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Abstract
This article examines the strong consistency of the conditional value-at-risk (CVaR)
estimate for asymptotic negatively associated (ANA or ρ–, for short) random samples
under mild conditions. It is demonstrated that the optimal rate can achieve nearly
O(n–1/2) under certain appropriate conditions. Furthermore, we present numerical
simulations and a real data example to corroborate our theoretical results based on
finite samples.
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1 Introduction
The introduction of the value-at-risk (VaR) model has revolutionised the investment,
management and governance landscape. In the investment arena, VaR enables individuals
to assess the risk associated with investment assets, enabling them to formulate invest-
ment strategies based on risk level and risk tolerance, thereby reducing investment un-
certainty. At the operational level, VaR allows for the continuous monitoring of potential
fluctuations in order to avoid significant losses due to adverse changes in certain factors. In
management, the VaR model plays a key role in the internal management of institutions,
including the development of investment strategies, the assessment and supervision of
traders and the prudent allocation of resources, while also serving as a valuable tool for
market regulators. Market regulators are tasked with preventing adverse effects on the
overall market and economic system arising from excessive market risk accumulation and
concentrated risk release, with the VaR model serving as the primary tool for quantifying
market risk accumulation. This innovative VaR technology and risk management frame-
work underpinned by the VaR model will improve the operations of financial institutions
in China, promote more rational investment behaviour among investors and provide reg-
ulators with an effective mechanism for market supervision.

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived
from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/
4.0/.

https://doi.org/10.1186/s13660-024-03191-5
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-024-03191-5&domain=pdf
mailto:kanchenchu@126.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Jin et al. Journal of Inequalities and Applications        (2024) 2024:118 Page 2 of 15

Assume X to be a random cost variable with cumulative distribution function F(u) =
P(X ≤ u). Let F–1(v) be its right continuous inverse, defined as F–1(v) = inf{u : F(u) > v}.
For a fixed α, the value-at-risk VaRα is defined as the α-quantile, represented as

VaRα(X) = F–1(α). (1.1)

In order for financial institutions to quantify and mitigate financial risk, as required by
the Basel III framework, VaR is commonly used. Despite its widespread adoption, VaR
is considered insufficient as a comprehensive risk measure due to inherent mathemati-
cal limitations such as non-subadditivity and non-convexity. Additionally, optimising VaR
based on scenarios presents challenges.

To address the limitations of VaR, some authors advocate the adoption of CVaR as a
more comprehensive risk metric. Regarded as a coherent alternative, CVaR is gaining trac-
tion in the realm of financial risk management. For risk measurement, CVaR is proved to
have better properties than VaR, where CVaRα can be defined by

CVaRα(X) = E (X|X ≥ VaRα(X)) . (1.2)

i.e., CVaRα can be thought of as the conditional expectation of losses that exceed the
CVaRα(X) level. Pflug [1] put forward that the CVaRα(X) can be viewed as the solution of
an optimisation problem, namely,

CVaRα(X) = inf
x∈R

{
x +

1
1 – α

E[X – x]+
}

:= θ∗, (1.3)

where [a]+ := max{0, a} denotes the positive part of a ∈ R.
The CVaR model, a prevalent financial risk metric, enjoys broad support and acceptance

within the international financial community. Its optimized version is recognised as a re-
fined certainty equivalent risk measure, garnering increasing attention from practitioners
and academics alike. Scholars have identified several key properties of CVaR as a coherent
risk measure, including transition-equivariance, convexity, and positive homogeneity. For
further insights, references such as Pflug [1], Artzner et al. [2], Embrechts et al. [3], Bodnar
et al. [4], Pavlikov and Uryasev [5], Wang et al. [6], Luo [7], among others, offer detailed
discussions on the subject.

In equation (1.3), consider hα(X, x) = x + 1
1–α

[X – x]+ and define θ∗ = CVaRα(X). There-
fore, CVaRα(X) = infx∈R Ehα(X, x). If X1, . . . , Xn represent n realisations of the random vari-
able X, then θ∗ can be estimated as

CVaRn,α(X) = inf
x∈R

n–1
n∑

i=1

hα(Xi, x) := θ̂n. (1.4)

Trindade et al. [8] examined the consistency of θ̂n for independently and identically dis-
tributed samples as well as for stationary processes. However, time series data in fields like
finance and economics typically exhibit interdependencies, making sample dependence
inherent. Recently, Xing et al. [9] demonstrated the strong consistency of conditional
value-at-risk estimation for ϕ-mixing samples under mild assumptions. Luo and Ou [10]
delved into exponential inequalities, the strong laws of large numbers, and convergence
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rates for CVaR estimators in α-mixing sequences. Ding et al. [11] explored Berry-Esseen
type bounds for conditional value-at-risk estimators in ψ-mixing sequences, among other
contributions in this area.

