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Abstract

This article examines the strong consistency of the conditional value-at-risk (CVaR)
estimate for asymptotic negatively associated (ANA or� …, for short) random samples
under mild conditions. It is demonstrated that the optimal rate can achieve nearly
O(n…1/2) under certain appropriate conditions. Furthermore, we present numerical
simulations and a real data example to corroborate our theoretical results based on
“nite samples.
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1 Introduction
The introduction of the value-at-risk (VaR) model has revolutionised the investment,

management and governance landscape. In the investment arena, VaR enables individuals

to assess the risk associated with investment assets, enabling them to formulate invest-

ment strategies based on risk level and risk tolerance, thereby reducing investment un-

certainty. At the operational level, VaR allows for the continuous monitoring of potential

”uctuations in order to avoid signi“cant losses due to adverse changes in certain factors. In

management, the VaR model plays a key role in the internal management of institutions,

including the development of investment strategies, the assessment and supervision of

traders and the prudent allocation of resources, while also serving as a valuable tool for

market regulators. Market regulators are tasked with preventing adverse e�ects on the

overall market and economic system arising from excessive market risk accumulation and

concentrated risk release, with the VaR model serving as the primary tool for quantifying

market risk accumulation. This innovative VaR technology and risk management frame-

work underpinned by the VaR model will improve the operations of “nancial institutions

in China, promote more rational investment behaviour among investors and provide reg-

ulators with an e�ective mechanism for market supervision.
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AssumeX to be a random cost variable with cumulative distribution functionF(u) =
P(X ≤ u). Let F…1(v) be its right continuous inverse, de“ned asF…1(v) = inf{u : F(u) > v}.
For a “xed � , the value-at-risk VaR� is de“ned as the� -quantile, represented as

VaR� (X) = F…1(� ). (1.1)

In order for “nancial institutions to quantify and mitigate “nancial risk, as required by
the Basel III framework, VaR is commonly used. Despite its widespread adoption, VaR
is considered insu�cient as a comprehensive risk measure due to inherent mathemati-
cal limitations such as non-subadditivity and non-convexity. Additionally, optimising VaR
based on scenarios presents challenges.

To address the limitations of VaR, some authors advocate the adoption of CVaR as a
more comprehensive risk metric. Regarded as a coherent alternative, CVaR is gaining trac-
tion in the realm of “nancial risk management. For risk measurement, CVaR is proved to
have better properties than VaR, where CVaR� can be de“ned by

CVaR� (X) = E (X|X ≥ VaR� (X)) . (1.2)

i.e., CVaR� can be thought of as the conditional expectation of losses that exceed the
CVaR� (X) level. P”ug [1] put forward that the CVaR� (X) can be viewed as the solution of
an optimisation problem, namely,

CVaR� (X) = inf
x∈R

{
x +

1
1 …�

E[X …x]+
}

:= � ∗, (1.3)

where[a]+ := max{0,a} denotes the positive part ofa ∈ R.
The CVaR model, a prevalent “nancial risk metric, enjoys broad support and acceptance

within the international “nancial community. Its optimized version is recognised as a re-
“ned certainty equivalent risk measure, garnering increasing attention from practitioners
and academics alike. Scholars have identi“ed several key properties of CVaR as a coherent
risk measure, including transition-equivariance, convexity, and positive homogeneity. For
further insights, references such as P”ug [1], Artzner et al. [2], Embrechts et al. [3], Bodnar
et al. [4], Pavlikov and Uryasev [5], Wang et al. [6], Luo [7], among others, o�er detailed
discussions on the subject.

In equation (1.3), considerh� (X,x) = x + 1
1…� [X …x]+ and de“ne � ∗ = CVaR� (X). There-

fore, CVaR� (X) = infx∈R Eh� (X,x). If X1, . . . ,Xn representn realisations of the random vari-
ableX, then � ∗ can be estimated as

CVaRn,� (X) = inf
x∈R

n…1
n∑

i=1

h� (Xi,x) := �̂ n. (1.4)

Trindade et al. [8] examined the consistency of̂� n for independently and identically dis-
tributed samples as well as for stationary processes. However, time series data in “elds like
“nance and economics typically exhibit interdependencies, making sample dependence
inherent. Recently, Xing et al. [9] demonstrated the strong consistency of conditional
value-at-risk estimation for� -mixing samples under mild assumptions. Luo and Ou [10]
delved into exponential inequalities, the strong laws of large numbers, and convergence
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rates for CVaR estimators in� -mixing sequences. Ding et al. [11] explored Berry-Esseen

type bounds for conditional value-at-risk estimators in� -mixing sequences, among other

contributions in this area.

