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Abstract
We establish trace inequalities for Riesz potentials on Herz-type spaces and examine
the optimality of conditions imposed on specific parameters. We also present some
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Herz-type Sobolev spaces.
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1 Introduction and preliminaries
The Riesz potential operator Iγ is an integral operator defined by the convolution of a
function f with the Riesz kernel Kγ (x) := |x|γ –n. More precisely, for n ∈N and 0 < γ < n,

Iγ f (x) :=
∫
Rn

f (y)

|x – y|n–γ
dm(y), x ∈R

n,

where f is a suitable function, for example, a locally integrable function on R
n(L1

loc(Rn)) or
a function with sufficiently rapid decay at infinity, particularly, if f ∈ Lp(Rn) with 1 ≤ p < n

γ
,

and m is the Lebesgue measure on R
n. If γ = 2 �= n, then this integral operator is called the

Newtonian potential and is used to describe the potential energy distribution of a system
of point masses in classical mechanics or the electrostatic potential created by a charge
distribution in physics.

The trace problem for Riesz potentials deals with finding nonnegative (positive) Borel
measures μ on R

n such that Iγ maps F (Rn, m) boundedly into F ′(Rn,μ), where F (Rn, m)

and F ′(Rn,μ) are function spaces defined over R
n with respect to measures m and μ,

respectively. Adams [1, 2] proved that for 1 < p1 < p2 < ∞ and 0 < γ < n
p1

,

‖Iγ f ‖Lp2 (Rn ,μ) � ‖f ‖Lp1 (Rn ,m) (1)
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if and only if μ(B) � [m(B)]p2( 1
p1

– γ
n ) for every ball B ⊂ R

n. Here we have used the standard
notation ζ � ρ (or, equivalently, ρ � ζ ) to express that there exists a positive constant c,
independent of relevant variables, such that ζ ≤ cρ . Inequality (1) is not true when p1 = p2

(see, for example, [3]). Inequalities involving Riesz potentials often provide an important
tool for estimating functions in terms of the norms of their derivatives. The wide-ranging
applicability of trace inequalities for Riesz potentials has sparked significant interest in
recent studies; see, for instance, [7, 9, 15, 24] and references therein. For Morrey–Lorentz
spaces, the following theorem has been established in [7].

Theorem 1.1 Let 1 < p1 ≤ q1 < ∞ and 1 < p2 ≤ q2 < ∞ satisfy p2
q2

≤ p1
q1

for all 1 < p1 < p2 <
∞. Then the inequality

‖Iγ f ‖Mq2
p2,r2 (Rn ,μ) � ‖f ‖Mq1

p1,r1 (Rn ,m)

holds if and only if the measure μ satisfies μ(B) � [m(B)]q2( 1
q1

– γ
n ) for every ball B ⊂ R

n,
given that n( 1

q1
– 1

q2
) ≤ γ < n

q1
and 1 ≤ r1 < r2 ≤ ∞ (or r1 = r2 = ∞).

In particular, this yields the following outcome for Lorentz spaces (see Definition 1.3).

Corollary 1.2 If 1 < p1 < p2 < ∞, n( 1
p1

– 1
p2

) ≤ γ < n
p1

, and 1 ≤ r1 < r2 ≤ ∞ (or r1 = r2 = ∞).
Then

‖Iγ f ‖Lp2,r2 (Rn ,μ) � ‖f ‖Lp1,r1 (Rn ,m)

if and only if the measure μ satisfies μ(B) � [m(B)]p2( 1
p1

– γ
n ) for every ball B ⊂R

n.

1.1 Function spaces
In this subsection, we fix some notations and recall definitions of certain function spaces
required for the subsequent discussion. We begin with Lorentz spaces.

Definition 1.3 A Lorentz space Lp,r(�,ν) defined over a σ -finite measure space (�,�,ν)

consists of all ν-measurable functions on � for which the functional ‖f ‖Lp,r(�,ν) is finite,
where

‖f ‖Lp,r(�,ν) :=

⎧⎨
⎩

(
∫ ∞

0 (t
1
p f ∗(t))r dt

t )1/r if 0 < p < ∞, 0 < r < ∞,

supt>0 t
1
p f ∗(t) if 0 < p ≤ ∞, r = ∞,

and f ∗(t) := inf{s ≥ 0 : ν({x ∈ � : |f | > s}) ≤ t}, t ≥ 0, is the decreasing (or nonincreasing)
rearrangement of f .

