivatives of arbitrary
order via right-sided and left sided CFTF. We firstly deal with a Wirtinger-type inequality
for functions whose Caputo fractional derivatives belong to L2. Latter, we prove a more
general version of this result for Lr norm with r > 1 via Hölder’s inequality. Also, similar
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inequalities for Riemann-Liouville fractional derivatives are given with the help of a rela-
tion between Caputo and Riemann–Liouville fractional derivatives. Results presented in
this work may be inspiration for further studies on inequalities involving Caputo fractional
derivatives.

2 Preliminaries
In this part, we recall some definitions and properties of Riemann-Liouville and Caputo
fractional derivatives by utilizing the references [13, 17, 19, 21, 22, 24] and [28]. Addi-
tionally, it should be noted that many mathematicians have studies on inequalities involv-
ing fractional integrals. The interested reader is able to look over the recent references
[1, 2, 7, 26] and [27] for fractional theory, and the references included there.

Definition 1 Supposing the function φ is Lebesgue integrable on [λ,μ]. The Riemann–
Liouville fractional integrals (RLFI) Jα

λ+φ and Jα
μ–φ of order α > 0 are defined by

Jα
λ+φ(κ) =

1
�(α)

∫
κ

λ

(κ – ζ )α–1 φ(ζ )dζ , κ > λ

and

Jα
μ–φ(κ) =

1
�(α)

∫ μ

κ

(ζ – κ)α–1 φ(ζ )dζ , κ < μ,

respectively. Here, �(α) is the Gamma function, i.e., �(α) =
∞∫
0

e–uuα–1du. These integrals

are named as the left-sided and the right-sided RLFI, respectively. Also, we note that
J0
λ+φ(κ) = J0

μ–φ(κ) = φ(κ) for κ ∈ (λ,μ).

Definition 2 Assume that α > 0, m ∈N and m = �α�, where �·� is the ceiling of the num-
ber. The left-sided and right-sided Riemann–Liouville fractional derivatives (RLFD) of or-
der α are defined by

RLDα
λ+φ(κ) =

dm

dxm Jm–α
λ+ φ(κ)

=
1

�(m – α)

dm

dκm

∫
κ

λ

φ(ζ )

(κ – ζ )α–m+1 dζ , κ > λ

and

RLDα
μ–φ(κ) = (–1)m dm

dκm Jm–α
μ– φ(κ)

=
(–1)m

�(m – α)

dm

dκm

∫ μ

κ

φ(ζ )

(ζ – κ)α–m+1 dζ , κ < μ,

respectively. If α = m and usual derivatives of φ of order m exist, then
(RLDα

λ+φ
)

(κ) =
φ(m)(κ) and RLDα

μ–φ(κ) = (–1)mφ(m)(κ). Specifically, if we choose m = 1 and α = 0, then
we possess

(RLD0
λ+φ

)
(κ) =

(RLD0
μ–φ

)
(κ) = φ(κ).

We indicate by ACm [λ,μ] the space of real-valued mappings φ(ζ ) that possess deriva-
tives up to m – 1 order for m ∈ N on [λ,μ] such that φ(m–1)(ζ ) is the element of AC [λ,μ]
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which is the space of absolutely continuous functions. That is,

ACm [λ,μ] =
{
φ : [λ,μ] →R : φ(m–1)(ζ ) ∈ AC [λ,μ]

}
.

Definition 3 Assume that φ ∈ ACm [λ,μ] and m = �α� with m ∈ N and α > 0. The Caputo
fractional derivatives (CFD) of order α are defined by

cDα
λ+φ(κ) = Jm–α

λ+ φ(m)(κ)

=
1

�(m – α)

∫
κ

λ

φ(m)(ζ )

(κ – ζ )α–m+1 dζ , κ > λ

and

cDα
μ–φ(κ) = (–1)m Jm–α

μ– φ(m)(κ)

=
(–1)m

�(m – α)

∫ μ

κ

φ(m)(ζ )

(ζ – κ)α–m+1 dζ , κ < μ,

which are named as the left-sided and right-sided CFD, respectively. If α = m and usual
derivatives of φ of order m exist, then

(cDα
λ+φ

)
(κ) = φ(m)(κ) and cDα

μ–φ(κ) = (–1)mφ(m)(κ).
Especially, one has

(cD0
λ+φ

)
(κ) =

(cD0
μ–φ

)
(κ) = φ(κ),

where m = 1 and α = 0.