Next, we will review several di�erent dependent structures. The NA random variable

was proposed by Joag Dev and Proschan [12], which has a wide range of applications in

multivariate statistical analysis and system reliability. Another important dependent struc-

ture is the� ∗-mixing random variable proposed by Bradley [13]. Because� ∗-mixing ran-

dom variables contain certain moving average processes and speci“c categories of Markov

chains, their importance extends to di�erent “elds such as economics, “nance, and other

scienti“c disciplines. Zhang and Wang [14] introduced the concept of asymptotically neg-

atively associated random variables based on NA sequences and� ∗-mixing sequences. As

is well known, ANA random variables encompass a mixture of� ∗-mixing and NA ran-

dom variables as special instances, as detailed in Zhang [15] examples 2.2 and 2.3. The

de“nition of ANA random variable is as follows.

Definition 1.1 A sequence{Xn,n ≥ 1} of random variables is said to be asymptotically

negatively associated (ANA or� …, for short) if

� …(s) = sup{� …(S,T) : S,T ⊂N,dist(S,T) ≥ s} → 0, as s → ∞, (1.5)

where

� …(S,T) = 0∨
{

Cov
(
f1(Xi, i ∈ S), f2(Xj, j ∈ T)

)
√

Var(f1(Xi, i ∈ S)) · Var(f2(Xj, j ∈ T))
: f1, f2 ∈ C

}
, (1.6)

andC is the set of nondecreasing functions.

Since the inception of ANA random variables by Zhang and Wang [14], a plethora of

noteworthy theoretical “ndings has emerged. For instance, Zhang and Wang [14] explored

moment inequalities and complete convergence for partial sums of ANA random “elds,

while Zhang [16] derived central limit theorems. Yuan and Wu [17] delved into the limiting

behaviour of the maximum of partial sums under residual Cesaro alpha-integrability as-

sumptions. Tang et al. [18] established a Berry…Esseen type bound for wavelet estimators

in a nonparametric regression model with ANA errors. Wu et al. [19] established a general

result on complete moment convergence and the Marcinkiewicz…Zygmund-type strong

law of large numbers for weighted sums of masymptotic negatively associated random

variables. Additionally, Ko Mi-Hwa [20] elucidated the limiting behaviour of the maxi-

mum of partial sums in Hilbert space, among other notable contributions in this domain.

Building upon the insights from the aforementioned article, this paper delves into ex-

ploring the strong consistency of estimate CVaRn,� (X) when the sample follows an the

ANA sequence, and provide its convergence rate. Furthermore, the theoretical “ndings

derived from a restricted sample are validated through numerical simulations and illus-

trative examples.

The paper is structured as follows: Main results and their proofs are detailed in Sect.2.

Section3 includes numerical simulations, while Sect.4 presents a real data example. Fi-

nally, the Appendix contains the necessary lemmas.
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Throughout this paper, the symbolC represents a positive constant, which may vary

across di�erent instances. LetI(A) be the indicator function of the setA, 
x� be the integer

part of x, anda � b mean thata ≤ Cb.

2 Main result and proof
In this section, we give our main theorem as follows.

Theorem 2.1 Suppose that {Xi, 1 ≤ i ≤ n} is a sequence of identically distributed ANA
random variables with E |Xi|r < ∞ for some r > 1.Then we have

∣∣CVaRn,� (X) … CVaR� (X)
∣∣ = O (n…µ ) a.s., (2.1)

where (i) if 1 < r ≤ 2, then 0 ≤ µ < 1 …1
r ; (ii) if r > 2,then 0 ≤ µ < 1

2.

Remark 2.2 Letµ > 0 in (2.1), then we know that�̂ n is the strong consistent estimator of

� ∗. And by (2.1), the strong consistency rate isn…µ with 0 < µ < 1 … 1/r. Specially select

appropriate parameters, and the convergence speed is close ton…1/2in order.

