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Abstract
In this paper, we have explored the existence and uniqueness of solutions for a pair of
nonlinear fractional integro-differential equations comprising of the �-Caputo
fractional derivative and the �-Riemann–Liouville fractional integral. These equations
are subject to nonlocal boundary conditions and a variable coefficient. Our findings
are drawn upon the Mittage–Leffler function, Babenko’s attitude, and topological
degree theory for condensing maps and the Banach contraction principle. To further
elucidate our principal outcomes, we have presented two illustrative examples.
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1 Introduction
There exists a profound and extensive historical background pertaining to the subject
matter of fractional calculus, which traces its origins back to the emergence of classical
calculus. In previous times, certain scholars dedicated their efforts to the exploration of
this particular field; nevertheless, contemporary researchers have displayed a heightened
level of enthusiasm towards the study of the novel dynamic equations. Caputo fractional
derivatives stand as prominent concepts commonly employed within various classes of
fractional derivatives. The Riemann–Liouville derivative is accompanied by a certain de-
gree of mathematical abstraction, whereas the Caputo fractional derivatives are predom-
inantly favored by engineers [4, 15, 20, 25, 26, 36].

The domain of fractional differential equations has seemingly experienced significant
growth, thereby serving as a testament to the prominent position and status that frac-
tional calculus has attained within the realms of science and engineering. It is noteworthy
to mention that fractional calculus finds wide-ranging applications in naturally occurring
fields such as porous media, chemical physics, viscoelasticity, electrical networks and fluid
dynamics. Consequently, scientists underscore the significance and relevance of this par-
ticular field [15–17].
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The boundary value problems pertaining to fractional differential equations have at-
tracted significant interest from numerous scholars as of late, emerging as an important
field of research due to their wide range of uses in the fields of science. These applica-
tions encompass control theory, mechanics, biology and wave propagation, among others
[1, 3–5, 8, 11–13, 22–24, 27–35].

Many effective theoretical studies have been published by several researchers focusing
on the result of existence, uniqueness and the stability for differential equations involving
a fractional derivative with various conditions, see [9, 10].

In [30], Tariboon and colleagues explored the existence and uniqueness of solutions for
the subsequent FDE:

c
D

ϕZ(Q) = � (Q, Z(Q)) , 1 < ϕ ≤ 2, Q ∈ [0,b],

subject to

m∑

i=1

ηiZ(ξi) = S1,
n∑

j=1

ϑj
(
I

βj Z(b) – I
βj Z(�j)

)
= S2,

as nonlocal fractional integral boundary conditions, where S1, S2 ∈ R, � : [A,b] ×R → R

is a continuous function, for i = 1, 2, ...,m, j = 1, 2, ...,n considering ηi,ϑj ∈ R, and using
Banach’s contractive principle, Krasnoselskii’s fixed-point theorem and Leray–Schauder’s
nonlinear alternative [19].

In 2013, Yan et al. [32] conducted a study on the existence and uniqueness of solutions
for the ensuing boundary value problems of fractional differential equations using multiple
customary fixed point theorems:

c
D

ϕZ(Q) = � (Q, Z(Q)) , 1 < ϕ ≤ 2, Q ∈ [0,b],

with the nonlocal boundary condition:

Z(A) = f (Z),
∫ b

0
Z(Q)dQ = η,

where � : C2[0,b] → R is a C2 continuous functional.
Just recently, the existence and uniqueness of a nonlinear integral differential equation

via a boundary condition was examined by Li et al. [21]. This study employed several fixed
point theorems:

{
cD

ϕ
pZ(Q) + μIκ

pZ(Q) = � (Q, Z(Q)) , Q ∈ [p, P], l – 1 < ϕ ≤ l, κ ≥ 0,
Z(A) = –f (Z) Z(p) = Z′(p) = · · · = Z(l–1)(P),

in which 0 ≤ p < P < +∞ and μ is a constant.
Let f : C[A,b] →R, � : [A,b] ×R →R and A(Q) ∈ C[A,b].
We will examine the existence and uniqueness of solutions for the subsequent nonlin-

ear �- integral differential equation with nonlocal boundary condition and varying coef-
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ficients when l < ϕ ≤ l + 1 and β ≥ 0

⎧
⎪⎨

⎪⎩

cD
ϕ;�
A+ Z(Q) + A(Q)Iκ ;�

A+ Z(Q) = � (Q, Z(Q)) Q ∈ [A,b],
Z(A) = –f (Z), Z′′(A) = · · · = Z(l)(A) = 0,∫ b

A � ′(Q)Z(Q)dQ = η,
(1.1)

where A(Q) is a variable coefficient, η is constant, cD
ϕ;�
A+ and I

κ ;�
A+ are considered the �-

Riemann–Liouville fractional integral operators and �-Caputo fractional, in the state or-
der. Babenko’s attitude [11] and topological degree theory for condensing map are power-
ful tools for solving differential and integro-differential equations with initial conditions
by treating bounded integral operators as normal variables. In particular, for �(Q) = Q,
problem (1.1) arises; as a result,

⎧
⎪⎨

⎪⎩

cD
ϕ

A+ Z(Q) + A(Q)Iκ
A+ Z(Q) = � (Q, Z(Q)) , Q ∈ [A,b],

Z(A) = –f (Z), Z′′(A) = · · · = Z(l)(A) = 0,∫ b

A Z(Q)dQ = η,
(1.2)

and for �(Q) = Q, l = 1, problem (1.1) turns out to be

{
cD

ϕ

A+ Z(Q) + A(Q)Iκ
A+ Z(Q) = � (Q, Z(Q)) , Q ∈ [A,b],

Z(A) = –f (Z),
∫ b

A Z(Q)dQ = η.
(1.3)

Very limited information is available in contemporary literature regarding the bound-
ary value problem of �-fractional integro-differential equations with integral boundary
conditions and coefficients that vary. The paper is structured as follows. Section 2 en-
compasses several fundamental definitions, topological degree theory, an introductory
overview of fractional calculus, and a collection of lemmas that are further elaborated
upon in this article. In Sect. 3, the outcomes associated with the existence and uniqueness
of solutions for �-Caputo (1.1) are presented, employing the theory of topological degree
coincidences for the contraction principle and the curtailing maps. Two specific examples
of the study results are provided in Sect. 4 to illustrate its functionality and demonstrate
its efficience.