Note that Lp,p = Lp. It is important to emphasize that ‖ · ‖Lp,r(�,ν) is not always a norm,
but rather a quasi-norm (see [5, p. 216]). However, we can define a functional ‖ · ‖L(p,r)(�,ν)

on Lp,r(�,ν) as follows:

‖f ‖L(p,r)(�,ν) :=

⎧⎨
⎩

(
∫ ∞

0 (t
1
p f ∗∗(t))r dt

t )1/r if 0 < p < ∞, 0 < r < ∞,

supt>0 t
1
p f ∗∗(t) if 0 < p ≤ ∞, r = ∞,
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where the function f ∗∗(t) := 1
t
∫ t

0 f ∗(t) dt is referred to as the maximal average func-
tion. Fortunately, this functional is subadditive. Consequently, L(p,r)(�,ν) := (Lp,r(�,ν),‖ ·
‖L(p,r)(�,ν)) is a normed space for 1 < p < ∞, 1 ≤ r ≤ ∞, or p = r = ∞. Since f ∗ ≤ f ∗∗, we have
L(p,r) ↪→ Lp,r . Moreover, if 1 < p ≤ ∞ and 1 ≤ r ≤ ∞, then Lp,r ↪→ L(p,r) (see [5, Lemma 4.5,
p. 219]). The substitution of Lp,1 for Lp1 on the right-hand side of inequality (1) retains its
validity in the limiting case p1 = p2 = p (see [13, 14]).

Another important generalization of Lebesgue spaces is the classical Herz space, in-
troduced by Herz [12] as a suitable environment for the action of Fourier transform on a
Lipschitz class. Although the Herz spaces are defined in various equivalent ways, we adopt
the formulation presented in [11, 19] with a slightly changed notation for our convenience.

Let (�t)t∈Z be the dyadic decomposition of Rn, i.e., �t = {x ∈ R
n : 2t–1 ≤ |x| < 2t} for

t ∈ Z. We denote χ̃�t = χ�t for t ∈ Z+, and χ̃�–1 = χB(0, 1
2 ), where B(0, 1

2 ) represents the ball
centered at the origin with radius 1

2 in R
n.

Definition 1.4 Let λ ∈ R and 0 < p, q ≤ ∞, and let ν be a positive measure on R
n.

(i) The homogeneous Herz space K̇p
λ,q(Rn,ν) is defined by

K̇p
λ,q

(
R

n,ν
)

:=
{

f ∈ Lp
loc

(
R

n \ {0},ν)
: ‖f ‖K̇p

λ,q(Rn ,ν) < ∞}
,

where

‖f ‖K̇p
λ,q(Rn ,ν) :=

(∑
t∈Z

2tλq‖f χ�t ‖q
Lp(Rn ,ν)

) 1
q

.

(ii) The inhomogeneous Herz space Kp
λ,q(Rn,ν) is defined by

Kp
λ,q

(
R

n,ν
)

:=
{

f ∈ Lp
loc

(
R

n,ν
)

: ‖f ‖Kp
λ,q(Rn ,ν) < ∞}

,

where

‖f ‖Kp
λ,q(Rn) :=

( ∞∑
t=–1

2tλq‖f χ̃�t ‖q
Lp(Rn ,ν)

) 1
q

.

If p and/or q are infinite, then the usual modifications are made.

It is obvious that K̇p
0,p(Rn,ν) = Kp

0,p(Rn,ν) = Lp(Rn,ν). In recent years, there has been
substantial advancement in the development of Herz spaces, primarily driven by their
wide range of applications (see, for instance, [4, 8, 10, 16, 22, 23] and references therein).
However, Herz spaces alone are insufficient to describe some fine properties of func-
tions and operators. Consequently, defining the Lorentz–Herz spaces ḢLp,r

λ,q(Rn,ν) and
HLp,r

λ,q(Rn,ν) emerges as a natural progression. These spaces are derived simply by amal-
gamating Lorentz spaces with Lebesgue sequence spaces, essentially replacing the func-
tionals ‖ · ‖Lp(Rn ,ν) with ‖ · ‖Lp,r(Rn ,ν) in Definition 1.4. The properties of these spaces, even
in more general settings, have been investigated in [6].

The trace principle for Riesz potentials on Herz spaces and their extensions remains
absent from the academic literature. This absence is particularly worth noting, given the
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pivotal role that inequalities associated with Riesz potentials are indispensable tools for es-
timating functions in terms of their gradients, commonly referred to as Sobolev inequal-
ities. These inequalities are considered as cornerstones of the Sobolev theory in partial
differential equations.