Next, we will review several different dependent structures. The NA random variable
was proposed by Joag Dev and Proschan [12], which has a wide range of applications in
multivariate statistical analysis and system reliability. Another important dependent struc-
ture is the ρ∗-mixing random variable proposed by Bradley [13]. Because ρ∗-mixing ran-
dom variables contain certain moving average processes and specific categories of Markov
chains, their importance extends to different fields such as economics, finance, and other
scientific disciplines. Zhang and Wang [14] introduced the concept of asymptotically neg-
atively associated random variables based on NA sequences and ρ∗-mixing sequences. As
is well known, ANA random variables encompass a mixture of ρ∗-mixing and NA ran-
dom variables as special instances, as detailed in Zhang [15] examples 2.2 and 2.3. The
definition of ANA random variable is as follows.

Definition 1.1 A sequence {Xn, n ≥ 1} of random variables is said to be asymptotically
negatively associated (ANA or ρ–, for short) if

ρ–(s) = sup{ρ–(S, T) : S, T ⊂N, dist(S, T) ≥ s} → 0, as s → ∞, (1.5)

where

ρ–(S, T) = 0 ∨
{

Cov
(
f1(Xi, i ∈ S), f2(Xj, j ∈ T)

)
√

Var(f1(Xi, i ∈ S)) · Var(f2(Xj, j ∈ T))
: f1, f2 ∈ C

}
, (1.6)

and C is the set of nondecreasing functions.

Since the inception of ANA random variables by Zhang and Wang [14], a plethora of
noteworthy theoretical findings has emerged. For instance, Zhang and Wang [14] explored
moment inequalities and complete convergence for partial sums of ANA random fields,
while Zhang [16] derived central limit theorems. Yuan and Wu [17] delved into the limiting
behaviour of the maximum of partial sums under residual Cesaro alpha-integrability as-
sumptions. Tang et al. [18] established a Berry–Esseen type bound for wavelet estimators
in a nonparametric regression model with ANA errors. Wu et al. [19] established a general
result on complete moment convergence and the Marcinkiewicz–Zygmund-type strong
law of large numbers for weighted sums of masymptotic negatively associated random
variables. Additionally, Ko Mi-Hwa [20] elucidated the limiting behaviour of the maxi-
mum of partial sums in Hilbert space, among other notable contributions in this domain.

Building upon the insights from the aforementioned article, this paper delves into ex-
ploring the strong consistency of estimate CVaRn,α(X) when the sample follows an the
ANA sequence, and provide its convergence rate. Furthermore, the theoretical findings
derived from a restricted sample are validated through numerical simulations and illus-
trative examples.

The paper is structured as follows: Main results and their proofs are detailed in Sect. 2.
Section 3 includes numerical simulations, while Sect. 4 presents a real data example. Fi-
nally, the Appendix contains the necessary lemmas.
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Throughout this paper, the symbol C represents a positive constant, which may vary
across different instances. Let I(A) be the indicator function of the set A, 
x� be the integer
part of x, and a � b mean that a ≤ Cb.

2 Main result and proof
In this section, we give our main theorem as follows.

Theorem 2.1 Suppose that {Xi, 1 ≤ i ≤ n} is a sequence of identically distributed ANA
random variables with E |Xi|r < ∞ for some r > 1. Then we have

∣∣CVaRn,α(X) – CVaRα(X)
∣∣ = O (n–μ) a.s., (2.1)

where (i) if 1 < r ≤ 2, then 0 ≤ μ < 1 – 1
r ; (ii) if r > 2, then 0 ≤ μ < 1

2 .

Remark 2.2 Let μ > 0 in (2.1), then we know that θ̂n is the strong consistent estimator of
θ∗. And by (2.1), the strong consistency rate is n–μ with 0 < μ < 1 – 1/r. Specially select
appropriate parameters, and the convergence speed is close to n–1/2 in order.