2 Preliminaries
In this particular section, we shall revisit a few of the fundamental outcomes and concepts
that will find applications within the context of this manuscript.

Definition 2.1 The Mittag–Leffler function with two parameters is stated as [26]

Eϕ,κ =
∞∑

k=0

zk


(ϕk + κ)
.

Babenko’s methodology [11] is an efficient instrument for resolving differential and
integro-differential equations featuring initial conditions through the treatment of
bounded integral operators as ordinary variables.

We hereby present the results that are furnished in the subsequent from [2, 14].
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Definition 2.2 Authorizing θ represent the collection of bounded subsets of X which X
denote a Banach space. The measure of noncompactness known as the Kuratowski mea-
sure, is a mapping � : θ → [0,∞), which is defined as follows:

�(θ ) = inf{ε > 0 ; θ ⊆ ∪m
i=1θi and diam(θi) ≤ ε}.

Definition 2.3 Supposing G : Z → X and Z ⊂ X is a map that are both continuous and
bounded, it is possible to state that G is �-Lipschitz if ∃P ≥ 0 such that

� (G (θ)) ≤ P� (θ) , ∀ θ ⊂ Z bounded.

In the event that P < 1, we classify G as a strict �-contraction. It is possible to state that G
is �-condensing if

� (G (θ)) ≤ � (θ) ,

for every bounded and nonprecompact subset θ ⊂ Z.

Definition 2.4 Assuming Z ⊂ X and letting G : Z → X, it is worth noting that G is said
to be Lipschitz if ∃P ≥ 0 such that

‖GZ – GW‖ ≤ P‖Z – W‖, ∀Z, W ∈ Z,

and G is a strict contraction as P > 1.

We direct the interested reader for the subsequent results to reference [18].

Proposition 2.5 If F , G : A → X represent mappings that are � – Lipschitz and possess
constants P1 and P2, for specified, it follows that the mapping F + G : A → X is also � –
Lipschitz containing P1 + P2.

Proposition 2.6 In case G : A → X represent, mappings that are compact, it follows that
the mapping G is � – Lipschitz featuring P = 0.

Proposition 2.7 In case G : A → X represent mappings that are Lipschitz and possess
constant P, it follows that the mapping G : A → X is also � – Lipschitz with a constant of P.

Similarly, Isaia [18] derived the following findings using topological degree theory.

Theorem 2.8 Assuming the mapping K : X → X to be �-condensing and considering the
set

ζ = {Z ∈ X : ∃k ∈ [0, 1] in a manner that Z = kKZ}.

If ζ is a bounded set in X, whenever there exists a positive constant r such that ζ is contained
in the ball Br(0) centered at the origin. In this case, for all k ∈ [0, 1], there exist

deg (I – kK, Br(0), 0) = 1.
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Afterwards, we can suggest that the mapping K has at least one fixed point and the set of
fixed points of K is contained within the ball Br(0).

Later, we will provide a detailed explanation of the properties and conclusions related
to the field of fractional calculus. This explanation will begin by introducing a definition
of �-Riemann–Liouville fractional integrals and derivatives. Furthermore, we will delve
deeper into the subject matter.

Definition 2.9 [6] Regarding ϕ > 0, the left-sided �-Riemann–Liouville fractional inte-
gral of variable order l(Q) for a function Z ∈ L(H ,R) due to a different function � : H →R,
which is an increasing differentiable function in such a way that � ′(Q) �= 0, may be eluci-
dated as follows:

I
Q;�
A+ Z(Q) =

1

(Q)

∫ Q

A
(�(Q) – �(F))F–1 � ′(F)Z(F)dF , (2.1)

for all Q ∈ H in such a way that l : [A,b] → (0, 1] is a continuous function.
It is imperative to acknowledge that the decline of (2.1) can be observed in relation to

the Riemann–Liouville and Hadamard fractional integrals, provided that �(Q) = Q and
�(Q) = lnQ, in the sequence offered.

Definition 2.10 [6] Considering n as a natural number and Z and � as two functions
belonging to Cn(H ;R), where � is increasing and � ′(Q) is not equal to zero for all Q in
H , we can elaborate the left-sided �-Caputo of Z of order ϕ

D
Q;�
A+ Z(Q) =

1

(n – Q)

∫ Q

A
(�(Q) – �(F))n–F–1 � ′(F)

(
1

� ′(F)

d
dF

)n

Z(F)dF , (2.2)

c
D

ϕ;�
A+ Z(Q) = I

n–ϕ;�
A+

(
1

� ′(Q)

d
dQ

)n

Z(Q).

From the equation (2.2), it is reduced to the CFD operator as long as �(Q) = Q. More-
over, if �(Q) = lnQ, therefore it gives rise to the Caputo-Hadamard fractional derivative.