Theorem 3 ([28]) Suppose φ ∈ ACm [λ,μ] such that CFD cDα
λ+φ(κ) and cDα

μ–φ(κ) exist
together with RLFD RLDα

λ+φ(κ) and RLDα
μ–φ(κ) for κ ∈ [λ,μ]. Then, for α > 0 and m =

�α� ∈N, we have

cDα
λ+φ(κ) = RLDα

λ+φ(κ) –
m–1∑
i=0

φ(i)(λ)

�(k – α + 1)
(κ – λ)k–α

and

cDα
μ–φ(κ) = RLDα

μ–φ(κ) –
m–1∑
i=0

φ(i)(μ)

�(k – α + 1)
(μ – κ)k–α .

Also, it is clear that cDα
λ+φ(κ) = RLDα

λ+φ(κ) if φ(i)(λ) = 0 for i = 0, 1, . . . , m – 1 and
cDα

μ–φ(κ) = RLDα
μ–φ(κ) if φ(i)(μ) = 0 for i = 0, 1, . . . , m – 1.

Theorem 4 ([22]) Let φ ∈ ACm [λ,μ], x ∈ [λ,μ], α > 0 and m = �α� ∈N. Then, one has

Jα
λ+

cDα
λ+φ(κ) = Jα

λ+ Jm–α
λ+ Dmφ(κ) = Jm

λ+Dm
λ+φ(κ).

The right and left sided Caputo fractional Taylor formulas are introduced by Kilbas et
al., as follows [19].
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Definition 4 Supposing that ψ belongs to ACm [λ,μ]. Also, let κ ∈ [λ,μ], α > 0 and m =
�α� ∈N. Then one has the right-sided Caputo fractional Taylor formula (CFTF)

ψ(κ) =
m–1∑
i=0

ψ (i)(μ)

i!
(κ – μ)i +

1
�(α)

μ∫

κ

(τ – κ)α–1 [cDα
μ–ψ(τ )

]
dτ . (4)

Definition 5 Assume the function ψ belongs to ACm [λ,μ]. Also, let κ ∈ [λ,μ], α > 0 and
m = �α� ∈N. Then we have the left-sided Caputo fractional Taylor formula (CFTF)

ψ(κ) =
m–1∑
i=0

ψ (i)(λ)

i!
(κ – λ)i +

1
�(α)

κ∫

λ

(κ – τ)α–1 [cDα
λ+ψ(τ )

]
dτ . (5)

3 Some inequalities for Caputo and Riemann–Liouville fractional derivatives
In this section, it is observed Wirtinger-type inequalities involving CFD. Similar results
including RLFD are presented by using connections in between CFD and RLFD. We first
give the Taylor’s formula, which forms the basis of the two identities we will use through-
out the article. Let ψ ∈ Cm ([λ,μ]), m ∈N\ {0}. Then, from Taylor’s theorem, we have

ψ(κ) =
m–1∑
i=0

ψ (i)(c)

i!
(κ – c)i +

1
(m – 1)!

κ∫

c

(κ – τ)m–1 ψ (m)(τ )dτ .

Theorem 5 Supposing that ψ ∈ Cm ([λ,μ]) with m ∈ N\ {0} and cDα
λ+ψ(τ ), cDα

μ–ψ(τ ) ∈
L2 [λ,μ] with ψ (i) (λ) = ψ (i) (μ) = 0, i = 0, 1, 2, . . . , m – 1, α > 0, m = �α�. Then one has the
result

μ∫

λ

|ψ(κ)|2 dκ ≤ (μ – λ)2α

[�(α)]2 (2α – 1) (2α) (2α + 1)
(6)

×
μ∫

λ

[∣∣cDα
λ+ψ(τ )

∣∣2 +
∣∣cDα

μ–ψ(τ )
∣∣2

]
dτ .