Remark 2.3 Since ANA sequences include NA (in particular, independent) and� ∗-mixing

sequences, Theorem2.1also apply for NA and� ∗-mixing sequences. Furthermore, The-

orem 2.1 relaxes the constraint 1 <r ≤ 2 in Theorem 2.1 of Xing et al. [9] to r > 1, and

expands the scope of the sample from� -mixing sequences to ANA sequences.

To prove the main results of the paper, the following lemma play a crucial role

Lemma 2.4 Suppose that {Xi, 1≤ i ≤ n} is a sequence of identically distributed ANA ran-
dom variables with E |Xi|r < ∞ for some r > 1.Then we have

1
n1…µ

n∑
i=1

[h� (Xi,x) …Eh� (Xi,x)] → 0 a.s., (2.2)

where (i) if 1 < r ≤ 2, then 0 ≤ µ < 1 …1
r ; (ii) if r > 2,then 0 ≤ µ < 1

2.

Proof (i) Since 0 <µ < 1 … 1/r for 1 < r ≤ 2, we haver(1 …µ ) > 1, thenµ /(r … 1) < 1 …µ .

Hence, there exist� > 0 ands > 0 such that

s + µ
r … 1

< � < 1 …µ. (2.3)

Set

h(1)
� (Xi,x) = …n� I(h� (Xi,x) < …n� ) + h� (Xi,x) I(|h� (Xi,x) | ≤ n� ) + n� I(h� (Xi,x) > n� ),

h(2)
� (Xi,x) = (h� (Xi,x) + n� )I(h� (Xi,x) < …n� ) + (h� (Xi,x) …n� )I(h� (Xi,x) > n� ),

and

H(1)
� (Xi,x) = h(1)

� (Xi,x) …Eh(1)
� (Xi,x) , H(2)

� (Xi,x) = h(2)
� (Xi,x) …Eh(2)

� (Xi,x)
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Without loss of generality, assume thatEh� (Xi,x) = 0. We can get

1
n1…µ

n∑
i=1

h� (Xi,x)

=
1

n1…µ

n∑
i=1

(h� (Xi,x) …Eh� (Xi,x))

=
1

n1…µ

n∑
i=1

(
h(1)

� (Xi,x) …Eh(1)
� (Xi,x)

)
+

1
n1…µ

n∑
i=1

(
h(2)

� (Xi,x) …Eh(2)
� (Xi,x)

)

=
1

n1…µ

n∑
i=1

H(1)
� (Xi,x) +

1
n1…µ

n∑
i=1

H(2)
� (Xi,x)

:= Sn1 + Sn2. (2.4)

From (2.4) it follows that to prove that (2.2) holds, it is su�cient to prove Sn1
a.s.−→ 0 and

Sn2
a.s.−→ 0 for x ∈ R to obtain the desired result, respectively.

First, we proveSn1
a.s.−→ 0 for x ∈ R. ByCr inequality and LemmaA.3, we have forx ∈ R

andp > 2,

E
∣∣h(1)

� (Xi,x) …Eh(1)
� (Xi,x)

∣∣p

≤ 2p…1
(

E
∣∣h(1)

� (Xi,x)
∣∣p

+
∣∣Eh(1)

� (Xi,x)
∣∣p

)

� E
∣∣h(1)

� (Xi,x)
∣∣p

+
(
E

∣∣h(1)
� (Xi,x)

∣∣)p

� E
∣∣h(1)

� (Xi,x)
∣∣p

� E
∣∣…n� I(h� (Xi,x) < …n� ) + h� (Xi,x) I(|h� (Xi,x) | ≤ n� ) + n� I(h� (Xi,x) > n� )

∣∣p

� n� (p…r)E |h� (Xi,x)|r I
(|h� (Xi,x)| ≤ n� ) + n� pP

(|h� (Xi,x)| > n� )
� n� (p…r). (2.5)

Similarly, we can prove that

E
(
h(1)

� (Xi,x) …Eh(1)
� (Xi,x)

)2 � n� (2…r). (2.6)

Thus, by Markov•s inequality LemmaA.1 and LemmaA.2, combined with (2.5) and (2.6),

it follows that for any � > 0,

P (|Sn1| > � ) � n…(1…µ )pE

∣∣∣∣∣
n∑

i=1

H(1)
� (Xi,x)

∣∣∣∣∣
p

� n…(1…µ )p

{ n∑
i=1

E
∣∣(h(1)

� (Xi,x) …Eh(1)
� (Xi,x)