Lemma 2.11 [7] In the event that both ϕ and φ are greater than zero, and Z belongs to the
space of integrable functions L1(H ,R), with Q being an element of H , it follows that

I
ϕ;�
A+ I

φ;�
A+ Z(Q) = I

ϕ+φ;�
A+ Z(Q) a.e. t ∈ H .

Especially, if Z belongs to C(H ,R), then I
ϕ;�
A+ I

φ;�
A+ Z(Q) = I

ϕ+φ;�
A+ Z(Q), Q ∈ H .

Lemma 2.12 [7] Assuming that ϕ is greater than zero, if Z belongs to C(H ,R), then for Q
belongs to H

c
D

ϕ;�
A+ I

φ;�
A+ = Z(Q).

For n – 1 < ϕ < n, if Z ∈ Cn (H ,R), then

I
φ;�
A+

c
D

ϕ;�
A+ Z(Q) = Z(Q) –

n–1∑

k=0

Z[k]
� (A)

k!
(�(Q) – �(A))k , for all Q ∈ H . (2.3)
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Notation For the remaining stages, in order to streamline and enhance the ease of com-
putation, it is necessary that the subsequent notations be posited

T =
(

3t1 +
2t (�(b) – �(A))ϕ


(ϕ + 2)
+

2M (�(b) – �(A))ϕ+κ


(ϕ + 2)
(κ + 1)

)
, (2.4)

μ∗ =
(

2μ(�(b) – �(A))ϕ


(ϕ + 2)
+

2M (�(b) – �(A))ϕ+κ


(ϕ + 2)
(κ + 1)

)
, (2.5)

ν∗ =
(

3‖f ‖ +
2|η|

�(b) – �(A)
+

2ν (�(b) – �(A))ϕ


(ϕ + 2)

)
, (2.6)

k1 = (�(b) – �(A))ϕ Eϕ+κ ,ϕ+1
(
M (�(b) – �(A))ϕ+κ

)
, (2.7)

k2 = TEϕ+κ ,1
(
M (�(b) – �(A))ϕ+κ

)
. (2.8)

3 Main results
Here, we obtain our primary findings concerning the existence and uniqueness for the
given problem (1.1).

Lemma 3.1 Given a postulated function H ∈ C(H ,R), the solution to the fractional BVP

⎧
⎪⎨

⎪⎩

cD
ϕ;�
A+ Z(Q) + A(Q)Iκ ;�

A+ Z(Q) = H(Q), Q ∈ [A,b], k > 0,
Z(A) = –f (Z), Z′′(A) = · · · = Z(l)(A) = 0,∫ b

A � ′(Q)Z(Q)dQ = η,
(3.1)

is determined by

Z(Q) =
∞∑

j=0

(–1)j
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
I

ϕ;�
A+ H(Q) – f (Z)

∞∑

j=0

(–1)j
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j

+
2η

(�(b) – �(A))2

∞∑

j=0

(–1)j
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
(�(Q) – �(A))

+
2f (Z)

�(b) – �(A)

∞∑

j=0

(–1)j
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
(�(Q) – �(A))

+
2

(�(b) – �(A))2 
(α + 1)

∫ b

A
� ′(F) (�(b) – �(F))ϕ H(F)dF) (3.2)

×
∞∑

j=0

(–1)j
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
(�(Q) – �(A))

–
(

2 (�(Q) – �(A))

(�(b) – �(A))2 
(α + 1)
(κ)

∫ b

A
� ′(X1) (�(Q) – �(X1))ϕ A(X1)

×
(∫ X1

A
� ′(F) (�(X1) – �(F))κ–1 Z(F)dF

)
ds1

)

×
∞∑

j=0

(–1)j
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
(�(Q) – �(A)) .
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Proof Utilizing Lemma 2.12, the comprehensive solution of the �-fractional differential
equation

c
D

ϕ;�
A+ Z(Q) + A(Q)Iκ ;�

A+ Z(Q) = H(Q),

may be expressed as follows

Z(Q) + f (Z) + c1 (�(Q) – �(A)) + I
ϕ;�
A+ A(Q)Iκ ;�

A+ Z(Q) = I
ϕ;�
A+ H(Q),

or

(
1 + I

ϕ;�
A+ A(Q)Iκ ;�

A+

)
Z(Q) = –f (Z) – c1 (�(Q) – �(A)) + I

ϕ;�
A+ H(Q), (3.3)

where c1 ∈ R. Obviously,

∫ b

A
� ′(Q)Iϕ;�

A+ H(Q)dQ

=
1


(ϕ)

∫ b

A
� ′(Q)

(∫ Q

A
� ′(F) (�(Q) – �(F))ϕ–1 H(F)dF

)
dQ

=
1


(ϕ)

∫ b

A
� ′(F)

(∫ b

F
� ′(F) (�(Q) – �(F))ϕ–1 dQ

)
H(F)dF

=
1


(ϕ + 1)

∫ b

A
� ′(F) (�(Q) – �(F))ϕ H(F)dF .

Similarly,

∫ b

A
� ′(Q)Iϕ;�

A+
(
A(Q)Iκ ;�

A+ Z(Q)
)

dQ

=
1


(ϕ + 1)
(κ)

∫ b

A
� ′(X1) (�(b) – �(X1))ϕ A(X1)

×
(∫ X1

A
� ′(F) (�(X1) – �(F))κ–1 Z(F)dF

)
ds1.