Proof Applying Cauchy–Schwarz inequality to the resulting identities after taking abso-
lute value of both sides of (4) and (5), owing to ψ (i) (λ) = ψ (i) (μ) = 0, for i = 0, 1, 2, . . . , m–1,
we see that

|ψ(κ)|2 =

⎡
⎣ 1

�(α)

κ∫

λ

(κ – ε)α–1 ∣∣cDα
λ+ψ(ε)

∣∣dε

⎤
⎦

2

(7)

≤ 1
[�(α)]2

⎛
⎝

κ∫

λ

(κ – ε)2α–2 dε

⎞
⎠

⎛
⎝

κ∫

λ

∣∣cDα
λ+ψ(ε)

∣∣2 dε

⎞
⎠

=
1

[�(α)]2
(κ – λ)2α–1

2α – 1

κ∫

λ

∣∣cDα
λ+ψ(ε)

∣∣2 dε
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and

|ψ(κ)|2 =

⎡
⎣ 1

�(α)

μ∫

κ

(ε – κ)α–1 ∣∣cDα
μ–ψ(ε)

∣∣dε

⎤
⎦

2

(8)

≤ 1
[�(α)]2

⎛
⎝

μ∫

κ

(ε – κ)2α–2 dε

⎞
⎠

⎛
⎝

μ∫

κ

∣∣cDα
μ–ψ(ε)

∣∣2 dε

⎞
⎠

=
1

[�(α)]2
(μ – κ)2α–1

2α – 1

μ∫

κ

∣∣cDα
μ–ψ(ε)

∣∣2 dε.

Integrating both sides of (7) with respect to κ from λ to ρλ + (1 – ρ)μ for ρ ∈ [0, 1] and
then applying Dirichlet’s formula to the double integral on the right side of the resulting
statement, we find that

ρλ+(1–ρ)μ∫

λ

|ψ(κ)|2 dκ (9)

≤ 1
[�(α)]2

ρλ+(1–ρ)μ∫

λ

(κ – λ)2α–1

2α – 1

κ∫

λ

∣∣cDα
λ+ψ(ε)

∣∣2 dεdκ

=
1

[�(α)]2

ρλ+(1–ρ)μ∫

λ

∣∣cDα
λ+ψ(ε)

∣∣2
ρλ+(1–ρ)μ∫

λ

(κ – λ)2α–1

2α – 1
dκdε

=
1

[�(α)]2 (2α – 1)

ρλ+(1–ρ)μ∫

λ

(1 – ρ)2α (μ – λ)2α – (ε – λ)2α

2α

∣∣cDα
λ+ψ(ε)

∣∣2 dε.

If similar processes are applied for the inequality (8), then one possesses

μ∫

ρλ+(1–ρ)μ

|ψ(κ)|2 dκ (10)

≤ 1
[�(α)]2

μ∫

ρλ+(1–ρ)μ

(μ – x)2α–1

2α – 1

μ∫

κ

∣∣cDα
μ–ψ(ε)

∣∣2 dεdκ

=
1

[�(α)]2 (2α – 1)

μ∫

ρλ+(1–ρ)μ

ρ2α (μ – λ)2α – (μ – ε)2α

2α

∣∣cDα
μ–ψ(ε)

∣∣2 dε.

If we apply the change of the variable ε = λσ + (1 – σ)μ to the right side of the results (9)
and (10), then we possess

ρλ+(1–ρ)μ∫

λ

|ψ(κ)|2 dκ
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≤ (μ – λ)2α+1

[�(α)]2 (2α – 1)2α

×
1∫

ρ

[
(1 – ρ)2α – (1 – σ)2α

] ∣∣cDα
λ+ψ(σλ + (1 – σ)μ)

∣∣2 dσ

and

μ∫

ρλ+(1–ρ)μ

|ψ(x)|2 dx

≤ (μ – λ)2α+1

[�(α)]2 (2α – 1)2α

ρ∫

0

[
ρ2α – σ 2α

] ∣∣cDα
μ–ψ(σλ + (1 – σ)μ)

∣∣2 dσ .