To establish such estimates within the Herz-type setting, the derivation of trace inequal-
ities is of paramount importance. In the ensuing sections, we present rigorous proofs of
trace inequalities for both Herz and Lorentz–Herz spaces. It is important to mention that
our focus here is on homogeneous spaces; however, analogous proofs for nonhomoge-
neous spaces can be conducted similarly. Additionally, we engage in a comprehensive dis-
cussion on the optimality of specific parametric conditions inherent in these trace inequal-
ities. The resulting trace theorems subsequently facilitate the proof of Sobolev inequalities
within Herz space settings, providing succinct estimates for functions in relation to their
gradients. As a consequential outcome, we establish a Sobolev embedding theorem for
Herz-type Sobolev spaces.

2 Trace theorems
We begin this section by presenting the trace theorem for Herz spaces. To handle convolu-
tion operators with kernels having singularities at the origin, we adopt a conventional and
widely used approach. It involves decomposing the summation into distinct components,
systematically accounting for the presence of singularity. This well-established technique
has found pervasive application in several research papers. Hereafter, if the measure as-
sociated with a particular norm is not explicitly mentioned, then it is to be understood as
the Lebesgue measure on R

n.

Theorem 2.1 Assume that 1 < p1 < p2 < ∞, 1 ≤ q1 ≤ q2 < ∞, 0 < γ < n
p1

, and γ – n
p1

< λ <

n – n
p1

. If μ(B) � [m(B)]p2( 1
p1

– γ
n ) for every ball B ⊂R

n, then

‖Iγ f ‖K̇p2
λ,q2

(Rn ,μ) � ‖f ‖K̇p1
λ,q1

(Rn ,m). (2)

Proof Let f ∈ K̇p1
λ,q1

(Rn, m). Since 0 < q1
q2

≤ 1, we have

‖Iγ f ‖q1
K̇p2

λ,q2
(Rn ,μ)

=
[∑

t∈Z
2tλq2

(∫
�t

∣∣Iγ f (x)
∣∣p2 dμ(x)

) q2
p2

] q1
q2

≤
[∑

t∈Z
2tλq1

(∫
�t

∣∣Iγ f (x)
∣∣p2 dμ(x)

) q1
p2

]
.

By setting fs = f χ�s for s ∈ Z we have f =
∑

s∈Z fs. Using Minkowski’s inequality, we get

‖Iγ f ‖K̇p2
λ,q2

(Rn ,μ) ≤
[∑

t∈Z
2tλq1

(∑
s∈Z

(∫
�t

∣∣Iγ fs(x)
∣∣p2 dμ(x)

) 1
p2

)q1] 1
q1

≤
[∑

t∈Z
2tλq1

( ∑
s≤t–2

(∫
�t

∣∣Iγ fs(x)
∣∣p2 dμ(x)

) 1
p2

)q1] 1
q1

+
[∑

t∈Z
2tλq1

( ∑
t–1≤s≤t+1

(∫
�t

∣∣Iγ fs(x)
∣∣p2 dμ(x)

) 1
p2

)q1] 1
q1
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+
[∑

t∈Z
2tλq1

( ∑
s≥t+2

(∫
�t

∣∣Iγ fs(x)
∣∣p2 dμ(x)

) 1
p2

)q1] 1
q1

:= E1 + E2 + E3. (3)

Now we estimate the terms E1, E2, and E3 one by one.
Estimation of E1: For s ≤ t – 2 and a.e. x ∈ �t , we have

∣∣Iγ fs(x)
∣∣ � 2–t(n–γ )

∣∣∣∣
∫
Rn

fs(y) dm(y)

∣∣∣∣
≤ 2–t(n–γ )‖fs‖Lp1 ‖χ�s‖Lp′

1
.

Thus

E1 =
[∑

t∈Z
2tλq1

( ∑
s≤t–2

(∫
�t

∣∣Iγ fs(x)
∣∣p2 dμ(x)

) 1
p2

)q1] 1
q1

�
[∑

t∈Z
2tλq1

( ∑
s≤t–2

2–t(n–γ )‖fs‖Lp1 ‖χ�s‖Lp′
1
‖χ�t ‖Lp2 (Rn ,μ)

)q1] 1
q1

�
[∑

t∈Z

( ∑
s≤t–2

2sλ‖fs‖Lp1 · 2α(t–s)
)q1] 1

q1
,

where α = n
p1

– n + λ < 0. Using Hölder’s inequality for inner sum and changing order of
summations, we get

E1 �
[∑

t∈Z

( ∑
s≤t–2

2sλq1‖fs‖q1
Lp1 · 2

αq1
2 (t–s)

{ ∑
s≤t–2

2
αq′

1
2 (t–s)

} q1
q′

1
)] 1

q1

�
[∑

t∈Z

∑
s≤t–2

2sλq1‖fs‖q1
Lp1 · 2

αq1
2 (t–s)

] 1
q1

=
[∑

s∈Z
2sλq1‖fs‖q1

Lp1

∑
t≥s+2

2
αq1

2 (t–s)
] 1

q1

� ‖f ‖K̇p1
λ,q1

(Rn ,m).