)∣∣p

+

( n∑
i=1

E
∣∣(h(1)

� (Xi,x) …Eh(1)
� (Xi,x)

)∣∣2
)p/2

⎫⎬
⎭
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� n…(1…µ )p {
n� (p…r)+1 + np/2+� (2…r)p/2}

= n…(1…µ…� )p+1…r� + n…[1…2µ…� (2…r)]p/2+� . (2.7)

Then, from 1 < r ≤ 2 and µ < 1 …1
r we have 1 … 2µ …(1 …µ )(2 …r) > 0. Moreover, by

� < 1 …µ , we can get 1 …µ …� > 0 and 1 … 2µ …� (2 …r) > 0. Note that 1 …� r < 1 …� and
0 <� < 1, we now choosep such that

(1 …µ …� )p … 1 +� r > 1, [1 … 2µ …� (2 …r)]p/2 …µ > 1. (2.8)

Which together with (2.7) and (2.8), implies that
∑

P (|Sn1| > � ) < ∞ for su�ciently large
p. It follows by Borel…Cantelli lemma that

Sn1
a.s.−→ 0. for x ∈ R. (2.9)

Next, we proveSn2
a.s.−→ 0 for x ∈ R. For this purpose, setS(2)

n2 = 1
n1…µ

∑n
i=1 h(2)

� (Xi,x). Then,
Sn2 = S(2)

n2 …ES(2)
n2 .

Noting that µ …� (r … 1) < …s < 0 and (2.6) implies µ …� (r … 1) < 0. Hence, applying
LemmaA.3, we obtain forx ∈ R,

∣∣∣ES(2)
n2

∣∣∣

≤ 1
n1…µ

n∑
i=1

E
{|h� (Xi,x)| I

(|h� (Xi,x)| > n� ) + n� I
(|h� (Xi,x)| > n� )}

� 1
n1…µ

{
n� (1…r)

n∑
i=1

[
E |h� (Xi,x)|r I

(|h� (Xi,x)| > nr)] + n� +1P
(|h� (Xi,x)| > nr)

}

� nµ…� (r…1) → 0, n → ∞, (2.10)

which means that

ES(2)
n2 → 0. (2.11)

Moreover,

∣∣∣S(2)
n2

∣∣∣ ≤ 1
n1…µ

n∑
i=1

{|h� (Xi,x)| I
(|h� (Xi,x)| > n� ) + n� I

(|h� (Xi,x)| > n� )}

� 1
n1…µ

n∑
i=1

|h� (Xi,x)| I
(|h� (Xi,x)| > n� ) +

1
n1…µ

n∑
i=1

n� I
(|h� (Xi,x)| > n� )

� 1
n1…µ

n∑
i=1

|h� (Xi,x)| I
(|h� (Xi,x)| > i�

)
+

1
n1…µ

n∑
i=1

n� I
(|h� (Xi,x)| > i�

)

� 1
n1…µ

n∑
i=1

	 i +
n�

n1…µ

n∑
i=1


 i. (2.12)

where	 i = |h� (Xi,x)| I
(|h� (Xi,x)| > i�

)
, 
 i = I

(|h� (Xi,x)| > i�
)
. It follows from (2.12) that

to proveSn2
a.s.−→ 0, it is only necessary to proveS(2)

n2

a.s.−→ 0. Hence, to obtainS(2)
n2

a.s.−→ 0, it is
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su�cient to show

n…(1…µ )
n∑

i=1

	 i
a.s.−→ 0, n…(1…µ…� )

n∑
i=1


 i
a.s.−→ 0.

Set

J (1)
n =

n∑
i=1

i…(1…µ )	 i, J (2)
n =

n∑
i=1

i…(1…µ…� )
 i.

In what follows, we will proveJ (1)
n andJ (2)

n almost surely converges by subsequence method.
By (2.3), there existss > 0 such that(s + µ )/(r … 1) < � < 1 …µ , we have for allm ≥ n ≥ 1,

E
∣∣J (1)

n …J (1)
n

∣∣ ≤
m∑

i=n+1

i…(1…µ )E	 i

�
m∑

i=n+1

i…(1…µ )E |h� (Xi,x)| I
(|h� (Xi,x)| > i�

)

�
m∑

i=n+1

i� (1…r)+µ…1�
∞∑

i=n+1

i…(1+s)

� n…s → 0,n → ∞. (2.13)