Integrating both sides of the resulting expression with respect to ρ from 0 to 1, placing
the above inequalities side by side, it is seen that

μ∫

λ

|ψ(κ)|2 dκ

≤ (μ – λ)2α+1

[�(α)]2 (2α – 1)2α

×
⎧⎨
⎩

1∫

0

1∫

ρ

[
(1 – ρ)2α – (1 – σ)2α

] ∣∣cDα
λ+ψ(σλ + (1 – σ)μ)

∣∣2 dσdρ

+
1∫

0

ρ∫

0

[
ρ2α – σ 2α

] ∣∣cDα
μ–ψ(σλ + (1 – σ)μ)

∣∣2 dσdρ

⎫⎬
⎭ .

We apply the change of order of integration method to double integrals in the right side
of the above inequality, then we have

μ∫

λ

|ψ(κ)|2 dκ (11)

≤ (μ – λ)2α+1

[�(α)]2 (2α – 1)2α
×

⎧⎨
⎩

1∫

0

g(σ )
∣∣cDα

λ+ψ(σλ + (1 – σ)μ)
∣∣2 dσ

+
1∫

0

h(σ )
∣∣cDα

μ–ψ(σλ + (1 – σ)μ)
∣∣2 dσ

⎫⎬
⎭ ,

where

g(σ ) =
1

2α + 1
–

(1 – σ)2α+1

2α + 1
– σ (1 – σ)2α
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and

h(σ ) =
1

2α + 1
–

σ 2α+1

2α + 1
– σ 2α (1 – σ) .

Lastly, using the change of the variable τ = σλ + (1 – σ)μ and from dτ = (λ – μ)dσ , be-
cause the maximum value of the functions g(σ ) and h(σ ) for σ ∈ [0, 1] is 1

2α+1 , the desired
inequality (6) can be easily obtained. �

Example 1 If we consider the function ψ(κ) = xm(1 – x)m on [0, 1], then we have

1∫

0

|ψ(κ)|2 dκ =
[�(1 + 2m)]2

�(2 + 4m)

Later, choosing m = 2 and α = 1.5 in the left side of the inequality (6), ψ(0) = ψ(1) = ψ ′(0) =
ψ ′(1) = 0, which is necessary under the conditions of the theorem, and it is found that

1∫

0

|ψ(κ)|2 dκ = 0.0015873.

Thus, the integral value on the left side of the inequality (6) is 0.0015873. For the right side
of the inequality (6), we have

ψ ′′(κ) = 2(1 – x)2 – 8(1 – x)x + 2x2,

cD1.5
0+ ψ(x) = 0.56419

(
4x0.5 – 16x1.5 + 12.8x2.5) ,

and

cD1.5
1– ψ(x)

=
0.56419

x0.5

[
4
(
x – x2)0.5 +

(
x – x2)0.5

((–3.2) + x((–9.6) + 12.8x))
]

.

In this case, it follows that

1∫

0

[∣∣cD1.5
0+ ψ(x)

∣∣2 +
∣∣cD1.5

1– ψ(x)
∣∣2

]
dx

= 0.203718.

Also, we have the result

(μ – λ)2α

[�(α)]2 (2α – 1) (2α) (2α + 1)
= 0.0530516,
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for α = 1.5, μ = 1 and λ = 0. Thus, for the right side of the inequality (6), we have

(μ – λ)2α

[�(α)]2 (2α – 1) (2α) (2α + 1)

1∫

0

[∣∣cD1.5
0+ ψ(x)

∣∣2 +
∣∣cD1.5

1– ψ(x)
∣∣2

]
dx

= 0.203718 · 0.0530516

= 0.0108076.