Estimation of E2: Applying Minkowski’s inequality and (1), we have

E2 ≤
[∑

t∈Z
2tλq1

( ∑
t–1≤s≤t+1

‖Iγ fs‖Lp2 (Rn ,μ)

)q1] 1
q1

≤
[∑

t∈Z
2tλq1‖Iγ ft–1‖q1

Lp2 (Rn ,μ)

] 1
q1

+
[∑

t∈Z
2tλq1‖Iγ ft‖q1

Lp2 (Rn ,μ)

] 1
q1

+
[∑

t∈Z
2tλq1‖Iγ ft+1‖q1

Lp2 (Rn ,μ)

] 1
q1

� ‖f ‖K̇p1
λ,q1

(Rn ,m).
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Estimation of E3: For s ≥ t +2 and a.e x ∈ �t , by using a similar technique as in estimation
of E1, we get

∣∣Iγ fs(x)
∣∣ � 2–s(n–γ )‖fs‖Lp1 ‖χ�s‖Lp′

1
.

Therefore

E3 =
[∑

t∈Z
2tλq1

( ∑
s≥t+2

(∫
�t

∣∣Iγ fs(x)
∣∣p2 dμ(x)

) 1
p2

)q1] 1
q1

�
[∑

t∈Z
2tλq1

( ∑
s≥t+2

2–s(n–γ )‖fs‖Lp1 ‖χ�s‖Lp′
1
‖χ�t ‖Lp2 (Rn ,μ)

)q1] 1
q1

�
[∑

t∈Z

( ∑
s≥t+2

2sλ‖fs‖Lp1 · 2β(t–s)
)q1] 1

q1
,

where δ = n
p1

– γ + λ > 0. Now using Hölder’s inequality for the inner sum and then inter-
changing the order of summations, we obtain

E3 �
[∑

t∈Z

( ∑
s≥t+2

2sλq1‖fs‖q1
Lp1 · 2

δq1
2 (t–s)

{ ∑
s≥t+2

2
δq′

1
2 (t–s)

} q1
q′

1
)] 1

q1

�
[∑

t∈Z

∑
s≥t+2

2sλq1‖fs‖q1
Lp1 · 2

δq1
2 (t–s)

] 1
q1

=
[∑

s∈Z
2sλq1‖fs‖q1

Lp1

∑
t≤s–2

2
δq1

2 (t–s)
] 1

q1

� ‖f ‖K̇p1
λ,q1

(Rn ,m).

This completes the proof. �

In the case of pi = qi for i = 1, 2 and λ = 0, the converse of the above theorem holds (see
(1)). However, in general, the question of its converse remains an open problem. Never-
theless, we establish a partial answer for a particular set of parameters.

Proposition 2.2 Let p1, p2, q1, q2, and γ be as in Theorem 2.1. Suppose p1 ≤ q1 ≤ q2 ≤ p2

and λ = 0. If ‖Iγ f ‖K̇p2
λ,q2

(Rn ,μ) � ‖f ‖K̇p1
λ,q1

(Rn ,m), then μ(B) � [m(B)]p2( 1
p1

– γ
n ) for every ball B ⊂

R
n.

Proof For a given ball B ⊂R
n, set f (x) = χB(x). Then

‖f ‖K̇p1
0,q1

(Rn ,m) =
[∑

t∈Z

(∫
�t

∣∣χB(x)
∣∣p1 dm(x)

) q1
p1

] 1
q1

≤
[∑

t∈Z

[
m(B ∩ �t)

]] 1
p1

=
[
m(B)

] 1
p1 . (4)
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Moreover,

‖Iγ f ‖K̇p2
0,q2

(Rn ,μ) =
[∑

t∈Z

(∫
�t

∣∣∣∣
∫
Rn

χB(y)

|x – y|n–γ
dm(y)

∣∣∣∣
p2

dμ(x)

) q2
p2

] 1
q2

�
[∑

t∈Z

(∫
�t∩B

∣∣∣∣
∫

B

1
|x – y|n–γ

dm(y)

∣∣∣∣
p2

dμ(x)

) q2
p2

] 1
q2

.

Since x, y ∈ B, we have |x – y| ≤ 2r, where r is the radius of the ball. Thus

1
|x – y|n–γ

� 1
(rn)1– γ

n
�

[
m(B)

] γ
n –1.

