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1 Introduction

Many academics have recently looked at the mathematical modeling of some physical pro-
cesses using fractional integro-differential operators (see, for instance, [1-5]). The most
well-known and often utilized fractional operators are the Riemann-Liouville and Caputo
integro-differential operators. A new fractional integro-differential operator, known as the
g-Caputo fractional derivative (g-C.f.d.), which is the fractional derivative with respect to
another strictly increasing differentiable function, was introduced in [6] and used in [7] to
have a broad scope of investigations of mathematical models. Later, this operator has been
employed by various mathematicians in a variety of fields (see, for instance, [8—13]). The
following fractional differential inclusion with respect to a strictly increasing function g

has been recently studied by Belmor et al. [7]:

CDg,,;gw(y) €Y@, w@®), yel0,£],1<n=<2,
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with boundary value conditions

P
(0) - 8,(0) = % / 2E@EP) - g k(E, w()dE = aTye k(p, o(p)),
0
b q
(D) + 80(0) = s f £ENe@) - &) X (& w(E)dE = T} x (g, (@),
0

where ”Dg+;g is the g-C.f.d. introduced by Jarad et al. [6], T :[0,£] x R — P(R) is a
multivalued map, P(R) is the family of nonempty subsets of R, Zg.,, stands for the g-
Riemann-Liouville fractional integral (g-R-L.f.i.) of order k on [0,£], 0 < p,g< ¢, k, x,:
[0,£] x R — R are continuous functions, é, = ﬁ%, and a and b are suitably chosen
constants. Belmor et al. used the fixed point result via ¢-weak contractions provided by
Moradi and Khojasteh [14] to evaluate whether the aforementioned problem might be
solved. Etemad et al. [15] presented a fractional boundary value inclusion problem and
looked for sufficient and necessary criteria for the intended existence results. In fact, they
developed a class of inclusions for fractional multiterm Caputo—Hadamard differential
inclusions. Our result is more general than those discussed above.

Using Wardowski-type Mizoguchi—Takahashi contractions, we look for the existence
and uniqueness of a solution to the g-Caputo fractional differential equation with arbitrary
coefficients under new boundary value conditions. We specifically consider the solvability
of the following problem:

CD;;gw()/) =Yy, 0), yelabl,2<r<3,
s10(a) + er(b) = I K(p1, o(p1)),
538,0(a) + G4d,(b) = I;L+;g)( (P2, 0(p2)),
s5850(a) + 68y () = Iy W (p3, 0(p3)),

where Y, /C, x, V¥ : [a,b] x R — R are continuous, a < p1,p2,p3 < b, 0,u,A >0, and ¢,
i=1,2,...,6, are arbitrary coefficients.

We organize the paper as follows. In Sect. 2, we give some known definitions, notations,
and results, which form the background of the remaining sections. Section 3 contains
the main results on the existence and uniqueness of a solution to (1.1) supported by an
example. Section 4 is the conclusion.

2 Preliminaries and auxiliary notions
Let ® be a nonempty set endowed with metric D. Similarly to [16], let C53(®) be the set
of nonempty bounded closed subsets of ©. Let ‘H be the Hausdorff-Pompieu metric on
CB(®) generated by the metric D, that is,

H(V1,V3) =max { sup D(hy, Vs), sup D(hy, Vi)

h1€Vy hp€eVyp

for Vi, V, € CB(0).

If & € U6 for some element 6 € O, then 0 is called a fixed point of a multivalued mapping
U:0 — PO).

The theorem established by Mizoguchi and Takahashi [17] is as follows.
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Theorem 2.1 ([17]) Let ® be endowed with a complete metric D. Let
HWURUN) < G(D(h, W)D(h, i)

forall b,/ € ®, whereUd : ® — CB(0®), and G : [0,00) — [0,1) is such that limsup G(¢) < 1

t—>rt

foreach r > 0. Then U possesses a fixed point.

We denote by U the set of maps R : [0, 00) —> [0, 00) satisfying the following conditions:
(1) s=0 & R(s)=0;
(2) Rislower semicontinuous and nondecreasing;

@) 1i s
imsup — < oco.
s—>0+p N(S)

Consider the following condition:

(H): If h,, — h as n — oo, then &, < h for each n > 0, where {%,} C ® is an increasing
sequence.