By (2.13), the random sequence{J (1)
n } is a Cauchy sequence inL1. Hence, there exists a

random variableJ (1) such thatE|J (1)| < ∞ and E
∣∣∣J (1)

n …J (1)
∣∣∣ → 0. Then, for any� > 0,

P
(∣∣∣J (1)

2k …J (1)
∣∣∣ > �

)
≤ E

∣∣∣J (1)
2k …J (1)

n

∣∣∣ + E
∣∣J (1)

n …J (1)
∣∣

≤ lim sup
n→∞

∣∣∣EJ (1)
2k …J (1)

n

∣∣∣

�
∞∑

i=2k+1

i…(1+s) � 2…ks. (2.14)

which implies that
∑∞

k=1 P
(∣∣∣J (1)

2k …J (1)
∣∣∣ > �

)
< ∞, that is to say thatJ (1)

2k

a.s.−→ J (1). Also,

P
(

max
2k…1<n≤2k

∣∣∣J (1)
n …J (1)

2k…1

∣∣∣ > �
)

�
2k∑

i=2k…1+1

i…(1+s) � 2…ks, (2.15)

which means that
∞∑

k=1
P

(
max

2k…1<n≤2k…1

∣∣∣J (1)
n …J (1)

2k

∣∣∣ > �
)

< ∞, then max
2k…1<n≤2k

∣∣∣J (1)
n …J (1)

2k

∣∣∣ a.s.−→ 0 as

k → ∞. So we have

J (1)
n

a.s.−→ J (1). (2.16)

By (2.16) and Kronecker lemma,

1
n(1…µ )

n∑
i=1

	 i
a.s.−→ 0 (2.17)

is obtained.
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Similar to the proof of J (1)
n

a.s.−→ J (1). For m′ ≥ n ≥ 1, which together with LemmaA.3

yields that

E
∣∣∣J (2)

m′ …J (2)
n

∣∣∣ ≤
m′∑

i=n+1

i…(1…µ…� )E
 i

�
m′∑

i=n+1

i…(1…µ…� )P
(|h� (Xi,x)| > i�

)

�
m′∑

i=n+1

i� (1…r)+µ…1�
∞∑

i=n+1

i…(1+s)

� n…s → 0, n → ∞. (2.18)

By (2.18), the random sequence{J (2)
n } is a Cauchy sequence inL1. Hence, there exists a

random variableJ (2) such thatE|J (2)| < ∞ andE
∣∣∣J (2)

n …J (2)
∣∣∣ → 0. Similarly to the derivation

of (2.17)…(2.19), it is obtained that

1
n(1…µ…� )

n∑
i=1


 i
a.s.−→ 0. (2.19)

From S(2)
n2

a.s.−→ 0, it implies that Sn2
a.s.−→ 0 for x ∈ R. Therefore, by combining equations

(2.6) and (2.19), for 1 < r ≤ 2, consider 0≤ µ < 1 … 1/r. It is demonstrated that equation

(2.1) holds true.

(ii) When r > 2, it follows from 0≤ µ < 1/2 that there exists� > 0 ands > 0 such that

(2s + µ )/(r … 1) < � < 1 …µ . Similar to the proof of 1 <r ≤ 2, the equation (2.1) still holds.

The proof is completed. �

In the following, we will give the proofs of theorems.

Proof of Theorem 2.1 It is easy to observe that

nµ
∣∣CVaRn,� (X) … CVaR� (X)

∣∣
= nµ

∣∣∣(�̂ n …� ∗
)

I
(
�̂ n …� ∗ ≥ 0

)
+

(
�̂ n …� ∗

)
I
(
�̂ n …� ∗ < 0

)∣∣∣
≤ nµ

∣∣∣(�̂ n …� ∗
)

I
(
�̂ n …� ∗ ≥ 0

)∣∣∣ + nµ
∣∣∣(�̂ n …� ∗

)
I
(
�̂ n …� ∗ < 0

)∣∣∣
:= In1 + In2. (2.20)

By Lemma2.4, it follows that for any� > 0, there existsN > 0 such that

nµ

∣∣∣∣∣
1
n

n∑
i=1

h� (Xi,x) …Eh� (X1,x)

∣∣∣∣∣ ≤ �
2

a.s. , (2.21)
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for n > N andx ∈ R. Hence, we have