Remark 2.3 Since ANA sequences include NA (in particular, independent) and ρ∗-mixing
sequences, Theorem 2.1 also apply for NA and ρ∗-mixing sequences. Furthermore, The-
orem 2.1 relaxes the constraint 1 < r ≤ 2 in Theorem 2.1 of Xing et al. [9] to r > 1, and
expands the scope of the sample from ϕ-mixing sequences to ANA sequences.

To prove the main results of the paper, the following lemma play a crucial role

Lemma 2.4 Suppose that {Xi, 1 ≤ i ≤ n} is a sequence of identically distributed ANA ran-
dom variables with E |Xi|r < ∞ for some r > 1. Then we have

1
n1–μ

n∑
i=1

[hα (Xi, x) – Ehα (Xi, x)] → 0 a.s., (2.2)

where (i) if 1 < r ≤ 2, then 0 ≤ μ < 1 – 1
r ; (ii) if r > 2, then 0 ≤ μ < 1

2 .

Proof (i) Since 0 < μ < 1 – 1/r for 1 < r ≤ 2, we have r(1 – μ) > 1, then μ/(r – 1) < 1 – μ.
Hence, there exist δ > 0 and s > 0 such that

s + μ

r – 1
< δ < 1 – μ. (2.3)

Set

h(1)
α (Xi, x) = –nδI(hα (Xi, x) < –nδ) + hα (Xi, x) I(|hα (Xi, x) | ≤ nδ) + nδI(hα (Xi, x) > nδ),

h(2)
α (Xi, x) = (hα (Xi, x) + nδ)I(hα (Xi, x) < –nδ) + (hα (Xi, x) – nδ)I(hα (Xi, x) > nδ),

and

H(1)
α (Xi, x) = h(1)

α (Xi, x) – Eh(1)
α (Xi, x) , H(2)

α (Xi, x) = h(2)
α (Xi, x) – Eh(2)

α (Xi, x)



Jin et al. Journal of Inequalities and Applications        (2024) 2024:118 Page 5 of 15

Without loss of generality, assume that Ehα (Xi, x) = 0. We can get

1
n1–μ

n∑
i=1

hα (Xi, x)

=
1

n1–μ

n∑
i=1

(hα (Xi, x) – Ehα (Xi, x))

=
1

n1–μ

n∑
i=1

(
h(1)

α (Xi, x) – Eh(1)
α (Xi, x)

)
+

1
n1–μ

n∑
i=1

(
h(2)

α (Xi, x) – Eh(2)
α (Xi, x)

)

=
1

n1–μ

n∑
i=1

H(1)
α (Xi, x) +

1
n1–μ

n∑
i=1

H(2)
α (Xi, x)

:= Sn1 + Sn2. (2.4)

From (2.4) it follows that to prove that (2.2) holds, it is sufficient to prove Sn1
a.s.−→ 0 and

Sn2
a.s.−→ 0 for x ∈ R to obtain the desired result, respectively.

First, we prove Sn1
a.s.−→ 0 for x ∈ R. By Cr inequality and Lemma A.3, we have for x ∈ R

and p > 2,

E
∣∣h(1)

α (Xi, x) – Eh(1)
α (Xi, x)

∣∣p

≤ 2p–1
(

E
∣∣h(1)

α (Xi, x)
∣∣p +

∣∣Eh(1)
α (Xi, x)

∣∣p
)

� E
∣∣h(1)

α (Xi, x)
∣∣p +

(
E

∣∣h(1)
α (Xi, x)

∣∣)p

� E
∣∣h(1)

α (Xi, x)
∣∣p

� E
∣∣–nδI(hα (Xi, x) < –nδ) + hα (Xi, x) I(|hα (Xi, x) | ≤ nδ) + nδI(hα (Xi, x) > nδ)

∣∣p

� nδ(p–r)E |hα (Xi, x)|r I
(|hα (Xi, x)| ≤ nδ

)
+ nδpP

(|hα (Xi, x)| > nδ
)

� nδ(p–r). (2.5)

Similarly, we can prove that

E
(
h(1)

α (Xi, x) – Eh(1)
α (Xi, x)

)2 � nδ(2–r). (2.6)

Thus, by Markov’s inequality Lemma A.1 and Lemma A.2, combined with (2.5) and (2.6),
it follows that for any ε > 0,

P (|Sn1| > ε) � n–(1–μ)pE

∣∣∣∣∣
n∑

i=1

H(1)
α (Xi, x)

∣∣∣∣∣
p

� n–(1–μ)p

{ n∑
i=1

E
∣∣(h(1)

