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Abstract
In this paper, we introduce the notion of unified interpolative contractions of the
Reich–Rus–Ćirić type and give some results about the fixed points for these
mappings in the framework of relational metric spaces. We present examples where
the results of some previous research are not relevant. Also, we apply our results to
solving problems related to nonlinear matrix equations, emphasizing their practical
importance.
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1 Introduction
The Banach contraction principle, a cornerstone of metric fixed-point theory, has found
extensive applications across various disciplines, including physics, chemistry, eco-
nomics, computer science, and biology. Consequently, the exploration and generaliza-
tion of this principle have become focal points of research within nonlinear analysis
[1–4].

The mappings that satisfy the Banach contraction principle are continuous. This
prompts a natural question:

Can a discontinuous map in a complete metric space while satisfying analogous con-
tractive conditions, possess a fixed point?

This intriguing question spurred investigation within the field, leading to an affirmative
answer by Kannan [5]. Through the introduction of a novel form of contraction, Kannan
[5] illuminated the possibility of fixed points within the realm of discontinuous maps and
expanded the domain of inquiry within nonlinear analysis.

In 1972, Reich [6] extended the principles introduced by Banach and Kannan. For in-
stance, a self-mapping S : X → X is referred to as a Reich-contraction mapping if there
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exist values α,β ,γ ∈ [0, 1), where α + β + γ < 1, such that

d(Sν,Sμ) ≤ αd(ν,Sν) + βd(μ,Sμ) + γ d(ν,μ) (1.1)

for all ν,μ ∈ X.
Additional significant variations of the Banach contraction principle were explored in-

dependently by Ćirić, Reich, and Rus [7–9]. A collective outcome attributed to their work
is presented below, recognized as the Ćirić–Reich–Rus contraction if there exits λ ∈ [0, 1

3 )

such that

d(Sν,Sμ) ≤ λ
[
d(ν,μ) + d(ν,Sν) + d(μ,Sμ)

]
(1.2)

for all ν,μ ∈ X.
In 2018, Karapınar [10] employed the interpolative method and converted the funda-

mental contraction concept of Kannan [5] into an interpolative form. Karapınar et al. [11]
detected a deficiency in the analysis conducted by [10] concerning the assumption that
the fixed point is unique. They accomplished this by presenting a counterexample and
formulated an amended version, while also introducing the notions of interpolative Re-
ich, Rus, and Ćirić type contractions, e.g., a mapping S : X → X is called an interpolative
Reich–Rus–Ćirić-type contraction, if there are constants λ ∈ [0, 1) and α,β ∈ (0, 1) such
that

d(Sν,Sμ) ≤ λ
(
d(ν,μ)α · d(ν,Sν)β · d(μ,Sμ)1–α–β

)
(1.3)

for all ν,μ ∈ X \ F(S). They also proved that in the framework of partial metric space
(X, d), a mapping S , characterized as an interpolative Reich–Rus–Ćirić-type contraction,
possesses a fixed point. Additionally, noteworthy contributions have been made by several
authors [12–15], further enriching this area of study.

On the other hand, Gordji et al. [16] introduced the notion of orthogonal sets. It is im-
perative to note that we let X denote a nonempty set and ⊥ represent a binary relation
defined on it. The relation ⊥ is termed orthogonal if there exists ν0 ∈ X such that

(∀μ ∈ X)ν0⊥μ ∨ (∀μ ∈ X)μ⊥ν0, (1.4)

where ν0 is referred to as an orthogonal element, and the tuple (X,⊥) is identified as
an orthogonal set. An orthogonal set (X,⊥) equipped with a metric d is denoted as an
orthogonal-metric space, symbolized by (X,⊥, d). In the framework of orthogonal metric
spaces, Nazam et al. [17] have recently generalized condition (1.3) as follows.

Definition 1.1 [17] Let (X,⊥, d) be an orthogonal metric space and

ψ ,φ : (0, +∞) → (–∞, +∞)

be two functions. The mapping S : X → X is said to be a (ψ ,φ)-orthogonal interpolative
Reich–Rus–Ćirić-type contraction if there exists α,β ∈ [0, 1) with α + β < 1 such that

ψ
(
d(Sν,Sμ)

) ≤ φ
(
d(ν,μ)αd(ν,Sν)βd(μ,Sμ)1–α–β

)
(11)
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and

min
{

d(Sν,Sμ), d(ν,μ), d(μ,Sμ), d(ν,Sν)
}

> 0 (1.5)

for all (ν,μ) ∈ {(ν,μ) ∈ X × X : ν⊥μ}.