For single-valued maps, Gordji and Ramezani [18] explored the following variation of
Theorem 2.1.

Theorem 2.2 ([18]) Let ® be endowed with complete metric D and partially ordered rela-
tion <. Suppose that for an increasing mapping U : ® — O, there exists hy € © such that
ho < U(hy). Suppose that for some R € U, we have

R(DURUR)) < GR(D(h, K)N(D(h, 7))

for all comparable h,' € ©, where G : [0,00) —> [0, 1) satisfies limsup G(s) < 1 for any
s—>t*

t > 0. There is a fixed point for U if either (H) holds or U is continuous.

Definition 2.3 ([19]) Having a self-mapping I/ on © and v : ®2 — [0, c0) such I/ is trian-
gular v-admissible if
(T1) v(h,A)>1 implies vUAUW)>1, &K €0,

(T2) : i) =1 implies v(h,”)>1, AN, 0.

v(¢, ) >1

Recently, Mohammadi et al. discovered the following fixed point theorems for v-
admissible Wardowski type contractions by Mizoguchi-Takahashi approach:
Let B be the set of all functions B : (0,00) —> [0, 1) such that

limsup B(x) < 1

x—>tt
for any ¢ > 0.

Let Q be the set of all functions Q : (0,00) — R such that
(81) Q is continuous and strictly increasing,
62) s=1 & Q(s)=0.
Some examples of elements of Q:

(i) Q1(®) =In(@),

(i) Qa(8) =In(t) +¢,
(iif) Qs()=-7+1,
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(iv) Qa(®)=—7+1.
We denote by U’ the set of maps R : [0,00) —> [0, 00) such that
(1) s=0 < N(s)=0;
(2) N is continuous and nondecreasing.
For h, 1/ € O, set

M(h, 1) = max{D(h, i), D(h,Uh), DK ,UR)}.

Consider the following condition:

(K): If v(hy, Bige1) > 1 for each integer #n > 0 and h, — h as n — +00, then v(h,, h) > 1
for each n > 0, where {f,} is a sequence in B.

Theorem 2.4 ([20]) Let U be a self-mapping on the complete metric space (®, D) such that
for some function v : > — [0, 00), we have

Qv(h, YR(DUK,UTY)) < QBR(D(h, 1)) + QRM(h, 1)) (2.1)

for all bW € © with Uh # UK, where Q € Q, B € B, and X € U'. If U is triangular v-

admissible and v(ho,UNy) > 1 for some hy € ©, then U possesses a fixed point if either U is
continuous, or (K) holds.

Furthermore, if v(h, i) > 1 for all fixed points h, i of U, then we have the uniqueness of
fixed point.

Theorem 2.4 can be reduced to the following conclusion if R is the identity function.
Theorem 2.5 Let U be a self-mapping on the complete metric space (®, D) such that
QW (h, YDUNMUN)) < QB(D(h, 1)) + QM(h, ') (2:2)

Sforall h, i € ® with v(h, ') > 1 and Uh #UN, where v : ®* — [0,00), Q € Q, and B € B.
Suppose that U is triangular v-admissible and v(ho,UNy) > 1 for some hy € ®. Then U has
a fixed point, provided that either U is continuous or (K) holds.

Furthermore, if v(h, i) > 1 for all fixed points h, I’ of U, then we have the uniqueness of
the fixed point.

Let us review the basic definitions of fractional differential equations from the begin-
ning. The R-L.f.i. of order « for a continuous function i : [0,00) — R is defined as

1 t
TUO - 105 [0 (6 - &)Y UEdE. 2.3)

The definition of the C.f.d. of order « is

t
CDU(L) = ! / =" UDNEVDE (n-1<k <mn=[k]+1). (2.4)
I'n-x) Jo

On the other hand, the fractional derivative of order « in the sense of Reimann—Liouville
is

t
DU(t) = ﬁ(%)”/(; E=-&)""*UE)IE (n-1<k <mn=[k]+1). (2.5)

Page 4 of 14



Mohammadi et al. Journal of Inequalities and Applications (2024) 2024:105 Page 5 of 14

Definition 2.6 Let g be an increasing map such that g’(s) > 0 for all s € [a, b]. Then the
g-R-L.fi. of order « of an integrable function i : [a, b] — R with respect to g is defined as

1 t
I U0 - s [ e - g uens 26)
() Ja
if the right-hand side of this equality is finite.