α (Xi, x) – Eh(1)
α (Xi, x)

)∣∣p

+

( n∑
i=1

E
∣∣(h(1)

α (Xi, x) – Eh(1)
α (Xi, x)

)∣∣2
)p/2

⎫⎬
⎭
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� n–(1–μ)p {
nδ(p–r)+1 + np/2+δ(2–r)p/2}

= n–(1–μ–δ)p+1–rδ + n–[1–2μ–δ(2–r)]p/2+δ . (2.7)

Then, from 1 < r ≤ 2 and μ < 1 – 1
r we have 1 – 2μ – (1 – μ)(2 – r) > 0. Moreover, by

δ < 1 – μ, we can get 1 – μ – δ > 0 and 1 – 2μ – δ(2 – r) > 0. Note that 1 – δr < 1 – δ and
0 < δ < 1, we now choose p such that

(1 – μ – δ)p – 1 + δr > 1, [1 – 2μ – δ(2 – r)]p/2 – μ > 1. (2.8)

Which together with (2.7) and (2.8), implies that
∑

P (|Sn1| > ε) < ∞ for sufficiently large
p. It follows by Borel–Cantelli lemma that

Sn1
a.s.−→ 0. for x ∈ R. (2.9)

Next, we prove Sn2
a.s.−→ 0 for x ∈ R. For this purpose, set S(2)

n2 = 1
n1–μ

∑n
i=1 h(2)

α (Xi, x). Then,
Sn2 = S(2)

n2 – ES(2)
n2 .

Noting that μ – δ(r – 1) < –s < 0 and (2.6) implies μ – δ(r – 1) < 0. Hence, applying
Lemma A.3, we obtain for x ∈ R,

∣∣∣ES(2)
n2

∣∣∣

≤ 1
n1–μ

n∑
i=1

E
{|hα (Xi, x)| I

(|hα (Xi, x)| > nδ
)

+ nδI
(|hα (Xi, x)| > nδ

)}

� 1
n1–μ

{
nδ(1–r)

n∑
i=1

[
E |hα (Xi, x)|r I

(|hα (Xi, x)| > nr)] + nδ+1P
(|hα (Xi, x)| > nr)

}

� nμ–δ(r–1) → 0, n → ∞, (2.10)

which means that

ES(2)
n2 → 0. (2.11)

Moreover,

∣∣∣S(2)
n2

∣∣∣ ≤ 1
n1–μ

n∑
i=1

{|hα (Xi, x)| I
(|hα (Xi, x)| > nδ

)
+ nδI

(|hα (Xi, x)| > nδ
)}

� 1
n1–μ

n∑
i=1

|hα (Xi, x)| I
(|hα (Xi, x)| > nδ

)
+

1
n1–μ

n∑
i=1

nδI
(|hα (Xi, x)| > nδ

)

� 1
n1–μ

n∑
i=1

|hα (Xi, x)| I
(|hα (Xi, x)| > iδ

)
+

1
n1–μ

n∑
i=1

nδI
(|hα (Xi, x)| > iδ

)

� 1
n1–μ

n∑
i=1

ξi +
nδ

n1–μ

n∑
i=1

ηi. (2.12)

where ξi = |hα (Xi, x)| I
(|hα (Xi, x)| > iδ

)
, ηi = I

(|hα (Xi, x)| > iδ
)
. It follows from (2.12) that

to prove Sn2
a.s.−→ 0, it is only necessary to prove S(2)

n2
a.s.−→ 0. Hence, to obtain S(2)

n2
a.s.−→ 0, it is
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sufficient to show

n–(1–μ)
n∑

i=1

ξi
a.s.−→ 0, n–(1–μ–δ)

n∑
i=1

ηi
a.s.−→ 0.

Set

J (1)
n =

n∑
i=1

i–(1–μ)ξi, J (2)
n =

n∑
i=1

i–(1–μ–δ)ηi.