In recent years, the establishment of fixed-point results in metric spaces, characterized
by various types of binary relations, has emerged as a significant area in fixed-point the-
ory. Numerous types of binary relations, including partial orders, preorders, transitive
relations, finitely transitive relations, locally S-transitive relations, strict orders, and sym-
metric closures (see [18–26]), have been extensively employed in this endeavor.

Recently, Alam and Imdad [27] presented fixed-point results in metric spaces endowed
with an arbitrary binary relation R. Given the arbitrary nature of R, it is notable that in
specific cases,R can be construed as partial order [19, 20] (i.e.,R := “ � ”), orthogonal [16]
(i.e., R := “⊥”), or similar instances. Due to its significance and wide applicability in the
literature, numerous fixed-point results have been derived (see [28–34]). It is noteworthy
that these results often pertain to weaker properties such as R-continuity (not neces-
sarily implying continuity) and R-completeness (not necessarily implying completeness),
among others. This context offers more flexibility as the contraction condition is not man-
dated for every element but only for those that are related. Importantly, these contraction
conditions return to their usual forms when considering the universal relation.

In our current study, we introduce a broader idea called unified interpolative Reich–
Rus–Ćirić-type contraction. This concept encompasses many existing findings, including
those presented by [7–11, 17, 27]. We demonstrate several fixed-point results for such
contractions within relational metric spaces.

2 Preliminaries
Before presenting our main results, it is important to introduce formal notations that will
be used throughout this paper.

Let X be a nonempty set, with a binary relation R. In this context, the pair (X,R) is
acknowledged as a relational set. Similarly, within the framework of a metric space (X, d),
we designate that the triplet (X, d,R) constitutes a relational metric space. The collection
of fixed points of the self-mapping S is indicated by F(S), and we let XR denote the set
defined by

XR =
{
(ν,μ) ∈ X2 : (ν,μ) ∈R and ν,μ /∈ F(S)

}
.

Furthermore, X(S ,R) is a subset of X, containing elements ν such that (ν,Sν) ∈R. These
formalized notations ensure precision and consistency throughout our subsequent anal-
yses and discussions.

Definition 2.1 [27] In the context of a relational set (X,R), and a self-map S defined on
X:

(i) any two elements ν,μ ∈ X are considered R-comparative if (ν,μ) ∈R or
(μ,ν) ∈R. This relationship is symbolically represented as [ν,μ] ∈R;

(ii) a sequence {νk} ⊂ X satisfies the condition (νk ,νk+1) ∈R for all k ∈N0, is referred
to as an R-preserving sequence;
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(iii) R is designated as S-closed when it satisfies the condition that if (ν,μ) belongs to
R, then (Sν,Sμ) also belongs to R, for any ν,μ ∈ X ;

(iv) R is referred to as d-self-closed under the condition that whenever there exists a

R-preserving sequence {νk} such that νk
d−→ ν , we can always find a subsequence

{νkn} of {νk} such that [νkn ,ν] belongs to R for all n ∈N0.

Definition 2.2 [35] (X, d,R) is considered as R-complete if every R-preserving Cauchy
sequence converges in X.

Definition 2.3 [35] A self-mapS defined on X is termedR-continuous at ν ∈ X, if any R-

preserving sequence νk
d−→ ν , impliesSνk

d−→ Sν . Furthermore, ifS exhibits this behavior
at every point in X, it is simply categorized as R-continuous.

Definition 2.4 [36] Consider a self-map S defined on X. If for every R-preserving se-
quence {νn} ⊂ S(X), with a range denoted as E = {νn : n ∈ N}, R|E is transitive, then S is
designated as locally S-transitive.

Samet et al. [37] introduced the concept of α-admissible mappings, which has been ap-
plied by various authors in numerous fixed-point theorems.

Definition 2.5 [37] Suppose S is a self-map on X, and α : X ×X →R
+ is a function. Then,

S is considered α-admissible if α(ν,μ) ≥ 1 ⇒ α(Sν,Sμ) ≥ 1 for all ν,μ ∈ X.

In the following definition, we generalize this concept by incorporating certain relational
metrical notions.

Definition 2.6 Let (X,R) be a relational set. A self-map S defined on X is termed R-
admissible if there exists a function ϑ : X × X → [0, +∞), satisfying the following condi-
tions:

(r1) ϑ(ν,μ) ≥ 1 for all (ν,μ) ∈R;
(r2) R is S-closed.