In1 = nµ

∣∣∣∣∣inf
x∈R

1
n

n∑
i=1

h� (Xi,x) …inf
x∈R

Eh� (X1,x)

∣∣∣∣∣ I
(
�̂ n …� ∗ ≥ 0

)

= nµ

∣∣∣∣∣inf
x∈R

{
1
n

n∑
i=1

h� (Xi,x) …inf
x∈R

Eh� (X1,x)

}∣∣∣∣∣ I
(
�̂ n …� ∗ ≥ 0

)

= nµ inf
x∈R

∣∣∣∣∣
1
n

n∑
i=1

h� (Xi,x) …inf
x∈R

Eh� (X1,x)

∣∣∣∣∣ I
(
�̂ n …� ∗ ≥ 0

)

≤ nµ inf
x∈R

{∣∣∣∣∣
1
n

n∑
i=1

h� (Xi,x) …Eh� (X1,x)

∣∣∣∣∣ +

∣∣∣∣Eh� (X1,x) …inf
x∈R

Eh� (X1,x)

∣∣∣∣
}

≤ inf
x∈R

{
�
2

+ nµ

∣∣∣∣Eh� (X1,x) …inf
x∈R

Eh� (X1,x)

∣∣∣∣
}

=
�
2

+ nµ inf
x∈R

{∣∣∣∣Eh� (X1,x) …inf
x∈R

Eh� (X1,x)

∣∣∣∣
}

=
�
2

a.s., (2.22)

asn > N . Similarly, we obtain

In2 = nµ

∣∣∣∣∣inf
x∈R

1
n

n∑
i=1

h� (Xi,x) …inf
x∈R

Eh� (X1,x)

∣∣∣∣∣ I
(
�̂ n …� ∗ < 0

)

= nµ

∣∣∣∣∣inf
x∈R

{
Eh� (X1,x) …inf

x∈R

1
n

n∑
i=1

h� (Xi,x)

}∣∣∣∣∣ I
(
�̂ n …� ∗ < 0

)

= nµ inf
x∈R

∣∣∣∣∣Eh� (X1,x) …inf
x∈R

1
n

n∑
i=1

h� (Xi,x)

∣∣∣∣∣ I
(
�̂ n …� ∗ < 0

)

= nµ inf
x∈R

{∣∣∣∣∣Eh� (X1,x) …
1
n

n∑
i=1

h� (Xi,x)

∣∣∣∣∣ +

∣∣∣∣∣
1
n

n∑
i=1

h� (Xi,x) …inf
x∈R

1
n

n∑
i=1

h� (Xi,x)

∣∣∣∣∣
}

≤ inf
x∈R

{
�
2

+ nµ

∣∣∣∣∣
1
n

n∑
i=1

h� (Xi,x) …inf
x∈R

1
n

n∑
i=1

h� (Xi,x)

∣∣∣∣∣
}

=
�
2

+ nµ inf
x∈R

{∣∣∣∣∣
1
n

n∑
i=1

h� (Xi,x) …inf
x∈R

1
n

n∑
i=1

h� (Xi,x)

∣∣∣∣∣
}

=
�
2

a.s., (2.23)

for n > N . A combination of (2.20)…(2.23) yields that for any� > 0, there existsN > 0 such

that

nµ
∣∣CVaRn,� (X) … CVaR� (X)

∣∣ = nµ
∣∣∣�̂ n …� ∗

∣∣∣ ≤ � a.s., (2.24)

for n > N andx ∈ R, which implies that Theorem2.1holds. The proof is complete. �

3 Numerical simulation
In this section, we will carry out a simulation to study the numerical performance of the

strong consistency for conditional value-at-risk estimators based on ANA sample. The

simulations are conducted for the following two cases.
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Table 1 The estimated values of CVaR data under MA(1) process

� CVaR Estimated values of CVaR

n = 25 n = 50 n = 100 n = 200 n = 300 n = 500

0.01 3.077524 2.215625 2.362955 2.855645 2.870715 2.943208 3.062084
0.02 2.795422 2.099229 2.304749 2.512123 2.583326 2.766623 2.785824
0.03 2.618936 2.263051 2.347108 2.430953 2.507920 2.555459 2.605924
0.04 2.487623 2.196140 2.317410 2.352794 2.403516 2.447980 2.479876
0.05 2.381816 2.005741 2.119395 2.219372 2.276383 2.346065 2.370149
0.06 2.292523 2.004113 2.059640 2.102880 2.150995 2.230583 2.290441
0.07 2.214846 2.061753 2.089570 2.108897 2.168029 2.190359 2.210211
0.08 2.145812 2.011019 2.072660 2.085980 2.126311 2.166322 2.191727
0.09 2.083473 1.988638 1.998568 2.005189 2.038770 2.060024 2.080606
0.1 2.026480 1.925144 1.944972 1.962678 1.977837 2.008739 2.024052