In what follows, we will prove J (1)
n and J (2)

n almost surely converges by subsequence method.
By (2.3), there exists s > 0 such that (s + μ)/(r – 1) < δ < 1 – μ, we have for all m ≥ n ≥ 1,

E
∣∣J (1)

n – J (1)
n

∣∣ ≤
m∑

i=n+1

i–(1–μ)Eξi

�
m∑

i=n+1

i–(1–μ)E |hα (Xi, x)| I
(|hα (Xi, x)| > iδ

)

�
m∑

i=n+1

iδ(1–r)+μ–1 �
∞∑

i=n+1

i–(1+s)

� n–s → 0, n → ∞. (2.13)

By (2.13), the random sequence {J (1)
n } is a Cauchy sequence in L1. Hence, there exists a

random variable J (1) such that E|J (1)| < ∞ and E
∣∣∣J (1)

n – J (1)
∣∣∣ → 0. Then, for any ε > 0,

P
(∣∣∣J (1)

2k – J (1)
∣∣∣ > ε

)
≤ E

∣∣∣J (1)
2k – J (1)

n

∣∣∣ + E
∣∣J (1)

n – J (1)
∣∣

≤ lim sup
n→∞

∣∣∣EJ (1)
2k – J (1)

n

∣∣∣

�
∞∑

i=2k +1

i–(1+s) � 2–ks. (2.14)

which implies that
∑∞

k=1 P
(∣∣∣J (1)

2k – J (1)
∣∣∣ > ε

)
< ∞, that is to say that J (1)

2k

a.s.−→ J (1). Also,

P
(

max
2k–1<n≤2k

∣∣∣J (1)
n – J (1)

2k–1

∣∣∣ > ε

)
�

2k∑
i=2k–1+1

i–(1+s) � 2–ks, (2.15)

which means that
∞∑

k=1
P

(
max

2k–1<n≤2k–1

∣∣∣J (1)
n – J (1)

2k

∣∣∣ > ε

)
< ∞, then max

2k–1<n≤2k

∣∣∣J (1)
n – J (1)

2k

∣∣∣ a.s.−→ 0 as

k → ∞. So we have

J (1)
n

a.s.−→ J (1). (2.16)

By (2.16) and Kronecker lemma,

1
n(1–μ)

n∑
i=1

ξi
a.s.−→ 0 (2.17)

is obtained.
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Similar to the proof of J (1)
n

a.s.−→ J (1). For m′ ≥ n ≥ 1, which together with Lemma A.3
yields that

E
∣∣∣J (2)

m′ – J (2)
n

∣∣∣ ≤
m′∑

i=n+1

i–(1–μ–δ)Eηi

�
m′∑

i=n+1

i–(1–μ–δ)P
(|hα (Xi, x)| > iδ

)

�
m′∑

i=n+1

iδ(1–r)+μ–1 �
∞∑

i=n+1

i–(1+s)

� n–s → 0, n → ∞. (2.18)

By (2.18), the random sequence {J (2)
n } is a Cauchy sequence in L1. Hence, there exists a

random variable J (2) such that E|J (2)| < ∞ and E
∣∣∣J (2)

n – J (2)
∣∣∣ → 0. Similarly to the derivation

of (2.17)–(2.19), it is obtained that

1
n(1–μ–δ)

n∑
i=1

ηi
a.s.−→ 0. (2.19)

From S(2)
n2

a.s.−→ 0, it implies that Sn2
a.s.−→ 0 for x ∈ R. Therefore, by combining equations

(2.6) and (2.19), for 1 < r ≤ 2, consider 0 ≤ μ < 1 – 1/r. It is demonstrated that equation
(2.1) holds true.

(ii) When r > 2, it follows from 0 ≤ μ < 1/2 that there exists δ > 0 and s > 0 such that
(2s + μ)/(r – 1) < δ < 1 – μ. Similar to the proof of 1 < r ≤ 2, the equation (2.1) still holds.

The proof is completed. �

In the following, we will give the proofs of theorems.

Proof of Theorem 2.1 It is easy to observe that

nμ
∣∣CVaRn,α(X) – CVaRα(X)

∣∣
= nμ

∣∣∣(θ̂n – θ∗
)

I
(
θ̂n – θ∗ ≥ 0

)
+

(
θ̂n – θ∗

)
I
(
θ̂n – θ∗ < 0

)∣∣∣
≤ nμ

∣∣∣(θ̂n – θ∗
)

I
(
θ̂n – θ∗ ≥ 0

)∣∣∣ + nμ
∣∣∣(θ̂n – θ∗

)
I
(
θ̂n – θ∗ < 0

)∣∣∣
:= In1 + In2. (2.20)

By Lemma 2.4, it follows that for any ε > 0, there exists N > 0 such that

nμ

∣∣∣∣∣
1
n

n∑
i=1

hα (Xi, x) – Ehα (X1, x)