Hence

‖Iγ f ‖K̇p2
0,q2

(Rn ,μ) �
[∑

t∈Z

[
m(B)

] q2γ
n

[
μ(�t ∩ B)

] q2
p2

] 1
q2

�
[
m(B)

] γ
n

[∑
t∈Z

[
μ(�t ∩ B)

]] 1
p2

=
[
m(B)

] γ
n
[
μ(B)

] 1
p2 . (5)

From (4) and (5) we get μ(B) � [m(B)]p2( 1
p1

– γ
n ). �

Next, we present the trace inequality for homogeneous Lorentz–Herz spaces. Since the
proof is similar to that of Theorem 2.1, we only provide the necessary steps and point out
the differences in the arguments.

Theorem 2.3 Let p1, p2, q1, q2, μ be as in Theorem 2.1, and let 1 ≤ r1 < r2 ≤ ∞ (or r1 =
r2 = ∞). Suppose n( 1

p1
– 1

p2
) ≤ γ < n

p1
and γ – n

p1
< λ < n – n

p1
. Then

‖Iγ f ‖ḢLp2,r2
λ,q2

(Rn ,μ) � ‖f ‖ḢLp1,r1
λ,q1

(Rn ,m).

Proof Let f ∈ ḢLp1,r1
λ,q1 (Rn, m). Then it is easy to see that

‖Iγ f ‖ḢLp2,r2
λ,q2

(Rn ,μ) ≤
[∑

t∈Z
2tλq1‖Iγ f · χ�t ‖q1

Lp2,r2 (Rn ,μ)

] 1
q1

.

As before, setting fs = f χ�s , s ∈ Z, and using the triangle inequality of the Lorentz norm,
we obtain

‖Iγ f ‖ḢLp2,r2
λ,q2

(Rn ,μ) ≤
[∑

t∈Z
2tλq1

∥∥∥∥Iγ
(∑

s∈Z
fs

)
· χ�t

∥∥∥∥
q1

Lp2,r2 (Rn ,μ)

] 1
q1

≤
[∑

t∈Z
2tλq1

∥∥∥∥
∑
s∈Z

Iγ fs · χ�t

∥∥∥∥
q1

L(p2,r2)(Rn ,μ)

] 1
q1
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�
[∑

t∈Z
2tλq1

(∑
s∈Z

‖Iγ fs · χ�t ‖Lp2,r2 (Rn ,μ)

)q1] 1
q1

.

The inner sum can be broken into three parts, and then by the application of Minkowski’s
inequality we may write

‖Iγ f ‖
ḢLLp2,r2 (Rn ,μ)

λ,q2
(Rn ,μ)

�
[∑

t∈Z
2tλq1

( ∑
s≤t–2

‖Iγ fs · χ�t ‖Lp2,r2 (Rn ,μ)

)q1] 1
q1

+
[∑

t∈Z
2tλq1

( ∑
t–1≤s≤t+1

‖Iγ fs · χ�t ‖Lp2,r2 (Rn ,μ)

)q1] 1
q1

+
[∑

t∈Z
2tλq1

( ∑
s≥t+2

‖Iγ fs · χ�t ‖Lp2,r2 (Rn ,μ)

)q1] 1
q1

:= E1 + E2 + E3.

Now, we proceed as in Theorem 2.1, except that we use the Hölder inequality for Lorentz

spaces and rely on the fact that ‖χ�s‖Lp′
1,r′1 ‖χ�t ‖Lp2,r2 (Rn ,μ) � 2

[t(n–γ )+ n
p′

1
(s–t)]

(which follows
along lines similar to [6, Lemma 3.1.2.1]). Furthermore, the estimation of E2 is based on
Corollary 1.2. �

We wrap up this section with the following theorem addressing the limiting case p1 =
p2 = p. By employing a simple modification of the proof of either Theorem 2.1 or Theo-
rem 2.3, in combination with [14, Theorem 1.2] (see also [13, Theorem 3.1]), we get

Theorem 2.4 Let 1 < p < ∞, 1 ≤ q1 ≤ q2 < ∞, 0 < γ < n
p , and γ – n

p < λ < n – n
p . Suppose

that for every ball B ⊂R
n, we have μ(B) � [m(B)](1– γ p

n ). Then

‖Iγ f ‖K̇p
λ,q2

(Rn ,μ) � ‖f ‖ḢLp,1
λ,q1

(Rn ,m)
.

The question whether Theorem 2.4 holds when replacing ḢLp,1
λ,q1 with a space that is not

as narrow as this (e.g., ḢLp,r
λ,q1 for 1 < r < p) remains open.