So, the inequality (6) gives the numerical result

0.0015873 ≤ 0.0108076,

which shows that inequality is valid.

Since the left and right sides of the fractional derivatives cannot be written in common
brackets, the functions whose maximum values need to be calculated are different. There-
fore, special cases of inequalities obtained in this work must be evaluated by considering
this situation.

Proposition 6 Under the same assumptions of Theorem 5 with α = m = 1, the inequality
(3) is recaptured.

Proof If we reconsider the inequality (11), because of cDα
λ+ψ(κ) = ψ ′(κ) and cDα

μ–ψ(κ) =
(–1)ψ ′(κ) in the case when α = m = 1, we can write

μ∫

λ

|ψ(κ)|2 dκ

≤ (μ – λ)3

2
×

⎧⎨
⎩

1∫

0

g(σ )
∣∣ψ ′(σλ + (1 – σ)μ)

∣∣2 dσ

+
1∫

0

h(σ )
∣∣(–1)ψ ′(σλ + (1 – σ)μ)

∣∣2 dσ

⎫⎬
⎭

=
(μ – λ)3

2

1∫

0

[
g(σ ) + h(σ )

] ∣∣ψ ′(σλ + (1 – σ)μ)
∣∣2 dσ ,

where

g(σ ) + h(σ ) =
2

2α + 1
–

(1 – σ)2α+1

2α + 1
– σ (1 – σ)2α –

σ 2α+1

2α + 1
– σ 2α (1 – σ) .

Finally, because the maximum value of the function g(σ ) + h(σ ) for σ ∈ [0, 1] is 1
3 , and so

the inequality (3) is recaptured. �

Also, we have the following Wirtinger-type inequality involving RLFD.
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Theorem 7 Supposing that ψ ∈ Cm ([λ,μ]) with m ∈ N\ {0} and cDα
λ+ψ(τ ), cDα

μ–ψ(τ ) ∈
L2 [λ,μ] with ψ (i) (λ) = ψ (i) (μ) = 0, i = 0, 1, 2, . . . , m – 1, α > 0, m = �α�. Then, one has the
result

μ∫

λ

|ψ(κ)|2 dκ ≤ (μ – λ)2α

[�(α)]2 (2α – 1) (2α) (2α + 1)
(12)

×
μ∫

λ

[∣∣RLDα
λ+ψ(τ )

∣∣2 +
∣∣RLDα

μ–ψ(τ )
∣∣2

]
dτ .

Proof If we use the Theorem 3, due to the acceptance of the equality given in the theorem
ψ (i) (λ) = ψ (i) (μ) = 0, i = 0, 1, 2, . . . , m – 1, we can write the identities

cDα
λ+φ(κ) = RLDα

λ+φ(κ)

and

cDα
μ–φ(κ) = RLDα

μ–φ(κ).

Then, subtituting RLDα
λ+φ(κ) and RLDα

μ–φ(κ) instead of cDα
λ+φ(κ) and cDα

μ–φ(κ) in (6),
respectively, the inequality (12) can be readily deduced. �

Remark 1 Under the same assumptions of Theorem 5 with α = m = 1, the inequality (3)
is recaptured.

Proof The proof of this remark follows the same lines as the proof of Remark 5, because of
RLDα

λ+ψ(κ) = ψ ′(κ) and RLDα
μ–ψ(κ) = (–1)ψ ′(κ) in the case when α = m = 1, the inequality

(3) can be recaptured. �

Now, we derive a more general inequality by considering Taylor’s formula in the follow-
ing result.

Theorem 8 Assume that ψ ∈ Cm ([λ,μ]) with m ∈ N\ {0} and cDα
λ+ψ(τ ), cDα

μ–ψ(τ ) ∈
Lr [λ,μ] with r > 1, α > 0. If ψ (i) (λ) = ψ (i) (μ) = 0 for i = 0, 1, 2, . . . , m – 1, m = �α�, then
we have the inequality

μ∫

λ

|ψ(κ)|r dκ ≤ 1
[�(α)]r

(μ – λ)αr

(αr) (αr + 1)

(
r – 1
αr – 1

)r–1

(13)

×
μ∫

λ

[∣∣cDα
λ+ψ(τ )

∣∣r +
∣∣cDα

μ–ψ(τ )
∣∣r]dτ .