∣∣∣∣∣ ≤ ε

2
a.s. , (2.21)
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for n > N and x ∈ R. Hence, we have

In1 = nμ

∣∣∣∣∣inf
x∈R

1
n

n∑
i=1

hα (Xi, x) – inf
x∈R

Ehα (X1, x)

∣∣∣∣∣ I
(
θ̂n – θ∗ ≥ 0

)

= nμ

∣∣∣∣∣inf
x∈R

{
1
n

n∑
i=1

hα (Xi, x) – inf
x∈R

Ehα (X1, x)

}∣∣∣∣∣ I
(
θ̂n – θ∗ ≥ 0

)

= nμ inf
x∈R

∣∣∣∣∣
1
n

n∑
i=1

hα (Xi, x) – inf
x∈R

Ehα (X1, x)

∣∣∣∣∣ I
(
θ̂n – θ∗ ≥ 0

)

≤ nμ inf
x∈R

{∣∣∣∣∣
1
n

n∑
i=1

hα (Xi, x) – Ehα (X1, x)

∣∣∣∣∣ +
∣∣∣∣Ehα (X1, x) – inf

x∈R
Ehα (X1, x)

∣∣∣∣
}

≤ inf
x∈R

{
ε

2
+ nμ

∣∣∣∣Ehα (X1, x) – inf
x∈R

Ehα (X1, x)

∣∣∣∣
}

=
ε

2
+ nμ inf

x∈R

{∣∣∣∣Ehα (X1, x) – inf
x∈R

Ehα (X1, x)

∣∣∣∣
}

=
ε

2
a.s., (2.22)

as n > N . Similarly, we obtain

In2 = nμ

∣∣∣∣∣inf
x∈R

1
n

n∑
i=1

hα (Xi, x) – inf
x∈R

Ehα (X1, x)

∣∣∣∣∣ I
(
θ̂n – θ∗ < 0

)

= nμ

∣∣∣∣∣inf
x∈R

{
Ehα (X1, x) – inf

x∈R

1
n

n∑
i=1

hα (Xi, x)

}∣∣∣∣∣ I
(
θ̂n – θ∗ < 0

)

= nμ inf
x∈R

∣∣∣∣∣Ehα (X1, x) – inf
x∈R

1
n

n∑
i=1

hα (Xi, x)

∣∣∣∣∣ I
(
θ̂n – θ∗ < 0

)

= nμ inf
x∈R

{∣∣∣∣∣Ehα (X1, x) –
1
n

n∑
i=1

hα (Xi, x)

∣∣∣∣∣ +

∣∣∣∣∣
1
n

n∑
i=1

hα (Xi, x) – inf
x∈R

1
n

n∑
i=1

hα (Xi, x)

∣∣∣∣∣
}

≤ inf
x∈R

{
ε

2
+ nμ

∣∣∣∣∣
1
n

n∑
i=1

hα (Xi, x) – inf
x∈R

1
n

n∑
i=1

hα (Xi, x)

∣∣∣∣∣
}

=
ε

2
+ nμ inf

x∈R

{∣∣∣∣∣
1
n

n∑
i=1

hα (Xi, x) – inf
x∈R

1
n

n∑
i=1

hα (Xi, x)

∣∣∣∣∣
}

=
ε

2
a.s., (2.23)

for n > N . A combination of (2.20)–(2.23) yields that for any ε > 0, there exists N > 0 such
that

nμ
∣∣CVaRn,α(X) – CVaRα(X)

∣∣ = nμ
∣∣∣θ̂n – θ∗

∣∣∣ ≤ ε a.s., (2.24)

for n > N and x ∈ R, which implies that Theorem 2.1 holds. The proof is complete. �

3 Numerical simulation
In this section, we will carry out a simulation to study the numerical performance of the
strong consistency for conditional value-at-risk estimators based on ANA sample. The
simulations are conducted for the following two cases.
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Table 1 The estimated values of CVaR data under MA(1) process