Remark 2.7 From the above two definitions, we can observe that if S is α-admissible, it
also holds that S is R-admissible when considering

R =
{
(ν,μ) ∈ X2 : ϑ(ν,μ) ≥ 1

}
.

However, it should be noted that the converse is not necessarily true, as illustrated in the
following example.

Example 2.8 Let X = {0, 1, 2, 3}, ϑ : X × X →R
+ by

ϑ(ν,μ) =

⎧
⎪⎪⎨

⎪⎪⎩

2, (ν,μ) ∈ {(0, 1), (1, 2), (2, 3)}
1, (ν,μ) ∈ {(0, 2), (1, 1), (2, 1), (2, 2)}

2
ν+5 , otherwise.
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Let S : X → X be defined by

Sν =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if ν = 0

2, if ν = 1

1, if ν = 2

3, if ν = 3.

In this example, it is evident that ϑ(2, 3) ≥ 1, but ϑ(S2,S3) = ϑ(1, 3) � 1, indicating that
S is not α-admissible. Now, let us consider the binary relation R defined as

R =
{
(0, 1), (0, 2), (1, 2), (2, 1), (1, 1), (2, 2)

}
.

It can be observed that for all ν,μ ∈ X with (ν,μ) ∈ R, we have ϑ(ν,μ) ≥ 1. Therefore, S
satisfies condition (r1). Furthermore, whenever (ν,μ) ∈R, we have (Sν,Sμ) ∈R, indicat-
ing that R is S-closed and satisfies condition (r2). Hence, S is R-admissible.

Let ψ ,φ : [0, +∞) → [0, +∞) be two functions. Then, we consider the following condi-
tions:

(C1) φ is upper semicontinuous with φ(0) = 0;
(C2) ψ is lower semicontinuous;
(C3) ψ , φ are nondecreasing;
(C4) ψ(t) > φ(t), for all t > 0;
(C5) lim supt→c+ φ(t) < ψ(c+), for all c > 0;
(C6) lim supt→e+ φ(t) ≤ lim inft→e+ ψ(t), for any e > 0.
In the next section, we will introduce a novel concept termed as the unified interpolative

Reich–Rus–Ćirić-type contraction condition and establish several fixed-point results for
such contractions.

3 Main results
First, we give a definition of a unified interpolative Reich–Rus–Ćirić-type contraction.

Definition 3.1 Let (X, d,R) be a relational metric space. A self-mappingS defined on X is
termed a unified interpolative Reich–Rus–Ćirić-type contraction, if there exist the func-
tions ψ ,φ : [0, +∞) → [0, +∞), and a function ϑ : X × X →R

+, along with the parameters
α,β ∈ [0, 1) with α + β < 1 such that

ϑ(ν,μ)ψ
(
d(Sν,Sμ)

) ≤ φ
(



(
d(ν,μ), d(ν,Sν), d(μ,Sμ)

))
(3.1)

for all ν,μ ∈ XR, where 
 : R3 →R is a mapping such that


(u, v, w) ≤ max
{

u, v, w, uαvβw1–α–β
}

.

Remark 3.2 By giving the precise definitions of the functions ψ , ψ , ϑ , and 
, it becomes
evident that we can draw the following conclusions, underscoring the extensive applica-
bility and versatility of Definition 3.1.
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(i) When we consider ϑ(ν,μ) = 1, and 
(u, v, w) = uα · vβ · w1–α–β , where α + β < 1 in
equation (3.1), also consider the binary relation R as

R =
{
(ν,μ) ∈ X2 : ν ⊥ μ

}
,

we obtain the (ψ ,φ)-orthogonal interpolative Ćirić–Reich–Rus-type contraction
[17]

ψ
(
d(Sν,Sμ)

) ≤ φ
(
d(ν,μ)α · d(ν,Sν)β · d(μ,Sμ)1–α–β

)
(3.2)

for all ν,μ ∈ XR.
(ii) By taking α = 0 in (3.2) we obtain the (ψ ,φ)-orthogonal Kannan contraction [17],

ψ
(
d(Sν,Sμ)

) ≤ φ
(
d(ν,Sν)β · d(μ,Sμ)1–β

)
(3.3)

for all ν,μ ∈ XR.
(iii) By taking ψ(t) = t, and ψ(t) = λt, λ < 1, and considering R as a universal relation in

(3.2) and (3.3) we obtain the interpolative Reich–Rus–Ćirić-type contraction [11]
and interpolative Kannan contraction [10], respectively.