It should be observed that the g-R-L.f.i. (2.6) obviously reduces to the ordinary R-L.f.i.
(2.3) if g(t) = ¢.

Definition 2.7 ([6]) Let n = [«] + 1. The g-R-L.f.d. of order « for a real mapping U €
C([a, b],R) is written as follows:
1 1 d

PO 16,20 ¢ an

t
y / 2E) () - g UEde 27)

if the right-hand side of this equality is finite.

In a similar way, it is evident that the standard R-L.f.d. (2.5) is a particular case of the
g-R-L.f.d. of order « if g(¢) = t. Almeida provided a novel g-version of the C.f.d. in the
formulation that follows, in which he is motivated by the above operators.

Definition 2.8 ([21]) Let n = [x] + 1, and let i € AC"([a, b],R) be an increasing map with
g'(s)>0for all s € [a, b]. The g-C.f.d. of order x of U with respect to g is

d
—)"U(E)dE, (2.8)

1 t
‘D Uy =——| & ) —gE) ™"
A () F(H_K)lg(é)(g() gé)) (g/(g)dg

assuming that the right-hand side of this equality is finite.

It can be observed that the g-C.f.d. (2.8) of order « reduces to the conventional Ca-
puto derivative (2.4) of order « if g(s) = s. The g-Caputo and g-Riemann—-Liouville integro-
derivative operators are usefully specified in the sections that follow.

Let AC([0, ], R) be the set of absolutely continuous functions from [0, /] into R. Define

. " 1 d
AC([0, €1, R) = {w: [0, £] — RIS/ w € AC([0, €], R), 5, = %d_y]'

Lemma 2.9 ([6]) Let n = [«] + 1. For a real mapping U € AC"([a, D], R),

S5U)(@)
k!

n-1
Ty Dl UO =UD) = ) €& -g@), (2.9)
k=0

where (Sé’f =08¢8g - 4.
—_——

k times

Proposition 2.10 ([6, 21]) Let n = [«] + 1. For a real mapping U € AC"([a, b],R),
(i) “Dfr (g(t) - g@)” = rgi;ﬂ)(g(t) -g@)’ ™, k>0,0>-1,
(i) Ty g(g(t) - g@) = o5 @) — g(@)” ™,k > 0,0 > -1, and

(iii) DG, (T8 U)(E) = TEU®), 0 < 0 <k.
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3 Main results

We are now prepared to disclose and support the key findings of this investigation. Take
it for granted from this point that ® = C([4, ], R) is the Banach space of continuous func-
tions from [a, ] to R endowed with the supremum norm

[Llloo = sup{|L(D)| : £ € [a, b]}.
First, let us prove the following auxiliary lemma.

Lemma 3.1 Let ¥, p1, pa, ps be real continuous functions on [a,b], 2 <r <3, 0,u,x >0,
P1,P2,p3 € [a,bl, and let ;(i = 1,2,...,6) be arbitrary constants. Then h € AC;([a, bl,R) is
a solution of the following fractional boundary value problem:

‘D, w(y)—z?(y) y€la,bl,2<k <3,
160(61) + sr(b) =T wrgP1P1)s

(3.1)
638,0(a) + gadgw(b) = T, wrgP2(P2),
s5850(a) + 68;w(b) = Iy, p3(p3)
if and only if w is a solution of the fractional-order integral equation
b
w(y) =Lo(y) + / G, (9, 6)v(6)d§, (3.2)

where

€W g((f)))’( ! (g(b) g(%-))l( 1

(e(b)-g(@) (F(K)(gﬁ(}fyz)) @)
—%4 —8(a))+(c1+62 —ga _ =2
T R (OB ()

56(26a(s1 + 52)(g(b) — g(a)))
—62(ca — 53)(g(b) — g(a))?