Thus,

∫ b

A
� ′(Q)Z(Q)dQ +

∫ b

A
� ′(Q)f (Z)dQ + c1

∫ b

A
� ′(Q) (�(Q) – �(A))dQ

+
∫ b

A
� ′(Q)Iϕ;�

A+
(
A(Q)Iκ ;�

A+ Z(Q)
)

dQ =
∫ b

A
� ′(Q)Iϕ;�

A+ H(Q)dQ,

Now, from conditions in (3.1), we get

η + f (Z) (�(b) – �(A)) + c1
(�(b) – �(A))2

2

+
∫ b

A
� ′(Q)Iϕ;�

A+
(
A(Q)Iκ ;�

A+ Z(Q)
)

dQ =
∫ b

A
� ′(Q)Iϕ;�

A+ H(Q)dQ.
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Thus,

c1 =
–2η

(�(b) – �(A))2 –
2f (Z)

�(b) – �(A)
+

2
(�(b) – �(A))2 
(α + 1)

×
∫ b

A
� ′(F) (�(b) – �(F))ϕ H(F)dF –

2
(�(b) – �(A))2 
(α + 1)
(κ)

×
∫ b

A
� ′(X1) (�(Q) – �(X1))ϕ A(X1)

(∫ X1

A
� ′(F) (�(X1) – �(F))κ–1 Z(F)dF

)
ds1,

by noting that f (Q) ∈R. So, from the relation (3.3),

(
1 + I

ϕ;�
A+ A(Q)Iκ ;�

A+

)
Z(Q)

= I
ϕ;�
A+ H(Q) – f (Z)

– (�(Q) – �(A))

(
–2η

(�(b) – �(A))2 –
2f (Z)

�(b) – �(A)

+
2

(�(b) – �(A))2 
(α + 1)

∫ b

A
� ′(F) (�(b) – �(F))ϕ H(F)dF

)

–
2 (�(Q) – �(A))

(�(b) – �(A))2 
(α + 1)
(κ)

∫ b

A
� ′(X1) (�(Q) – �(X1))ϕ A(X1)

×
(∫ X1

A
� ′(F) (�(X1) – �(F))κ–1 Z(F)dF

)
ds1.

Considering the factor
(

1 + I
ϕ;�
A+ A(Q)Iκ ;�

A+

)
as a variable, we can infer that through

Babenko’s attitude (3.2), the inverse form of the lemma can be derived through a straight-
forward computation. Consequently, it is possible to consider the proof as completed. �

In the subsequent discussion, we shall expound upon the primary findings pertaining to
the presence of resolutions for the aforementioned issue (1.1). In this section, it is appro-
priate to posit the following hypotheses: (H1) a constant t > 0 is posited such that for each
Q ∈ H and for each Z, Z∗ ∈R:

|�(Q, Z) – �(Q, Z∗)| ≤ t|Z – Z∗|.

(H2) There exists t1 such that for each Q ∈ H and for each Z, Z∗ ∈R:

|f (Z) – f (Z∗)| ≤ t1‖Z – Z∗‖.

(H3) The functions � fulfills the next rising concessions for μ,ν > 0:

|�(Q, Z)| ≤ μ‖Z‖ + νFor each Q ∈ H and each Z ∈R.

In view of Lemma 3.1, we assume two operators G1; G2 : C(H ,R) → C(H ,R) as follows:

G1Z(Q) =
∞∑

j=0

(–1)j
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
I

ϕ;�
A+ �(Q, Z(Q)),
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G2Z(Q) = –f (Z)
∞∑

j=0

(–1)j
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j

+
2η

(�(b) – �(A))2

∞∑

j=0

(–1)j
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
(�(Q) – �(A))

+
2f (Z)

�(b) – �(A)

∞∑

j=0

(–1)j
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
(�(Q) – �(A))

+
2

(�(b) – �(A))2 
(α + 1)

∫ b

A
� ′(F) (�(b) – �(F))ϕ H(F)dF)

×
∞∑

j=0

(–1)j
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
(�(Q) – �(A))

–
(

2 (�(Q) – �(A))

(�(b) – �(A))2 
(α + 1)
(κ)

∫ b

A
� ′(X1) (�(Q) – �(X1))ϕ A(X1)

×
(∫ X1

A
� ′(F) (�(X1) – �(F))κ–1 Z(F)dF

)
ds1

)

×
∞∑

j=0

(–1)j
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
(�(Q) – �(A)) .

Then, it is possible to rephrase the integral equation mentioned in reference (3.2) as stated
in Lemma 3.1, KZ(Q) = G1Z(Q) + G2Z(Q) for Q ∈ H .

The continuous� implies that the operatorK is well-founded and fixed points of the op-
erator equation can be considered as solutions of the integral equations (3.2) in Lemma 3.1.

Lemma 3.2 G1 is a continuous function that satisfies the growth condition mentioned be-
low:

‖G1Z‖ ≤ k1 (μ‖Z‖ + ν) .

Proof To establish the continuity of G1, let us consider the scenario where Zn, Z ∈ C(H ,R)

and the limn→+∞ ‖Zn – Z‖ → 0 holds. It is evident that the collection {Zn} can be catego-
rized as a bounded subset of C(H ,R). Consequently, there exists a constant r > 0 such that
the norm of Zn is bounded by r for all n ≥ 1. Upon evaluating the limit, it becomes evident
that ‖Z‖ ≤ r.

Subsequently, it is not difficult to observe that as n approaches infinity, the function
� (F , Zn(F)) converges to � (F , Z(F)), given the continuity of the function �.

Taking into consideration another viewpoint, when we consider (H3), we will encounter
the subsequent inequality:

� ′(F) (�(Q) – �(F))ϕ–1


(ϕ)
‖� (F , Zn(F)) – � (F , Z(F))‖

≤ 2� ′(F) (�(Q) – �(F))ϕ–1


(ϕ)
(μr + ν) .
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It is observable that the function below

Q �→ 2 (�(Q) – �(F))ϕ–1


(ϕ)
� ′(F) (μr + ν) ,

is integrated over [Qi–1,Q] using Lebesgue integration. As n → +∞, it can be inferred
from the present argument along with the Lebesgue dominated convergence theorem.