3 Optimality conditions
In this section, we present some examples to illustrate the optimality of certain parametric
conditions assumed in Theorem 2.1 or Theorem 2.3. To that end, we focus on the case
where n = 1 and β := p2( 1

p1
– γ ) ≤ 1. Suppose μ is the positive Borel measure generated

by g(x) = xβ–1χ(0,∞)(x) on the the Borel sigma algebra B of R, i.e., μ(S) =
∫

S gdm for S ∈ B.
We will proceed by working out a few examples using this choice of μ.

Example 3.1 Consider the function f = χ�1 in K̇p1
λ,q1

(R, m). For x ∈ �t and y ∈ �1, it is
evident that

1
|x – y|1–γ

� 1
(2 + 2t)1–γ

.
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Consequently,

‖Iγ f ‖K̇p2
λ,q2

(R,μ) =
[∑

t∈Z
2tλq2

(∫
�t

∣∣∣∣
∫
R

χ�1 (y)

|x – y|1–γ
dm(y)

∣∣∣∣
p2

dμ(x)

) q2
p2

] 1
q2

�
[∑

t∈Z

2tλq2 [μ(�t)]
q2
p2

(2 + 2t)q2(1–γ )

] 1
q2

�
[∑

t≤0

2tq2λ
[
μ(�t)

] q2
p2 +

∑
t≥1

2tq2(λ–1+γ )
[
μ(�t)

] q2
p2

] 1
q2

.

Therefore

‖Iγ f ‖K̇p2
λ,q2

(R,μ) �
[∑

t≤0

2tq2(λ+ 1
p1

–γ ) +
∑
t≥1

2tq2(λ–1+ 1
p1

)
] 1

q2
.

Thus, for the estimate ‖Iγ f ‖K̇p2
λ,q2

(R,μ) � ‖f ‖K̇p1
λ,q1

(R,m), it is necessary that γ – 1
p1

< λ < 1 – 1
p1

.

The subsequent example demonstrates the necessity of the condition q1 ≤ q2.

Example 3.2 Consider the function fk(x) = |x|–(λ+ 1
p1

)
χ{1<|x|<2k}(x), k ∈ N. It is not difficult

to see that ‖fk‖K̇p1
λ,q1

(R,m) � k
1

q1 . Moreover,

‖Iγ fk‖K̇p2
λ,q2

(R,μ) =
[∑

t∈Z
2tλq2

(∫
�t

∣∣∣∣
∫
R

fk(y)

|x – y|1–γ
dm(y)

∣∣∣∣
p2

dμ(x)

) q2
p2

] 1
q2

�
[∑

t∈Z
2tλq2

(∫
�t

∣∣∣∣
∫

�t

fk(y)

|x – y|1–γ
dm(y)

∣∣∣∣
p2

dμ(x)

) q2
p2

] 1
q2

.

Notice that 1
|x–y|1–γ ≥ 2–(t+1)(1–γ ) and fk(y) ≥ 2–t(λ+ 1

p1
) for x, y ∈ �t , 1 ≤ t ≤ k. Consequently,

‖Iγ fk‖K̇p2
λ,q2

(R,μ) �
[ ∑

1≤t≤k

2q2(tλ–(t+1)(1–γ )–t(λ+ 1
p1

))([m(�t)
]p2

μ(�t)
) q2

p2

] 1
q2

�
[ ∑

1≤t≤k

1
] 1

q2
= k

1
q2 .

Using ‖Iγ f ‖K̇p2
λ,q2

(R,μ) � ‖f ‖K̇p1
λ,q1

(R,m), we deduce that k
1

q2 � k
1

q1 . As k ∈ N is arbitrary, we
must have q1 ≤ q2.

The remaining conditions, p1 < p2 and γ < n
p1

, are known to be optimal in Lebesgue
spaces, and, consequently, they stand as optimal conditions for Theorem 2.1 (or Theo-
rem 2.3).

4 Sobolev inequalities
The Riesz potential operator on R

n classically arises from the γ

2 th-order fractional Laplace
equation (–�)

γ
2 (u) = f . For 0 < γ < n, the function G(γ )(2π |x|)–γ is the Fourier transform
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of the function |x|γ –n [20, p. 66]. Here the constant G(γ ), known as the normalized con-
stant, is given by

G(γ ) =
π

n
2 2γ �( γ

2 )

�( n–α
2 )

,

where � is the Euler gamma function. Based on this, it can be readily inferred that the
equation u = Iγ (f )

G(γ ) solves the aforementioned equation. Thus the results in Sect. 2 indicate
that under the conditions of Theorem 2.1 (or Theorem 2.3), if f belongs to K̇p1

λ,q1
(Rn, m)

[or ḢLp,r
λ,q(Rn, m)], then the solution of fractional-order equation (–�)

γ
2 (u) = f belongs to

K̇p1
λ,q1

(Rn,μ) [ resp., ḢLp,r
λ,q(Rn,μ)].