Case I MA(1) process.
The following MA(1) process is considered:

Xt = � t … 0.5� t…1, (3.1)

where{� t,} is the white noise sequence, with the properties:

E(Xt) = 0, D(Xt) = 1.25, Cov(Xt,Xt…1) = …0.5.

For k ≥ 1, Cov(Xt,Xt…k) = …0.5. Therefore, this MA(1) process forms a� ∗-mixing se-

quence, consequently qualifying as an ANA sequence. Utilizing this MA(1) process to gen-

erate random numbers, we consider probability levels� = 0.01,0.02,0.03,0.04,0.05,0.06,

0.07,0.08,0.09,0.1. with sample sizesn = 25,50,100, 200, 300, 500. Initially, we compute

the true value of the Conditional Value at Risk (CVaR) based on the generated ANA sam-

ples. Subsequently, we estimate the CVaR values using di�erent probability levels� and

sample sizesn as speci“ed above. Finally, we derive the average of 1000 simulation repe-

titions to obtain the true and estimated CVaR values, resulting in the CVaR dataset (refer

to Table1).

Based on the aforementioned MA(1) model, simulations were conducted 1000 times for

sample sizesn = 25,50,100, 200, 300, 500. The average of these simulations was taken to

represent the true and estimated values of CVaR, resulting in the curves for the true and

estimated values (refer to Fig.1). In the graph, the estimated values of CVaR are depicted

by the blue dashed line, while the true values of CVaR are represented by the red solid line.

In the MA(1) model, based on the real and estimated values in Table1 and the curve in

Fig.1, it can be observed that as the sample sizen increases, the estimated values of VaR

and CVaR also approach the true values more closely.

Case II ARMA(1,1) process.
The following ARMA(1,1) process is selected

Xt = 0.3Xt…1+ � t … 0.7� t…1 (3.2)

where{� t,} is the white noise sequence, noting that

E(Xt) = 0, D(Xt) = 1.175824, Cov(Xt,Xt…1) = …0.6196608
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Figure 1 CVaR of true value curve and estimated value curve under AR(1) model

Table 2 The estimated values of CVaR data under ARMA(1,1) process

� CVaR Estimated values of CVaR

n = 25 n = 50 n = 100 n = 200 n = 300 n = 500

0.01 2.890036 2.170455 2.474507 2.617419 2.772543 2.839317 2.865084
0.02 2.625126 2.150338 2.413390 2.509375 2.556982 2.594755 2.624383
0.03 2.459386 2.134721 2.294406 2.391566 2.404295 2.417741 2.435263
0.04 2.336072 2.100238 2.196019 2.210806 2.292701 2.308157 2.325940
0.05 2.236711 2.075447 2.139127 2.178833 2.183212 2.204913 2.215631
0.06 2.152858 1.985531 2.082286 2.123782 2.134671 2.147312 2.149778
0.07 2.079914 1.951368 1.990108 2.053718 2.096666 2.049605 2.063238
0.08 2.015085 1.907529 1.960907 1.981756 1.995446 2.004159 2.008428
0.09 1.956544 1.855084 1.873512 1.917522 1.939128 1.948190 1.951798
0.1 1.903023 1.801423 1.836655 1.860401 1.866697 1.878758 1.898029

when k ≥ 1, Cov(Xt,Xt…k) = 0.3Cov(Xt,Xt…k+1). Thus this ARMA(1,1) process is an NA

sequence, and it follows that it is also an ANA sequence. Other settings are the same as

in Case I. Similar to the MA(1) model, simulations were conducted 1000 times for sample

sizesn = 25,50,100,200,300,500. The average of these simulations was taken as the true

and estimated values of CVaR. The estimated values of CVaR under the ARMA(1,1) model

are presented in Table2. Furthermore, we obtained the corresponding true value curve

and estimated value curve for CVaR under the ARMA(1,1) model (refer to Fig.2). In the

graph, the estimated values of CVaR are depicted by the blue dashed line, while the true

values of CVaR are represented by the red solid line.