α CVaR Estimated values of CVaR

n = 25 n = 50 n = 100 n = 200 n = 300 n = 500

0.01 3.077524 2.215625 2.362955 2.855645 2.870715 2.943208 3.062084
0.02 2.795422 2.099229 2.304749 2.512123 2.583326 2.766623 2.785824
0.03 2.618936 2.263051 2.347108 2.430953 2.507920 2.555459 2.605924
0.04 2.487623 2.196140 2.317410 2.352794 2.403516 2.447980 2.479876
0.05 2.381816 2.005741 2.119395 2.219372 2.276383 2.346065 2.370149
0.06 2.292523 2.004113 2.059640 2.102880 2.150995 2.230583 2.290441
0.07 2.214846 2.061753 2.089570 2.108897 2.168029 2.190359 2.210211
0.08 2.145812 2.011019 2.072660 2.085980 2.126311 2.166322 2.191727
0.09 2.083473 1.988638 1.998568 2.005189 2.038770 2.060024 2.080606
0.1 2.026480 1.925144 1.944972 1.962678 1.977837 2.008739 2.024052

Case I MA(1) process.
The following MA(1) process is considered:

Xt = εt – 0.5εt–1, (3.1)

where {εt , } is the white noise sequence, with the properties:

E(Xt) = 0, D(Xt) = 1.25, Cov(Xt , Xt–1) = –0.5.

For k ≥ 1, Cov(Xt , Xt–k) = –0.5. Therefore, this MA(1) process forms a ρ∗-mixing se-
quence, consequently qualifying as an ANA sequence. Utilizing this MA(1) process to gen-
erate random numbers, we consider probability levels α = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,
0.07, 0.08, 0.09, 0.1. with sample sizes n = 25, 50, 100, 200, 300, 500. Initially, we compute
the true value of the Conditional Value at Risk (CVaR) based on the generated ANA sam-
ples. Subsequently, we estimate the CVaR values using different probability levels α and
sample sizes n as specified above. Finally, we derive the average of 1000 simulation repe-
titions to obtain the true and estimated CVaR values, resulting in the CVaR dataset (refer
to Table 1).

Based on the aforementioned MA(1) model, simulations were conducted 1000 times for
sample sizes n = 25, 50, 100, 200, 300, 500. The average of these simulations was taken to
represent the true and estimated values of CVaR, resulting in the curves for the true and
estimated values (refer to Fig. 1). In the graph, the estimated values of CVaR are depicted
by the blue dashed line, while the true values of CVaR are represented by the red solid line.

In the MA(1) model, based on the real and estimated values in Table 1 and the curve in
Fig. 1, it can be observed that as the sample size n increases, the estimated values of VaR
and CVaR also approach the true values more closely.

Case II ARMA(1,1) process.
The following ARMA(1,1) process is selected

Xt = 0.3Xt–1 + εt – 0.7εt–1 (3.2)

where {εt , } is the white noise sequence, noting that

E(Xt) = 0, D(Xt) = 1.175824, Cov(Xt , Xt–1) = –0.6196608



Jin et al. Journal of Inequalities and Applications        (2024) 2024:118 Page 11 of 15

Figure 1 CVaR of true value curve and estimated value curve under AR(1) model

Table 2 The estimated values of CVaR data under ARMA(1,1) process

α CVaR Estimated values of CVaR

n = 25 n = 50 n = 100 n = 200 n = 300 n = 500

0.01 2.890036 2.170455 2.474507 2.617419 2.772543 2.839317 2.865084
0.02 2.625126 2.150338 2.413390 2.509375 2.556982 2.594755 2.624383
0.03 2.459386 2.134721 2.294406 2.391566 2.404295 2.417741 2.435263
0.04 2.336072 2.100238 2.196019 2.210806 2.292701 2.308157 2.325940
0.05 2.236711 2.075447 2.139127 2.178833 2.183212 2.204913 2.215631
0.06 2.152858 1.985531 2.082286 2.123782 2.134671 2.147312 2.149778
0.07 2.079914 1.951368 1.990108 2.053718 2.096666 2.049605 2.063238
0.08 2.015085 1.907529 1.960907 1.981756 1.995446 2.004159 2.008428
0.09 1.956544 1.855084 1.873512 1.917522 1.939128 1.948190 1.951798
0.1 1.903023 1.801423 1.836655 1.860401 1.866697 1.878758 1.898029

when k ≥ 1, Cov(Xt , Xt–k) = 0.3Cov(Xt , Xt–k+1). Thus this ARMA(1,1) process is an NA
sequence, and it follows that it is also an ANA sequence. Other settings are the same as
in Case I. Similar to the MA(1) model, simulations were conducted 1000 times for sample
sizes n = 25, 50, 100, 200, 300, 500. The average of these simulations was taken as the true
and estimated values of CVaR. The estimated values of CVaR under the ARMA(1,1) model
are presented in Table 2. Furthermore, we obtained the corresponding true value curve
and estimated value curve for CVaR under the ARMA(1,1) model (refer to Fig. 2). In the
graph, the estimated values of CVaR are depicted by the blue dashed line, while the true
values of CVaR are represented by the red solid line.