∫ Q

A

� ′(F) (�(Q) – �(F))ϕ–1


(ϕ)
‖�(F , Zn(F) – �(F , Z(F))‖dF → 0.

As n approaches infinity, the expression ‖G1Zn – G1Z‖ → 0.
Which also shows that the operator G1 possesses a continuous attribute. For the growth

condition, utilizing the assumption (H2), the result will be

|G1Z(Q)| =

∣∣∣∣∣∣

∞∑

j=0

(–1)j
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
I

ϕ;�
A+ �(Q, Z(Q))

∣∣∣∣∣∣

≤
∞∑

j=0

‖
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
I

ϕ;�
A+ �(Q, Z(Q))‖

≤ ‖�(Q, Z(Q))‖
∞∑

j=0

Mj (�(b) – �(A))(ϕ+κ)j+ϕ



(
ϕ + κ)j + ϕ + 1

)

≤ (�(b) – �(A))ϕ Eϕ+κ ,ϕ+1
(
M (�(b) – �(A))ϕ+κ

)
(μ‖Z‖ + ν)

= k1 (μ‖Z‖ + ν) .

Therefore,

‖G1Z‖ ≤ k1 (μ‖Z‖ + ν) . (3.4)

This serves as proof of the fulfillment of the lemma (3.3). �

Lemma 3.3 G2 is Lipschitz via constant k2 = TEϕ+κ ,1
(
M (�(b) – �(A))ϕ+κ

)
. Plus, G2 ful-

fills the growth condition stated below

‖G2Z(Q)‖ ≤ Eϕ+κ ,1
(
M (�(b) – �(A))ϕ+κ

) (
μ∗‖Z‖ + ν∗) .

Proof In order to demonstrate that the operator G2 is Lipschitz via constant l� = tη2, and
authorizing Z, Z∗ ∈ C(H ,R), and M = supA≤Q≤b | kS2

S1
– e–k�(Q)|, we will encounter for all

Q ∈ H :

∣∣G2Z(Q) – G2Z∗(Q)
∣∣ ≤ ‖f (Z) – f (Z∗)‖

∞∑

j=0

‖
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j ‖

+
2‖f (Z) – f (Z∗)‖
�(b) – �(A)

|�(Q) – �(A)|
∞∑

j=0

‖
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j ‖
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+
2 |�(Q) – �(A)|

(�(b) – �(A))2 
(ϕ + 1)

∞∑

j=0

‖
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j ‖

×
∫ b

A
� ′(F) (�(b) – �(F))ϕ

∣∣�(F , Z(F)) – �(F , Z∗(F))
∣∣dF

+
2 |�(Q) – �(A)|

(�(b) – �(A))2 
(ϕ + 1)
(κ)

∞∑

j=0

‖
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j ‖

×
∫ b

A
� ′(X1) (�(b) – �(X1))ϕ A(X1)

(∫ X1

A
� ′(F) (�(X1) – �(F))κ–1 ∣∣Z(F)) – Z∗(F)

∣∣dF
)

dX1

≤ 3‖f (Z) – f (Z∗)‖
∞∑

j=0

Mj (�(b) – �(A))(ϕ+κ)j



(
(ϕ + κ)j + 1

)

+
2 (�(b) – �(A))ϕ


(ϕ + 2)

∣∣�(F , Z(F)) – �(F , Z∗(F))
∣∣

×
∞∑

j=0

Mj (�(b) – �(A))(ϕ+κ)j



(
(ϕ + κ)j + 1

)

+
2M (�(b) – �(A))ϕ+κ


(ϕ + 2)
(κ + 1)

∥∥Z – Z∗∥∥
∞∑

j=0

Mj (�(b) – �(A))(ϕ+κ)j



(
(ϕ + κ)j + 1

)

≤
(

3t1 +
2t (�(b) – �(A))ϕ


(ϕ + 2)
+

2M (�(b) – �(A))ϕ+κ


(ϕ + 2)
(κ + 1)

)

× Eϕ+κ ,1
(
M (�(b) – �(A))ϕ+κ

)‖Z – Z∗‖
= TEϕ+κ ,1

(
M (�(b) – �(A))ϕ+κ

)‖Z – Z∗‖
= k2‖Z – Z∗‖.

In relation to the supremum of Q, the next inequality will be accomplished.

∥∥G2Z(Q) – G2Z∗(Q)
∥∥ ≤ k2‖Z – Z∗‖.

Hence, the operator G2, which maps from C(H ,R) to C(H ,R), is a Lipschitzian operator
on C(H ,R) with a Lpischitz constant k2 = TEϕ+κ ,1

(
M (�(b) – �(A))ϕ+κ

)
.