—c6(s1 + 62)(53 + 1)) — g(@))*
Gg(y,é) :g’(é) * 2l (k=2)(51+62)(53+54)(S5+S6)

ol @) - g(©) !

—54(g(b)—g(@)+(s1+52)(€(¥)-g(@)) 2
o e e arey &0 —g®)

S6(25a(s1 + 52)(g(b) — g(a)))
—62(ca — 53)(g(b) — g(a))?
. —66(S1 + 62)(53 + Sa)(g(y) — g(@))?

2T (k=2)(51+62)(53+54)(55+56)

(gb)-g&) 3, a<& <y,

(g(b) -g(&) 3, y<& <b,

and

(61 + 52)(g(y) — gla)) — (g(b) - g(a))
(61 +62)(53 +64)

L,(y) = c Ig+;g/)1(P1) (P2(P2)

62(5a — 63)(g(b) - g(a))?
—-264(51 + 52)(g(b) — g(@)(g(y) — g(@))
+(@(¥) — g(@)*(s1 + 62)(S3 + Sa)

2(s1 + 62)(53 + 54)(S5 + G6)

I;+;gp3(193)'
Proof Applying Z;, . to both sides of (3.1) and using Lemma 2.9, we obtain

o(y) = ki + k() - g(@)) + ks (g - g@)* + Ty, D (), (3.3)
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where ki, ks, k3 are unknown constants. Now we will compute these constants in view of
boundary value conditions (3.1). Applying 8, to both sides of (3.3), we obtain

8qw(y) = ko + 2k3(g(y) — g(@)) + I,’l‘:;él,ﬂ(y). (3.4)
Applying §, to both sides of (3.4), we obtain

agw(y) =2ks + I;‘;;ﬁ(y). (3.5)

From (3.1), (3.3), (3.4), and (3.5) we get

siki + alky + ka(g(b) — g(a)) + k3(g(b) — g(a))* + Tor g0 (D)] = IZ+;gP1(101),
gska + gulko + 2k3(g(b) — g(a)) + I;{i,ﬁ(b)] = Ig+;g/02(l72),
2¢5k3 + g6[2ks + I,';féﬁ(b)] = I};g,os(lﬂsl

Therefore

(51 + sk + 62(g(D) - g(@)ks + 262(g(B) - g@)*ks = I}, 1 (p1) = 62 L5, D (D),
(63 + sw)ka + 263(g(b) — g(@)ks = T, pa(p2) = caTyr 0 (),
255 + Go)ks = L), p3(p3) — 6 Lyr a0 ().

(3.6)
From (3.6) we obtain
T, ) — G6ZE 20 (b)
P 3W3) — S6L iy ’ 37)
2(s5 + S6)
2(gs5 + §6)[I:;+;gpz(p2) - §4I§+_;§19(b)]
-264(g(b) —g(ﬂ))[13+;g103(103) - 5‘615{279(19)]
ky = ) (3.8)
2(s3 + 64)(S5 + G6)
and

253 + 6a)(55 + S L o P1(P1) — 2 T4 9 ()]
-2(5 + 56)(€(D) = g@)I L} p2(p2) = 54Ty V()]
+62(62 — 53)(g(D) —g(a))z[I};gps(ps) - s‘szgf.ﬁl?(b)]

ki = : . 3.9
! 2(61 + 62)(53 + 54)(S5 + G6) (39)

Substituting (3.7), (3.8), and (3.9) into (3.3), we obtain

253 + 6a)(55 + §) L o P1(P1) = 2 T4 D (D))]

—2(55 + 66)(g(b) —g(ﬂ))[I;;ng(pz) - §4I§+_;§l9(b)]

+62(5a — 53)(g(b) —g(ﬂ))z[I};gps(P?,) - §6IZ+_;§19(19)]
2(s1 + 62)(s3 + 51)(55 + G6)

255 + 56) Ly o P2(p2) — u Ly D (D)