Proof Taking absolute value of both sides of (4) and (5), and later using Hölder’s inequality
with the indices r and r

r–1 , due to ψ (i) (λ) = ψ (i) (μ) = 0, for i = 0, 1, 2, . . . , m – 1, we find



Erden et al. Journal of Inequalities and Applications        (2024) 2024:115 Page 11 of 17

that

|ψ(κ)|r =

⎡
⎣ 1

�(α)

κ∫

λ

(κ – ε)α–1 ∣∣cDα
λ+ψ(ε)

∣∣dε

⎤
⎦

r

(14)

≤ 1
[�(α)]r

⎛
⎝

κ∫

λ

(κ – ε)
αr–r
r–1 dε

⎞
⎠

r–1
κ∫

λ

∣∣cDα
λ+ψ(ε)

∣∣r dε

=
1

[�(α)]r

(
r – 1
αr – 1

)r–1

(κ – λ)αr–1
κ∫

λ

∣∣cDα
λ+ψ(ε)

∣∣r dε

and

|ψ(κ)|r =

⎡
⎣ 1

�(α)

μ∫

κ

(ε – κ)α–1 ∣∣cDα
μ–ψ(ε)

∣∣dε

⎤
⎦

r

(15)

≤ 1
[�(α)]r

⎛
⎝

μ∫

x

(ε – κ)
αr–r
r–1 dε

⎞
⎠

r–1 μ∫

κ

∣∣cDα
μ–ψ(ε)

∣∣r dε

=
1

[�(α)]r

(
r – 1
αr – 1

)r–1

(μ – κ)αr–1

μ∫

κ

∣∣cDα
μ–ψ(ε)

∣∣r dε.

Integrating both sides of (14) with respect to κ from λ to ρλ + (1 – ρ)μ for ρ ∈ [0, 1] and
then applying Dirichlet’s formula to the double integral in the right side of the resulting
statement, we find that

ρλ+(1–ρ)μ∫

λ

|ψ(κ)|r dκ (16)

≤ 1
[�(α)]r

(
r – 1
αr – 1

)r–1 ρλ+(1–ρ)μ∫

λ

(κ – λ)αr–1
κ∫

λ

∣∣cDα
λ+ψ(ε)

∣∣r dεdκ

=
1

[�(α)]r

(
r – 1
αr – 1

)r–1 ρλ+(1–ρ)μ∫

λ

(1 – ρ)αr (μ – λ)αr – (ε – λ)αr

αr
∣∣cDα

λ+ψ(ε)
∣∣r dε.

Integrating both sides of (15) with respect to κ from ρλ + (1 – ρ)μ to μ for ρ ∈ [0, 1], and
similar processes are applied for the inequality (15), then one has

μ∫

ρλ+(1–ρ)μ

|ψ(κ)|r dκ (17)

≤ 1
[�(α)]r

(
r – 1
αr – 1

)r–1 μ∫

ρλ+(1–ρ)μ

(μ – κ)αr–1

μ∫

κ

∣∣cDα
μ–ψ(ε)

∣∣r dεdκ
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=
1

[�(α)]r

(
r – 1
αr – 1

)r–1 μ∫

ρλ+(1–ρ)μ

ραr (μ – λ)αr – (μ – ε)αr

αr
∣∣cDα

μ–ψ(ε)
∣∣r dε.