Another important observation is that if μ is the Lebesgue measure restricted to Borel
sets in R

n and 1
p1

– 1
p2

= γ

n , then we can immediately deduce the following Hardy–
Littlewood–Sobolev theorem of fractional integration in the context of Lorentz–Herz
spaces.

Corollary 4.1 Let 1 < p1 < p2 < ∞, 1 ≤ q1 ≤ q2 < ∞, and 1 ≤ r1 < r2 ≤ ∞ (or r1, r2 = ∞).
Then

‖Iγ f ‖ḢLp2,r2
λ,q2

(Rn ,m) � ‖f ‖ḢLp1,r1
λ,q1

(Rn ,m),

provided that 1
p1

– 1
p2

= γ

n and γ – n
p1

< λ < n – n
p1

.

In particular, if ri = pi, i = 1, 2, then we get the corresponding theorem for Herz spaces
(cf. [17]).

Let us recall the definition of homogeneous Herz-type Sobolev spaces from [18]. For
consistency, we make a slight adjustment to the notation.

Definition 4.2 Let 1 < p < ∞, 0 < λ < n(1 – 1
p ), 0 < q < ∞, and k ∈ Z+. The homogeneous

Herz-type Sobolev space K̇p,k
λ,q (Rn) is defined by

K̇p,k
λ,q

(
R

n) :=
{

f ∈ K̇p
λ,q

(
R

n) : for |β| ≤ k,
∂β f
∂f β

exists on D′(
R

n), and
∂β f
∂f β

∈ K̇p
λ,q

(
R

n)},

where β = (β1,β2, . . . ,βn) ∈ Z
n
+, ∂0f

∂f 0 = f , and the space is equipped with the functional

‖f ‖K̇p,k
λ,q (Rn)

:=
∑
|β|≤k

∥∥∥∥∂β f
∂f β

∥∥∥∥
K̇p

λ,q(Rn)

.

The parameters in this definition are subjected to specific conditions to ensure the rea-
sonableness of definition, as outlined in [18].

Theorem 4.3 Let 1 < p1 < n, p2 < ∞, 1 ≤ q1 ≤ q2 < ∞, and 0 < λ < n – n
p1

. Suppose that for

every ball B ⊂R
n, we have μ(B) � [m(B)]p2( 1

p1
– 1

n ). Then

‖f ‖K̇p2
λ,q2

(Rn ,μ) � ‖∇f ‖K̇p1
λ,q1

(Rn ,m)

for every f ∈ K̇p1,1
λ,q1

(Rn).
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Proof First, assume that g ∈ D(Rn), the space of infinitely differentiable functions on R
n

with compact support. Then it is well known that |g(x)| � I1(|∇g|)(x) for every x ∈ R
n.

Therefore by Theorem 2.1 and the ideal property of Herz spaces ([6, Proposition 3.6]) it
follows that

‖g‖K̇p2
λ,q2

(Rn ,μ) �
∥∥I1

(|∇g|)∥∥K̇p2
λ,q2

(Rn ,μ)

� ‖∇g‖K̇p1
λ,q1

(Rn ,m), (6)

where ‖∇g‖K̇p1
λ,q1

(Rn ,m) = ‖(|∇g|)‖K̇p1
λ,q1

(Rn ,m) and |∇g| =
∑n

j=1 | ∂g
∂xj

|. Now let f ∈ K̇p1,1
λ,q1

(Rn).

Then f ∈ K̇p1
λ,q1

(Rn) and ∂f
∂xj

∈ K̇p1
λ,q1

(Rn), j = 1, 2, . . . , n. Moreover, there exists a sequence

{fk} in D(Rn) such that fk → f in K̇p1
λ,q1

(Rn) and ∂fk
∂xj

→ ∂f
∂xj

in K̇p1
λ,q1

(Rn) [18, Proposition 2.1].
Therefore by equation (6) we get

‖fk – fl‖K̇p2
λ,q2

(Rn ,μ) �
∥∥∥∥∥

n∑
j=1

∣∣∣∣ ∂fk

∂xj
–

∂fl

∂xj

∣∣∣∣
∥∥∥∥∥

K̇p1
λ,q1

(Rn ,m)

,

from which it follows that the sequence {fk} converges to f in K̇p2
λ,q2

(Rn,μ). This completes
the proof. �

The repeated application of the pointwise estimate |g(x)| � I1(|∇g|)(x), in combina-
tion with semigroup property IαIβ = Iα+β , ensures the above inequality for higher-order
Sobolev-type Herz spaces as well.