—264(g(b) —g(a))[I;h;ng(ps) - 5‘61;(:;;19(19)]
' 2(63 + 64)(S5 + S6) @) -g(a)

w(y) =
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>, - geLls 219 b
L 23(D3) — S6 ()(g(y)—g(a))2
S5+ Ge
+ L0 ()

Therefore

€ —g@)(s1 + 2) — (g(b) - g(ﬂ))
(61 +62)(63 + 64)

¢1+
[§2(§4—§3)(g(b) - g(a))? ]

w(y) = +;g,01(101) <P2(D2)

—264(61 + gz)(g(b) g(ﬂ))(g(y) g(ﬂ))
+(g(y) g(a))z(gl + §2)(§3 + 5‘4)

T,
2(c1 + 62)(3 + 54)(S5 + G6) a+gP3(3)
I;Jr' l?(b) + [_§4(g(b) —g(ﬂ)) + (5‘1 + §2)(g(y) —g(a))
¢ (61 +62)(63 + 64)

G2
1+ &2
56l264(s1 + 62)(g(b) — g(@)(g(y) — g(@)) — 62(6a — 53)(g(b) — g(@))*]

—66(c1 + 62)(53 + Sa)(g(y) — g(a))?
2(s1 + 62)(63 + 64)(55 + G6)
X T 20 (b) + Tis 0 ().

]I" 19(b)

Thus
b
00) = Lo(y) + / Gy, E)9 (€ )dE,

where

(g()-gE)< 1 ) -1
rék&a) ( ; (r(K)(gﬁ(}fyZ)) (‘3’(5) —sEr
—%4 —8(a))+(c1+62 —ga _ =2
T R (OB ()

[ S6(254(s1 + 52)(g(b) — g(a)))

—62(ca — 53)(g(b) — g(a))?
—56(s1 + $2)(53 + 51)(@(Y) — g(@))?
G,(5,6) = g ®) 2T (k=2)(51+52)(53+64)(S5+56)

ot (@) - g(©) !

—54(g(b)—g(@)+(s1+52)(g(¥)-g(@)) 2
e N et earen €D —g(8)

[ c6(264(c1 + 52)(g(b) — g(@)))

(gb)-g&) 3, a<& <y,

—62(ca — 53)(g(b) — g(a))?
. —56(51 + $2)(53 + 6a)(@(Y) — g(@))?

2I'(k=2)(51+62)(53+54)(55+56)

(g(b) -g(&)) 3, y<& <b,

and

(1 + 52)(g(y) —g(@) - (g(b) - g(ﬂ))
a+g/01(p )t (61 +62)(53 + 6a) s 2(p2)

62(5a — 63)(g(b) - g(a))? ]

L,(y) =

—-264(51 + 52)(g(b) — g(a))(g(y) — g(a))
+(g() - g(@)*(s1 + §2)(3 + Sa)
2(s1 + 62)(63 + 64)(55 + G6)

I;*;gpl?i(p?))’

which is (3.2). Conversely, if w is faitful in (3.2), then equation (3.1) clearly holds.

Page 8 of 14
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Lemma 3.2 Let

G, - sup/ Gy €)1

yela,b]

and

Isal+(s1+52])

1 1 + [s2]
— Is1+52l Is1+62lls3+54l _ K
Mg = o e dsslisili vl lis-sssslis ol el { €(P) —g@)".
k+1) | +(k =1k
2[s1+52lls3+54lls5+ 561

Then @g <M,.

Proof For arbitrary y € [a, b], we have

b
/ Gy, €)1
_ G0 -g@)
'k +1)

|§2| K K
T+ Dici + ol [(g(b) - g(a))* - (g(b) - g(») ]

(Igal + 51 + 521)(g(D) — g(a))
C'()ls1 + s2llg3 + gal

[¢(®) - g(@) - (¢(6) - g)']

{ [2Issllsalls1+sal+Is2lIsa—531+56ll51 +2ll53+5411g(h)~g (@) }
2|s1+52lls3+54lls5+56]

x [¢0) - g@) 2 - e - g

|2l
b _ K
F(K+1)|§1+gz|[(g( )20 ]
(Igal + 51 + 521(g(D) — g(a))

b) — K—1
T(©)|s1 + 621163 + 4l &b -g)