In the ARMA(1,1) model, based on the real and estimated values in Table 2 and the
curve in Fig. 2, furthermore, as the sample size n increases, the estimated values of CVaR
also approach the true values more closely.
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Figure 2 CVaR of true value curve and estimated value curve under ARMA(1,1) model

4 Real data exercises
In this section, we apply the optimised CVaR estimation method discussed in this article
to analyse a dataset consisting of the closing prices of Hongta Securities and Central China
Securities on workdays from May 6, 2021, to May 5, 2023. To account for the absence of
transactions on certain trading days, these data points have been excluded, resulting in a
sample size of n = 481. Each time series comprises n = 481 data points obtained from the
CSMAR database. Previous studies have utilized multivariate regression models or time-
series models to analyse similar stock data. Refer to Wang et al. [6], Luo [7], and others for
further details.

By taking the logarithm of the closing price sequence of the stocks, we consider the yield
variable Y and the loss variable X, where Y = –X. Consequently, CVaR is computed using
the yield variable. In this context, the logarithmic yield is adopted as the yield variable.
The formula for calculating the logarithmic return of stocks is given by:

Rt = ln

(
Pt

Pt–1

)

Here, Pt and Pt–1 denote the closing prices of the stock on days t – 1 and t, respectively.
Subsequently, we depict the scatter plot of the time series of log-returns in Fig. 3. Follow-

ing this, the autocorrelation function (ACF) and partial autocorrelation function (PACF)
of the two samples are illustrated in Figs. 4 and 5, respectively. The ACF and PACF results
depicted in Figs. 4 and 5 indicate that both time series sets exhibit a stationary process.
We then proceed to conduct the Augmented Dickey-Fuller (ADF) test, where the null hy-
pothesis assumes non-stationarity in the time series. The α value obtained less than 0.05,
signifying that the two time series of log-returns exhibit weak stationarity. By consider-
ing the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC),
we determine that both sequences conform to ARMA (1,1) models. Consequently, these
two sets of log-return time series data can be regarded as ANA random samples.
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Figure 3 Time series of Hongta Securities (left) and Central China Securities (right) log-returns

Figure 4 ACF of Hongta Securities (left) and Central China Securities (right) log-returns

Figure 5 PACF of Hongta Securities (left) and Central China Securities (right) log-returns

Figure 6 CVaR of Hongta Securities (left) and Central China Securities (right) log-returns

Finally, employ optimisation techniques to estimate the Conditional Value at Risk
(CVaR) of log-returns. Illustrated in Fig. 6, at equivalent probability levels, the CVaR of
Hongta Securities is observed to be lower than that of Central China Securities. This sug-
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gests that the risk associated with Hongta Securities is comparatively lower than that of
Central China Securities.

Appendix
To prove our main results, the following lemmas are indispensable. The first one can be
found in Zhang and Wang [15].

Lemma A.1 Let {Xn; n ≥ 1} be a sequence of ANA random variables. If {gn(·); n ≥ 1} are
all increasing or all decreasing functions, then {gn(Xn); n ≥ 1} is still a sequence of ANA
random variables.

The next one is the Rosenthal type inequality for ANA random variables, which was
established by Zhang [16].

Lemma A.2 Suppose that {Xk ; k ∈ Nd} is a ANA random variables fields with EXk = 0 and
‖Xk‖p < ∞ for some p ≥ 2 and all k. Then there exists a positive constant Cp depending only
on p and ρ–(·) such that for any finite set S ⊂ Nd

E

∣∣∣∣∣
∑
k∈S

Xk

∣∣∣∣∣
p

≤ Cp

⎧⎨
⎩

∑
k∈S

E|Xk|p +

(∑
k∈S

E|Xk|2
)p/2

⎫⎬
⎭ .

When d = 1, the Rosenthal-type inequality remains true for the maximal partial sums, if
some conditions on ρ–(·) are added.

The third lemma is derived from Xing et al. [9].

Lemma A.3 If E|X|r < ∞ for r > 0, then there exists a positive constant C such that for
x ∈ R,

E |hα(X, x) – Ehα(X, x)|r ≤ CE|X|r, (A.1)

where hα(X, x) = x + 1
1–α

[X – x]+.
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