If we apply the change of the variable ε = λσ + (1 – σ)μ to the right sides of the results
(16) and (17), then we have the integrals

ρλ+(1–ρ)μ∫

λ

|ψ(κ)|r dκ

≤ (μ – λ)αr+1

[�(α)]r

(
r – 1
αr – 1

)r–1 1
αr

×
1∫

ρ

[
(1 – ρ)αr – (1 – σ)αr] ∣∣cDα

λ+ψ(σλ + (1 – σ)μ)
∣∣r dσ

and

μ∫

ρλ+(1–ρ)μ

|ψ(x)|r dx

≤ (μ – λ)αr+1

[�(α)]r

(
r – 1
αr – 1

)r–1 1
αr

ρ∫

0

[
ραr – σαr] ∣∣cDα

μ–ψ(σλ + (1 – σ)μ)
∣∣r dσ .

Integrating both sides of the resulting expression with respect to ρ from 0 to 1 after
placing the above inequalities side by side, it is seen that

μ∫

λ

|ψ(κ)|r dκ

≤ (μ – λ)αr+1

[�(α)]r

(
r – 1
αr – 1

)r–1 1
αr

×
⎧⎨
⎩

1∫

0

1∫

ρ

[
(1 – ρ)αr – (1 – σ)αr] ∣∣cDα

λ+ψ(σλ + (1 – σ)μ)
∣∣r dσdρ

+
1∫

0

ρ∫

0

[
ραr – σαr] ∣∣cDα

μ–ψ(σλ + (1 – σ)μ)
∣∣r dσdρ

⎫⎬
⎭ .

Then, by using fundamental integral operations, it is found that

μ∫

λ

|ψ(κ)|r dκ (18)

≤ (μ – λ)αr+1

[�(α)]r

(
r – 1
αr – 1

)r–1 1
αr
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×
⎧⎨
⎩

1∫

0

(v(σ ))
∣∣cDα

λ+ψ(σλ + (1 – σ)μ)
∣∣r dσ

+
1∫

0

w(σ )
∣∣cDα

μ–ψ(σλ + (1 – σ)μ)
∣∣r dσ

⎫⎬
⎭ ,

where

v(σ ) =
1

αr + 1
–

(1 – σ)αr+1

αr + 1
– σ (1 – σ)αr

and

w(σ ) =
1

αr + 1
–

σαr+1

αr + 1
– σαr (1 – σ) .

Finally, using the change of the variable τ = σλ + (1 – σ)μ and from dτ = (λ – μ)dσ , be-
cause the maximum value of the functions v(σ ) and w(σ ) for σ ∈ [0, 1] is 1

αr+1 , the required
inequality (13) can be easily obtained. �

Example 2 If we consider the function ψ(κ) = xm(1 – x)m on [0, 1], then we have

1∫

0

|ψ(κ)|r dκ =
[�(1 + mr)]2

�(2 + 2mr)
.

Later, choosing r = 4, m = 2 and α = 1.5 in the inequality (13), ψ(0) = ψ(1) = ψ ′(0) =
ψ ′(1) = 0, which is necessary under the conditions of the theorem, it is found that

1∫

0

|ψ(κ)|4 dκ = 0.0000205677.

Thus, the integral value on the left side of the inequality (13) is 0.0000205677. For the right
side of the inequality (13), we have

ψ ′′(κ) = 2(1 – x)2 – 8(1 – x)x + 2x2,
cD1.5

0+ ψ(x) = 0.56419
(
4x0.5 – 16x1.5 + 12.8x2.5) ,

and

cD1.5
1– ψ(x)

=
0.56419

x0.5

[
4
(
x – x2)0.5 +

(
x – x2)0.5

((–3.2) + x((–9.6) + 12.8x))
]

.

In this case, it follows that

1∫

0

[∣∣cD1.5
0+ ψ(x)

∣∣4 +
∣∣cD1.5

1– ψ(x)
∣∣4

]
dx

= 0.0310211.



Erden et al. Journal of Inequalities and Applications        (2024) 2024:115 Page 14 of 17

Also, we have the result

1
[�(α)]r

(μ – λ)αr

(αr) (αr + 1)

(
r – 1
αr – 1

)r–1

= 0.00833729,

for α = 1.5, μ = 1 and λ = 0. Thus, for the right side of the inequality (13), we have

1
[�(α)]r

(μ – λ)αr

(αr) (αr + 1)

(
r – 1
αr – 1

)r–1 1∫

0

[∣∣cD1.5
0+ ψ(x)

∣∣4 +
∣∣cD1.5

1– ψ(x)
∣∣4

]
dx

= 0.0310211 · 0.00833729

= 0.0002586321.