(iv) By considering ψ(t) = t, φ(t) = λt, λ < 1, and 
(u, v, w) = u+v+w
3 , we obtain the

combined result of Ćirić, Reich, and Rus [7–9]:

d(Sν,Sμ) ≤ λ
(
d(ν,μ) + d(ν,Sν) + d(μ,Sμ)

)
(3.4)

for all ν,μ ∈ XR.
(v) By considering ψ(t) = t and φ(t) = λt, λ < 1, and 
(u, v, w) = u, we obtain the

relational theoretic version of the famous Banach contraction that is introduced by
Aftab Alam and Mohammad Imdad [27].

(vi) By considering ψ(t) = t, φ(t) = λt and 
(u, v, w) = v+w
2 , we obtain the Kannan

contraction with the constant λ ∈ [0, 1
2 ),

d(Sν,Sμ) ≤ λ
(
d(ν,Sν) + d(μ,Sμ)

)
(3.5)

for all ν,μ ∈ XR.

Now, we will proceed to establish our main results concerning the unified interpolative
Reich–Rus–Ćirić contraction maps.

Theorem 3.3 Consider the relational metric space (X, d,R), where R is a locally S-
transitive binary relation. Suppose that S is a unified interpolative Reich–Rus–Ćirić-type
contraction, and there exist functions ψ ,φ : [0, +∞) → [0, +∞) satisfying conditions Ci,
(i = 1, 2, 3, 4). Under the following conditions:

(D1) S is R-admissible;
(D2) there exists Y ⊆ X with S(X) ⊆ Y , such that (Y , d,R) is R-complete;
(D3) X(S ,R) is nonempty;
(D4) either S is R|Y -continuous or R is d-self-closed;

there exists at least one γ ∈ X such that γ ∈ F(S).
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Proof Under the assumption (D3), suppose that ν0 ∈ X(S ,R). Define the sequence {νn} of
Picard iterates with initial point ν0, i.e., νn = Snν0 for all n ∈ N0. As (ν0,Sν0) ∈R and S is
R-admissible, using (r1) it follows that

(
Snν0,Sn+1ν0

) ∈R.

Consequently, (νn,νn+1) ∈ R for all n ∈ N0, and this yields that the sequence {νn} is R-
preserving and from (r2) we have ϑ(νn,νn+1) ≥ 1. Let dn = d(νn,νn+1), and applying the
contractive condition (3.1), we obtain that

ψ(dn) ≤ ϑ(νn–1,νn)ψ
(
d(Sνn–1,Sνn)

)

≤ φ
(



(
d(νn–1,νn), d(νn–1,Sνn–1), d(νn,Sνn)

))

≤ φ
(
max

{
dn–1, dn–1, dn, dα

n–1 · dβ
n–1 · d1–α–β

n
})

< ψ
(
max

{
dn–1, dn, dα+β

n–1 · d1–(α+β)
n

})
. (3.6)

By the monotonicity of the function ψ we obtain

dn < max
{

dn–1, dn, dα+β
n–1 · d1–(α+β)

n
}

. (3.7)

Now, suppose there exists n ∈ N for which dn–1 ≤ dn, then from (3.7) we obtain that dn <
dn, which is a contradiction. Therefore, dn ≤ dn–1, now we can conclude that {νn} is a
nonincreasing sequence and thus a nonnegative constant C exists such that, limn→+∞ dn =
C+. Suppose, if possible, C > 0, then from (3.6), it can be deduced that

ψ(C+) ≤ lim infψ(dn) ≤ lim supφ(dn–1) ≤ φ(C+),

but, from (C4) we have ψ(ν) > φ(ν) for all ν > 0, therefore C must be 0, i.e., limn→+∞ dn = 0.
Our next objective is to establish that the sequence {νn} is Cauchy. For the sake of con-
tradiction, suppose it is not, then there exists a positive real number ε > 0 along with
subsequences {νnk } and {νmk } of {νn}, with nk > mk ≥ k, such that

d(νmk ,νnk ) ≥ ε, for all k ∈ N. (3.8)

Selecting nk as the smallest integer exceeding mk such that (3.8) holds, we deduce that

d(νmk ,νnk –1) < ε. (3.9)

Using the triangular inequality and (3.8) and (3.9) we obtain that

ε ≤ d(νmk ,νnk )

≤ d(νmk ,νnk –1) + d(νnk –1,νnk )

< ε + d(νnk –1,νnk ).
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On taking the limit k → +∞ and utilizing the fact that limn→+∞ dn = 0, we obtain

lim
k→+∞

d(νmk ,νnk ) = ε + . (3.10)