In the ARMA(1,1) model, based on the real and estimated values in Table2 and the

curve in Fig.2, furthermore, as the sample sizen increases, the estimated values of CVaR

also approach the true values more closely.
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Figure 2 CVaR of true value curve and estimated value curve under ARMA(1,1) model

4 Real data exercises
In this section, we apply the optimised CVaR estimation method discussed in this article
to analyse a dataset consisting of the closing prices of Hongta Securities and Central China
Securities on workdays from May 6, 2021, to May 5, 2023. To account for the absence of
transactions on certain trading days, these data points have been excluded, resulting in a
sample size ofn = 481. Each time series comprisesn = 481 data points obtained from the
CSMAR database. Previous studies have utilized multivariate regression models or time-
series models to analyse similar stock data. Refer to Wang et al. [6], Luo [7], and others for
further details.

By taking the logarithm of the closing price sequence of the stocks, we consider the yield
variableY and the loss variableX, whereY = …X. Consequently, CVaR is computed using
the yield variable. In this context, the logarithmic yield is adopted as the yield variable.
The formula for calculating the logarithmic return of stocks is given by:

Rt = ln

(
Pt

Pt…1

)

Here,Pt andPt…1denote the closing prices of the stock on dayst … 1 andt, respectively.
Subsequently, we depict the scatter plot of the time series of log-returns in Fig.3. Follow-

ing this, the autocorrelation function (ACF) and partial autocorrelation function (PACF)
of the two samples are illustrated in Figs.4 and5, respectively. The ACF and PACF results
depicted in Figs.4 and 5 indicate that both time series sets exhibit a stationary process.
We then proceed to conduct the Augmented Dickey-Fuller (ADF) test, where the null hy-
pothesis assumes non-stationarity in the time series. The� value obtained less than 0.05,
signifying that the two time series of log-returns exhibit weak stationarity. By consider-
ing the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC),
we determine that both sequences conform to ARMA (1,1) models. Consequently, these
two sets of log-return time series data can be regarded as ANA random samples.
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Figure 3 Time series of Hongta Securities (left) and Central China Securities (right) log-returns

Figure 4 ACF of Hongta Securities (left) and Central China Securities (right) log-returns

Figure 5 PACF of Hongta Securities (left) and Central China Securities (right) log-returns

Figure 6 CVaR of Hongta Securities (left) and Central China Securities (right) log-returns

Finally, employ optimisation techniques to estimate the Conditional Value at Risk

(CVaR) of log-returns. Illustrated in Fig.6, at equivalent probability levels, the CVaR of

Hongta Securities is observed to be lower than that of Central China Securities. This sug-
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gests that the risk associated with Hongta Securities is comparatively lower than that of
Central China Securities.

Appendix
To prove our main results, the following lemmas are indispensable. The “rst one can be
found in Zhang and Wang [15].

Lemma A.1 Let {Xn; n ≥ 1} be a sequence of ANA random variables. If {gn(·); n ≥ 1} are
all increasing or all decreasing functions, then {gn(Xn); n ≥ 1} is still a sequence of ANA
random variables.

The next one is the Rosenthal type inequality for ANA random variables, which was
established by Zhang [16].

Lemma A.2 Suppose that {Xk;k ∈ Nd} is a ANA random variables fields with EXk = 0 and
‖Xk‖p < ∞ for some p ≥ 2 and all k.Then there exists a positive constant Cp depending only
on p and � …(·) such that for any finite set S ⊂ Nd

E

∣∣∣∣∣
∑
k∈S

Xk

∣∣∣∣∣
p

≤ Cp

⎧⎨
⎩

∑
k∈S

E|Xk|p +

(∑
k∈S

E|Xk|2
)p/2

⎫⎬
⎭ .

When d = 1, the Rosenthal-type inequality remains true for the maximal partial sums, if
some conditions on � …(·) are added.

The third lemma is derived from Xing et al. [9].

Lemma A.3 If E|X|r < ∞ for r > 0, then there exists a positive constant C such that for
x ∈ R,

E |h� (X,x) …Eh� (X,x)|r ≤ CE|X|r, (A.1)

where h� (X,x) = x + 1
1…� [X …x]+.
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