According to Proposition 2.7, G is �-Lipschitz with constant k2. Furthermore, consider-
ing the growth condition, we obtain

|G2Z(Q)| ≤ |f (Z)|
∞∑

j=0

∥∥∥∥
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
∥∥∥∥

+
2|η| |�(Q) – �(A)|

(�(b) – �(A))2

∞∑

j=0

∥∥∥∥
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
∥∥∥∥

+
2f (Z) |�(Q) – �(A)|

�(b) – �(A)

∞∑

j=0

∥∥∥∥
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
∥∥∥∥
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+
2|�(Q, Z(Q))| (�(b) – �(A))ϕ


(ϕ + 2)

∞∑

j=0

∥∥∥∥
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
∥∥∥∥

+
2M‖Z‖ (�(b) – �(A))ϕ+κ


(α + 2)
(κ + 1)

∞∑

j=0

∥∥∥∥
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
∥∥∥∥

≤ 3|f (Z)|
∞∑

j=0

Mj (�(b) – �(A))(ϕ+κ)j



(
(ϕ + κ)j + 1

)

+
2|η|

(�(b) – �(A))

∞∑

j=0

Mj (�(b) – �(A))(ϕ+κ)j



(
(ϕ + κ)j + 1

)

+
2 (μ‖Z‖ + ν) (�(b) – �(A))ϕ


(ϕ + 2)

∞∑

j=0

Mj (�(b) – �(A))(ϕ+κ)j



(
(ϕ + κ)j + 1

)

+ (
2M‖Z‖ (�(b) – �(A))ϕ+κ


(α + 2)
(κ + 1)

∞∑

j=0

Mj (�(b) – �(A))(ϕ+κ)j



(
(ϕ + κ)j + 1

)

≤
(

3‖f ‖ +
2|η|

(�(b) – �(A))
+

2 (μ‖Z‖ + ν) (�(b) – �(A))ϕ


(ϕ + 2)

+
2M‖Z‖ (�(b) – �(A))ϕ+κ


(ϕ + 2)
(κ + 1)

)
Eϕ+κ ,1

(
M (�(b) – �(A))ϕ+κ

)

=
(

2μ‖Z‖ (�(b) – �(A))ϕ


(ϕ + 2)
+

2M‖Z‖ (�(b) – �(A))ϕ+κ


(ϕ + 2)
(κ + 1)

+3‖f ‖ +
2|η|

(�(b) – �(A))
+

2ν (�(b) – �(A))ϕ


(ϕ + 2)

)

× Eϕ+κ ,1
(
M (�(b) – �(A))ϕ+κ

)

= Eϕ+κ ,1
(
M (�(b) – �(A))ϕ+κ

) (
μ∗‖Z‖ + ν∗) .

Hence it follows that

‖G2Z(Q)‖ ≤ Eϕ+κ ,1
(
M (�(b) – �(A))ϕ+κ

) (
μ∗‖Z‖ + ν∗) .

This serves as proof of the fulfillment of the lemma 3.3. �

Lemma 3.4 The operator G1 is compact, regarding G1 : C(H ,R) → C(H ,R). As a conse-
quence, G1 is �-Lipschitz through zero consistent.

Proof Consider a bounded category � ⊂ Br = {Z ∈ C(H ,R) : |Z| ≤ r}. We must show that
G1(Z) is relatively compact in C(H ,R). For any Z ∈ � ⊂ Br , we will achieve this by using
the estimations referred to in (3.4)

‖G1Z‖ ≤ (μr + ν) (�(b) – �(A))ϕ Eϕ+κ ,ϕ+1
(
M (�(b) – �(A))ϕ+κ

)
,

and G1(Z) remains uniformly bounded. Moreover, for any Z ∈ C(H ,R) and Q ∈ H , to
demonstrate the equicontinuity of G1, consider Q1,Q2 ∈ H with Q1 < Q2, and let Z ∈ �.
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Subsequently, we will proceed

|G1Z(Q2) – G1Z(Q1)|

≤ 2M (μr + ν)

∞∑

j=0

(�(Q2) – �(A))(ϕ+κ)+ϕ – (�(Q1) – �(A))(ϕ+κ)+ϕ



(
(ϕ + κ)j + ϕ + 1

) .

Based on our latest estimate, we can infer that as Q2 → Q1 the expression |G1Z(Q2) –
G1Z(Q1)| goes to 0, which means that G1 is equicontinuous. Thus, using the Ascoli-Arzela
theorem, we conclude that the operator G1 is compact. Also, from Proposition 2.6, it fol-
lows that G1 is �-Lipschitz via zero constant. �

Theorem 3.5 Presuming that conditions (H1)–(H3) are satisfied, it follows that the BVP
(1.1) possesses at least one solution denoted by Z and belonging to the set of continuous
functions from H to R, provided that the constant k2 < 1. Moreover, the set of solutions is
encompassed within the space C (H ,R).

Proof Assume that the operators G1, G2, K, and K have been introduced as described in
the preceding section. These operators possess a continuous nature and are encompassed
within their respective spaces. Plus

• operator G2 is �-Lipschitz via constant k2, through Lemma 3.3,
• operator G1 is �-Lipschitz with constant 0 through Lemma 3.4. Thus, K is �-Lipschitz

with constant k2, through Lemma 2.5.
Furthermore, the operator K can be characterized as a strict contraction with respect to
the constant k2. Given that k2 is less than 1, it can be deduced that K is �-condensing. The
subsequent category is then considered

ζ = {Z ∈ C(H ,R) : ∃k ∈ I such that Z = kKZ}.

The boundary of category ζ can be demonstrated. For Z ∈ ζ , we have

Z = kKZ = k (G1(Z) + G2(Z)) ,

which implies that

‖Z‖ ≤ k (‖G1Z‖ + ‖G2Z‖)
≤ (�(b) – �(A))ϕ Eϕ+κ ,ϕ+1

(
M (�(b) – �(A))ϕ+κ

)
(μ‖Z‖ + ν)

+ Eϕ+κ ,1
(
M (�(b) – �(A))ϕ+κ

) (
μ∗‖Z‖ + ν∗)

= k1 (μ‖Z‖ + ν) + Eϕ+κ ,1
(
M (�(b) – �(A))ϕ+κ

) (
μ∗‖Z‖ + ν∗) .