[2ls6llsalls1+sal+Isallsa—s3l+Igslls1+521153+54l1(g(b)-g(@))> } _ =2
+ { 2[s1+s2lls3+5allg5+66] (g(b)— )

1 {1 4 el laltlarel

< [s1+62l [s1+521l63+54] (g(b) — g(a))*
“Tk+1) | +(k - Dk 2lssllsallsi+sal+lsallsa—g3l+Igells1+62lI53+54l
2ls1+62lls3+5alls5+c6]

- M.

Taking sup on y € [a, b] on both sides of the above inequality, we get the desired result.
O

Theorem 3.3 Suppose that
(i) Y,K, x,¥:[a,b] x R— R are continuous functions;
(ii) there are functions Q € Q and B € B such that

00 = Y001 = 307 (QUB(u=vD) + Qe =vD).

ol'(@ + Dls1 + 62|
g -g@)’

1K@, 1) - K| < Q™! (QWB(1u~v)) + Qllu-D),
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Ixuw) = x (v

B YT+ Dls1 + oallgs + §4IQ’1(Q(B(IM =vD) + Q(lu - VI))

B (Is1+ G2l + D)(g(p2) — g(a)*(g(b) — g(a)) ’
NACADERI(AY]

- 26T (A + Dls1 + 6allgs + callss + §6|Q_1(Q(B(|M—V|)) + Q(Iu—VI))

H

ls2llga — g3l
+2|galls1 + 62l (g(p3) - g(@)*(g(b) - g(a))?
+61 + 62lls3 + gal

forally € [a,b] and u,v € R, where k,0,y,E >0andk +o +y +& < 1.

Then problem (1.1) has a unique solution.

Proof According to Lemma 3.1, we know that (1.1) possesses a unique solution if and only
if (3.2) has a unique solution. Define T :AC;([a, b],R) — AC;([a, b],R) by

b
(Tw)) = Lo(y) + / G, E)Y (5, (E))dE

forw e AC;([a, b],R) and y € [a, b].

Therefore the statement that there is a solution for (1.1) is equivalent to the fact that
T has a fixed point. Now let w;,w; € AC;([a, b],R) be such that Tw; # Tw,. Then for
t € [a,b] such that Tw1(y) # Twy(y), we have w;(y) # w2(y). According to our hypotheses,

we have

b
L) ~Loa)] + [ 1G] Y& 00(6)) - Y&, on(e)

| Tan() - Ten(y)| <

<

< T, K1 01(p) — T Koo, 0n(p1)|
[61 + 62l

(Is1 + s2l + 1)(g(b) — g(@))
[s1+ s2llg3 + 64l

N [s2llga = 631 + 2]gallg1 + 62| + |61 + 52163 + G4
2|61 + 621163 + allss + g6l

X (@(b) ~ (@) T W (p3,01(92) = T U (s, n(p)|

T X 02,01 (02)) = Tl 1 (P2 02(9)

b
+ [ 160,60 T ne) - T nte e

San{Q(B(IIwrszI)H Q(Ilwl—wzll)} (3.10)
+ VQl{Q(B(Ilah —wa|]) + Q[ —w2||)}

+ SQliQ(B(IIM — ) + Q[ —a)zll)}
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+KQ'1{Q(B(||601 —w2|) + Q| —wzll)}
=(k+o+y +€)Q‘1{Q(B(I|w1 —w|]) + (/|1 —wzll)}

< Q‘liQ(B(Ilwl — ) + Qo —wzll)}-

Therefore

ITwr - Tan|| < QMQAB(lwr — ws 1) + Qllwr - 2])],
and so

QUITwr = Tan|) = QB([o1 - w2) + Llwr — w2 ).