So, the inequality (13) gives the numerical result

0.0000205677 ≤ 0.0002586321,

which shows that inequality is valid.

Remark 2 Under the same assumptions of Theorem 8 with m = α = 1, the following result
holds:

b∫

a

|ψ(x)|r dx ≤ (μ – λ)r

r (r + 1)

b∫

a

∣∣ψ ′ (x)
∣∣r dx, (19)

which is given by Erden in [14].

Proof If we reconsider the inequality (18), because of cDα
λ+ψ(κ) = ψ ′(κ) and cDα

μ–ψ(κ) =
(–1)ψ ′(κ) in the case when α = m = 1, we can write

μ∫

λ

|ψ(κ)|r dκ

≤ (μ – λ)r

r
×

⎧⎨
⎩

1∫

0

v(σ )
∣∣ψ ′(σλ + (1 – σ)μ)

∣∣r dσ

+
1∫

0

w(σ )
∣∣ψ ′(σλ + (1 – σ)μ)

∣∣r dσ

⎫⎬
⎭ ,

where

v(σ ) + w(σ ) =
2

r + 1
–

(1 – σ)r+1

r + 1
– σ (1 – σ)r –

σ r+1

r + 1
– σ r (1 – σ) .

Finally, because the maximum value of the function v(σ ) + w(σ ) for σ ∈ [0, 1] is 1
r+1 , and

so the inequality (19) is recaptured. �
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Remark 3 If r = 4 is chosen in (13), then one has

μ∫

λ

|ψ(κ)|4 dκ ≤ 1
[�(α)]4

(μ – λ)4α

(4α) (4α + 1)

(
3

4α – 1

)3

×
μ∫

λ

[∣∣cDα
λ+ψ(τ )

∣∣4 +
∣∣cDα

μ–ψ(τ )
∣∣4

]
dτ .

Also, if we take r = 2 in (13), then we get the inequality (6).

Remark 4 Under the same assumptions of Theorem 8 with r = 4 and m = α = 1, the fol-
lowing result holds:

b∫

a

|ψ(x)|4 dx ≤ (μ – λ)4

20

b∫

a

∣∣ψ ′ (x)
∣∣4 dx,

which is given by Erden in [14].

Furthermore, we have the following inequality including RLFD.

Theorem 9 Assume that ψ ∈ Cm ([λ,μ]) with m ∈ N\ {0} and cDα
λ+ψ(τ ), cDα

μ–ψ(τ ) ∈
Lr [λ,μ] with r > 1, α > 0. If ψ (i) (λ) = ψ (i) (μ) = 0 for i = 0, 1, 2, . . . , m – 1, m = �α�, then
we have

μ∫

λ

|ψ(κ)|r dκ ≤ 1
[�(α)]r

(μ – λ)αr

(αr) (αr + 1)

(
r – 1
αr – 1

)r–1

(20)

×
μ∫

λ

[∣∣RLDα
λ+ψ(τ )

∣∣r +
∣∣RLDα

μ–ψ(τ )
∣∣r
]

dτ .

Proof If we use the Theorem 3, owing to the acceptance of the equality given in the theo-
rem ψ (i) (λ) = ψ (i) (μ) = 0, i = 0, 1, 2, . . . , m – 1, we can write the identities

cDα
λ+φ(κ) = RLDα

λ+φ(κ)

and

cDα
μ–φ(κ) = RLDα

μ–φ(κ).

Then, substituting RLDα
λ+φ(κ) and RLDα

μ–φ(κ) instead of cDα
λ+φ(κ) and cDα

μ–φ(κ), respec-
tively in (13), the inequality (20) can be readily deduced. �

Remark 5 If we choose r = 2 in (20), then the result (20) reduces to the inequality (12).
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