In this manner, the set ζ is bounded, and the operator K possesses at least one fixed point
that corresponds to the solution of the BVP (1.1). �

Theorem 3.6 In the context of the assumption labeled as (H1)–(H2), the BVP cited as (1.1)
has a unique solution given that the prescribed condition is satisfied:

P = tk1 + k2 < 1.
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Proof Assuming that both Z and Z∗ belong to C(H ,R), and that Q is an element of H , we

will encounter

|KZ(Q) – KZ∗(Q)| ≤
∞∑

j=0

∥∥∥∥
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
I

ϕ;�
A+

∥∥∥∥
∥∥�(Q, Z(Q)) – �(Q, Z∗(Q))

∥∥

×
∫ Q

A
� ′(F) (�(Q) – �(F))ϕ–1 dF

+ ‖f (Z) – f (Z∗)‖
∞∑

j=0

∥∥∥∥
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
∥∥∥∥

+
2‖f (Z) – f (Z∗)‖
�(b) – �(A)

|�(Q) – �(A)|
∞∑

j=0

∥∥∥∥
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
∥∥∥∥

+
2 |�(Q) – �(A)|

(�(b) – �(A))2 
(ϕ + 1)
∞∑

j=0

∥∥∥∥
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
∥∥∥∥

×
∫ b

A
� ′(F) (�(b) – �(F))ϕ

∣∣�(F , Z(F)) – �(F , Z∗(F))
∣∣dF

+
2 |�(Q) – �(A)|

(�(b) – �(A))2 
(ϕ + 1)
(κ)

∞∑

j=0

∥∥∥∥
(
I

ϕ;�
A+ A(Q)Iκ ;�

A+

)j
∥∥∥∥

×
∫ b

A
� ′(X1) (�(b) – �(X1))ϕ A(X1)

(∫ X1

A
� ′(F) (�(X1) – �(F))κ–1 ∣∣Z(F)) – Z∗(F)

∣∣dF
)

dX1

≤ ∥∥�(Q, Z(Q)) – �(Q, Z∗(Q))
∥∥

∞∑

j=0

Mj (�(b) – �(A))(ϕ+κ)j+ϕ



(
(ϕ + κ)j + ϕ + 1

)

+ 3‖f (Z) – f (Z∗)‖
∞∑

j=0

Mj (�(b) – �(A))(ϕ+κ)j



(
(ϕ + κ)j + 1

)

+
2 (�(b) – �(A))ϕ


(ϕ + 2)

∣∣�(F , Z(F)) – �(F , Z∗(F))
∣∣

×
∞∑

j=0

Mj (�(b) – �(A))(ϕ+κ)j



(
(ϕ + κ)j + 1

)

+
2M (�(b) – �(A))ϕ+κ


(ϕ + 2)
(κ + 1)

∥∥Z – Z∗∥∥
∞∑

j=0

Mj (�(b) – �(A))(ϕ+κ)j+ϕ



(
ϕ + κ)j + ϕ + 1

)

≤ t (�(b) – �(A))ϕ Eϕ+κ ,ϕ+1
(
M (�(b) – �(A))ϕ+κ

)

+
(

3t1 +
2t (�(b) – �(A))ϕ


(ϕ + 2)
+

2M (�(b) – �(A))ϕ+κ


(ϕ + 2)
(κ + 1)

)

×Eϕ+κ ,1
(
M (�(b) – �(A))ϕ+κ

)]‖Z – Z∗‖
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= (tk1 + k2)‖Z – Z∗‖
= P‖Z – Z∗‖.

In light of the aforementioned concession P < 1, it can be comprehended that the map-
ping denoted by K exhibits the property of contraction. Consequently, by virtue of the
Banach fixed-point theorem, K possesses a distinct fixed point, which can be regarded as
the unique solution to problem (1.1). �

4 Illustrative examples
In this section, certain issues are approached as a means of illustrating our findings:

Test example 4.1 Examine the problem below:

⎧
⎪⎪⎨

⎪⎪⎩

cD3.3
0+ Z(Q) + 4 sinQ

Q2+100I
1.2
0+ Z(Q) = 1

10eQ+90

(
1 + |Z(Q)|

1+|Z(Q)|
)

, Q ∈ I = [0, 1],
Z(A) = 0.01 sin Z(.5), Z′′(0) = Z′′′(0) = 0,∫ b

A Z(Q)dQ = 1.
(4.1)

It is important to acknowledge that the issue at hand represents a particular instance of
problem (1.1), encompassing the subsequent information

�(Q) = Q, ϕ = 3.3, κ = 1.2, f (Z) = –0.01 sin Z(.5), A = 0, b = 1,

A(Q) =
4 sinQ
Q2 + 100

, η = 1,

the continuous function � : J ×R →R is shown below

� (Q, Z(Q)) =
1

10eQ + 90

(
1 +

|Z(Q)|
1 + |Z(Q)|

)
Q ∈ J, Z ∈R.

Point 1: Hypothesis (H1) is confirmed:
For every Q ∈ I and Z, W ∈R, we obtain the following

|� (Q, Z(Q)) – � (Q, W (Q))| =
1

10eQ + 90

∣∣∣∣

(
1 +

|Z(Q)|
1 + |Z(Q)|

)
–

(
1 +

|W (Q)|
1 + |W (Q)|

)∣∣∣∣

≤ 1
10eQ + 90

|Z(Q) – W (Q)|
1 + |Z(Q)|)(1 + |Z(Q)|)

≤ 0.01︸︷︷︸
t

|Z(Q) – W (Q)| .