As a result, according to Theorem 2.5, T has a unique fixed point, and therefore prob-

lem (1.1) has a unique solution in AC;([a, b],R). O

Example 3.4 Consider the differential equation of fractional order

5
cn2 _ 64/ o) )
D 0(y) = 1700356 +1) 2+TO)I” y€l2,31,¢) —yg» 2
27/ e sin(E2+1)|u]

_ T2 7 7 —
w(z) + 2w(3) - I2+;gli(§: a)(g)), IC(E: I/l) T 1013 1+%|u| ) (3 11)
28,0(2) - 800(3) = I3 x 3, (), x (&, u) = Fﬁ%

5
2 (26+1)
380(2) + 2570(3) = T, W (3, (), W(E ) = TR0 <o,

Note that

6JT Jul
1700+/5(€ + 1) 2 + |u|’

T(E,u):

@) -g(a)"

2[sellsallsi+sal+lsallsa—g3l+Isells1+52lls3+54l

[

Mg — [s1+62l ls1+52lls3+54l
I'r+1)

1 {1 4 el o leal+(si+eaD

+(k — e 2ls1+52ll53+54lles+ge|
1 2 51+3 35[12+6+6]y _, .55 680 [5
=—7|1+—+— +o= }(3 ~2%)i=— =
rHl 372 3 "22 30 3V
2 1 1 1
Takex =z,0=¢,7 =3,6 = z. Then
oTO+ D+l rGB) 277
@pD-g@)  (Zp-22)i 10V13’
yT(1 + Dls1 + 6llss + gl s3CG) VT

(51+ &2l + D@(p2) - g@)F@B) - @) ~ 432 — 2232 —22) 150’

Page 11 of 14
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and
26T (M + Dg1 + s2lls3 + Gallss + el _ 192V16m
I521164 — g3 7225+/17

+2/g4llc1 + 6o (g(p3) - ga)*(g(b) - g(a))?
+]61 + 6allg3 + 64l

Now for all £ € [a,b] = [2,3] and u,v € R, we have

v
1700«/—‘2+|M| 2+ vl

T(E 1) - T(E )| =

(WE W
17008/5 11+ 3ul 1+ 3|v|
sy |-

T 1700+/5 (1 + 3 luD(1 + 1{v))
sm |-

" 17005 1+ L(|jul - v
3J7T | — v

T 1700+/5 1+ 3 |u—v|

- Lot _ -
= 34,2 (9B =)+ Qlu=vD),

where B(t) = % and Q(¢) = ‘71 +1

On the other hand,
277 | |ul [v|
KE u) - KE,v)| < -
G )‘ 101311 + 1{u] 1+%|v|’
_orym Jwi-|
=10V 1+ 2t ]
- 277 |lu-v|

T 10131+ 5lu-v|

_ol@+Dls1+6l
= o sty 2 (@B + Q).

|ul |v] ‘

X(Ew0 -~ x(E)] < 150‘1+ Hul  1+1p

= v
B L
150 14 4|1t - vl

VT lu-vl
- 1501+%|u—v|

[yT(p+ Dlgt + s2llgz + §4I]Q‘1(Q(B(Iu —v)+ Q(lu - VI))
- (Is1l +152D(g(q) - g(@)*(g(b) — g(a))

’
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and

W) - v, )|

- 192167 |u| 4 }
T 722517 11+ Sul 1+ 3|y

_192/16x ‘|“| - |V|‘
" 722517 1 Al - )

- 192416 |u—v|
T 7225V17 1+ 3lu-v|

267G+ Dlsi + 62163 + Galls + 6l1Q7 ( QUB(Ju = v1)) + Q(lu - v))

[s2ll6a — s3]
+2[64ll61 + 62| (g(p3) — g(@)*(g(b) - g(a))?
+61 + 62lls3 + gl

Also, k +0 +y +& = 1. Thus all the conditions of Theorem 3.3 are satisfied. Thus problem

(3.11) has a unique solution according to this theorem.

4 Conclusions

By applying the Wardowsky—Mizoguchi—Takahashi attractive fixed point theorem we in-
vestigated the existence of a solution of a fractional differential equation of finite order
between 2 and 3 and with new boundary value conditions. To use fixed point theorems to
check the solvability of such differential equations, we first transformed them into integral

equations. We have also provided an example in support of our findings.
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