Theorem 4.4 Let k ∈N, 1 < p1 < n
k , p2 < ∞, 1 ≤ q1 ≤ q2 < ∞, and 0 < λ < n – n

p1
. If μ(B) �

[m(B)]p2( 1
p1

– k
n ) for every ball B ⊂R

n, then

‖f ‖K̇p2
λ,q2

(Rn ,μ) �
∥∥∇kf

∥∥
K̇p1

λ,q1
(Rn ,m)

for every f ∈ K̇p1,k
λ,q1

(Rn).

We say that p∗ is the k-Sobolev conjugate of p if 1
p∗ = 1

p – k
n , where k is a positive integer.

We simply write Sobolev conjugate for 1-Sobolev conjugate. Putting μ = m in the above
theorem, we get the following Sobolev embedding theorem for Herz-type Sobolev spaces.

Corollary 4.5 Let k ∈ N, 1 < p < n
k , 1 ≤ q < ∞, and 0 < λ < n– n

p , and let p∗ be the k-Sobolev
conjuage of p. Then

‖f ‖
K̇p∗

λ,q(Rn ,m)
�

∥∥∇kf
∥∥

K̇p
λ,q(Rn ,m)

for every f ∈ K̇p,k
λ,q (Rn). In particular, K̇p,k

λ,q (Rn) ↪→ K̇p∗
λ,q(Rn).

Finally, we prove the following Gagliardo–Nirenberg–Sobolev (GNS) inequality in the
setting of Herz spaces.



Bhat and Kosuru Journal of Inequalities and Applications        (2024) 2024:113 Page 12 of 13

Theorem 4.6 Let 0 ≤ θ ≤ 1, 1 < p0 < n, 1 ≤ p0, p1 < p2 < ∞, 1 ≤ q0, q1 < q2 < ∞, and
0 < λ < n – n

p0
. Suppose that μ(B) � [m(B)]p2( 1

p0
– 1

n ) for every ball B ⊂R
n. Then

‖f ‖K̇p
λ,q(Rn ,μ) ≤ ‖f ‖1–θ

K̇p1
λ,q1

(Rn ,μ)
‖∇f ‖θ

K̇p0
λ,q0

(Rn ,m)

for every f ∈ K̇p1
λ,q1

(Rn,μ) ∩ K̇p0,1
λ,q0

(Rn, m), provided that 1
q = 1–θ

q1
+ θ

q2
and 1

p = 1–θ
p1

+ θ
p2

.

Proof Let 0 ≤ θ ≤ 1 and 1 ≤ p1 < p2 ≤ ∞. Using the interpolation inequality ‖f ‖Lp(Rn ,ν) ≤
‖f ‖1–θ

Lp1 (Rn ,ν)‖f ‖θ
Lp2 (Rn ,ν), which holds for any positive measure ν on R

n, provided that 1
p =

1–θ
p1

+ θ
p2

, and the Hölder inequality, we obtain

∑
t∈Z

2tλq‖f χ�t ‖q
Lp(Rn ,ν) ≤

(∑
t∈Z

2tλq1‖f χ�t ‖q1
Lp1 (Rn ,ν)

) q(1–θ )
q1

(∑
t∈Z

2tλq2‖f χ�t ‖q2
Lp2 (Rn ,ν)

) qθ
q2

.

Consequently,

‖f ‖K̇p
λ,q(Rn ,ν) ≤ ‖f ‖1–θ

K̇p1
λ,q1

(Rn ,ν)
‖f ‖θ

K̇p2
λ,q2

(Rn ,ν)
.

Using Theorem 4.3, it follows that

‖f ‖K̇p
λ,q(Rn ,μ) ≤ ‖f ‖1–θ

K̇p1
λ,q1

(Rn ,μ)
‖∇f ‖θ

K̇p0
λ,q0

(Rn ,m)
. �

Remark 4.7
(i) If q ≤ p, then the definition of K̇p,k

λ,q (Rn) remains reasonable even when λ = 0.
Evidently, all the aforementioned results (Theorem 4.3 onwards) are still true when
λ = 0 and qi ≤ pi (i = 0, 1, 2).

(ii) If λ = 0, μ = m, pi = qi for i = 0, 1, 2, and p2 is the Sobolev conjugate of p0, we obtain
the GNS inequality for the Lebesgue spaces (see [21, Sect. 1]).
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