Point 2: Hypothesis (H2) holds:
For each Z, W ∈R, we gain

∣∣f (Z) – f (Z∗)
∣∣ = 0.01 |sin Z(0.5) – sin W (0.5)|

= 0.01
∣∣Z(.5) – Z∗(0.5)

∣∣

= 0.01︸︷︷︸
t1

‖Z – W‖ .



Agheli and Darzi Journal of Inequalities and Applications        (2024) 2024:116 Page 16 of 19

Point 3: Hypothesis (H3) is confirmed:
For each Q ∈ I and Z ∈R, we obtain the following equation

� (Q, Z(Q)) =
1

10eQ + 90

(
1 +

|Z(Q)|
1 + |Z(Q)|

)
≤ 0.01 (|Z| + 1) ,

that shows here μ = ν = 0.01, p = 1. Due to the theorem 3.5

ζ = {Z ∈ C(H ,R) : ∃k ∈ I such that Z = kKZ}

is the solution set; then, we gain

‖Z‖ ≤ k1ν + ν∗Eϕ+κ ,1
(
M (�(b) – �(A))ϕ+κ

)

1 –
(
k1μ + μ∗Eϕ+κ ,1

(
M (�(b) – �(A))ϕ+κ

)) = 0.0076,

where μ∗ = 0.050525, ν∗ = 0.007217, k1 = 0.001129, E4.5,1(0.04) = 1.00076. And so, theo-
rem 3.5 confirms that the system is resolved. Furthermore

tk1 + k2 = 0.01 × 0.001129 + 0.032456 = 0.032467 < 1.

Theorem 3.6 proves that system (4.1) possesses a unique solution.

Test example 4.2 Allow us to examine the next problem:

⎧
⎪⎪⎨

⎪⎪⎩

cHD4.7
1+ Z(Q) +

√
8Q

Q2+1
HI1.2

1+ Z(Q) = 1
5(1+t)4

(
Z(Q) +

√
1 + Z2(Q)

)
, Q ∈ I = [1, 2],

Z(1) = 1
20 sin2 Z(1.5), Z′′(1) = Z′′′(1) = Z(4)(1) = 0,∫ 2

1 Z(Q) 1
QdQ = 1.

(4.2)

It is important to acknowledge that the issue at hand represents a particular instance of
problem (1.1), encompassing the subsequent information

�(Q) = lnQ, ϕ = 4.7, κ = 1.2, f (Z) =
1

20
sin2 Z(1.5), A = 1, b = 2,

A(Q) =
√

8Q
Q2 + 1

, η = 1,

the operators denoted by cHD1+4.7 and HI1+1.2 represent the Caputo–Hadamard deriva-
tive and Hadamard integral, respectively, and continuous function � : J ×R →R is stated
as

� (Q, Z(Q)) =
1

10(1 + t)4

(
Z(Q) +

√
1 + Z2(Q)

)
, Q ∈ J, ω ∈R.

Point 1: Hypothesis (H1) is confirmed: ∀Q ∈ J and Z, W ∈R, we gain

|� (Q, Z(Q)) – � (Q, W (Q))|

=
1

5(1 + t)4

∣∣∣Z(Q) – W (Q) +
√

1 + Z2(Q) –
√

1 + (W 2(Q)
∣∣∣
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=

∣∣∣∣∣(Z(Q) – W (Q))

(
1 +

Z(Q) – W (Q)√
1 + Z2(Q) –

√
1 + (W 2(Q)

)∣∣∣∣∣

≤ 0.05︸︷︷︸
t

|Z(Q) – W (Q)| .

Point 2: Hypothesis (H2) hold: For each Z, Z∗ ∈R, we gain

∣∣f (Z) – f (Z∗)
∣∣ =

1
20

∣∣sin2 Z(1.5) – sin2 Z∗(1.5)
∣∣

≤ 1
20

∣∣sin Z(1.5) + sin Z∗(1.5)
∣∣ ∣∣sin Z(1.5) – sin Z∗(1.5)

∣∣

≤ 1
10

∣∣sin Z(1.5) – sin Z∗(1.5)
∣∣

≤ 0.1︸︷︷︸
t1

∥∥Z – Z∗∥∥ .

Point 3: Condition P < 1 is confirmed:

P = tk1 + k2

=
1
5

(ln 2)4.7 E5.9,5.7
(
2 (ln 2)5.9)

+

(
3 × 0.1 +

2
5 (ln 2)4.7


(6.7)
+

4 (ln 2)5.9


(2.2)
(6.7)

)
E5.9,1

(
2 (ln 2)5.9)

= 0.301286 < 1.

Theorem 3.6 guarantees that system (4.2) possesses a unique solution.

5 Conclusions
We have investigated the existence and uniqueness of solutions to the nonlinear �

fractional integral differential equation (1.1), where nonlocal boundary conditions and
variable coefficients are present. To achieve this, we used the Mittag–Leffler function,
Babenko’s approach, and Banach’s contraction principle and topological degree theory.
The proof of existence results is based on the fixed point theorem due to Isaia [18], who
pretty recently obtained such a fixed-point theorem via coincidence degree theory for
condensing maps and that of uniqueness of the solution is proven by applying the Banach
contraction principle. Of course, two representative examples have been given to illustrate
the efficiency and performance of the results of the present study.

The above technique, obviously, opens up the doors for further study involving various
other types of boundary conditions or with different fractional derivatives. The scope of
this study encompasses the investigation of the BVP related to the nonlinear fractional
partial Integral-Differential Equations with varying coefficients, along with the scrutiny of
nonlinear integro-differential equations that incorporate the Hilfer fractional derivatives.
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