By using the triangular inequality, we obtain that

∣∣d(νmk +1,νnk +1) – d(νmk ,νnk )
∣∣ ≤ dνmk + dνnk ,

letting limit k → +∞ in the above inequality and employing (3.10), we obtain the follow-
ing:

lim
k→+∞

d(νmk +1,νnk +1) = lim
k→+∞

d(νmk ,νnk ) = ε. (3.11)

Since {νn} ⊂ S(X) and {νn} is R-preserving, the local S-transitivity of R leads to the im-
plication that (νmk ,νnk ) ∈R. Thus, we can deduce

ψ
(
d(νmk+1 ,νnk+1 )

) ≤ ϑ(νmk ,νnk )ψ
(
d(Sνmk ,Sνnk )

)

≤ φ
(



(
d(νmk ,νnk ), d(νmk ,Sνmk ), d(νnk ,Sνnk )

))

≤ φ
(
max

{
d(νmk ,νnk ), dmk , dnk , d(νmk ,νnk )α · dβ

mk
· d1–α–β

nk

})
.

On taking the limit as k → +∞ in the aforementioned inequality, leads to the con-
tradiction with (C4). Hence, {νn} is the R- preserving Cauchy sequence in Y . The R-
completeness of the metric space (Y , d,R) now guarantees the existence of a point γ ∈ Y
such that, limn→+∞ νn = γ . First, we assumed that S is R-continuous, then we can deduce
that limn→+∞ νn+1 = limn→+∞ Sνn = Sγ . Applying the uniqueness of the limit, we conse-
quently establish that Sγ = γ , indicating that γ ∈ F(S).

Alternatively, let R|Y be d-self-closed. We again utilize the fact that {νn} is R-preserving
and {νn} → γ . This implies the existence of a subsequence {νnk } of {νn} with [νnk ,γ ] ∈
R, for all k ∈ N0. If (νnk ,γ ) ∈ R, then since S is a unified interpolative Reich–Rus–Ćirić
contraction, we have

ψ
(
d(Sνnk ,Sγ )

)

≤ ϑ(νnk ,γ )ψ
(
d(Sνnk ,Sγ )

)

≤ φ
(



(
d(νnk ,γ ), d(νnk ,Sνnk ), d(γ ,Sγ )

))

≤ φ
(
max

{
d(νnk ,γ ), dnk , d(γ ,Sγ ), d(νnk ,γ )α · dβ

nk
· d(γ ,Sγ )1–α–β

})
. (3.12)

On taking the limit k → +∞, in (3.12), we obtain

ψ
(
d(γ ,Sγ )

) ≤ φ
(
d(γ ,Sγ )

)
. (3.13)

It is important to note that in equation (3.13), if d(γ ,Sγ ) = 0, then we face a contradiction
with (C4). Similarly, if (γ ,νnk ) ∈ R, then by utilizing the symmetry of d, we once again
encounter a contradiction with (C4). Therefore, d(γ ,Sγ ) = 0, implying γ ∈ F(S). �
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Theorem 3.4 Consider the relational metric space (X, d,R), where R is a locally S-
transitive binary relation. Suppose that S is a unified interpolative Reich–Rus–Ćirić-type
contraction and there exist functions ψ ,φ : [0, +∞) → [0, +∞) satisfying conditions Ci,
(i = 3, 4, 5, 6) and Dj, (j = 1, 2, 3, 4) holds. Then, there exists at least one γ ∈ X such that
γ ∈ F(S).

Proof Following the steps of the previous theorem we can obtain an R-preserving and
nonincreasing sequence {νn} such that there exists some C ≥ 0 and dn converges to C+ as
n → +∞. Suppose C > 0, then (3.6) implies that

ψ(C+) = lim
n→+∞ψ(dn)

≤ lim sup
n→+∞

φ
(
max

{
dn–1, dn–1, dn, dα

n–1 · dβ
n–1 · d1–α–β

n
})

≤ lim sup
k→C+

φ(k),

a contradiction with (C5), thus C = 0, i.e., limn→+∞ dn = 0. Now, to establish that the se-
quence {νn} is Cauchy, we make a counter assumption. Suppose it is not Cauchy, then
following the steps outlined in the previous theorem, there exists a positive real number
ε > 0, along with subsequences {νnk } and {νmk } of {νn}, where nk > mk ≥ k, satisfying con-
dition (3.11). Since {νn} ⊂ S(X) and {νn} is R-preserving, the local S-transitivity of R
leads to the implication that (νmk ,νnk ) ∈R. Thus, we can deduce

ψ
(
d(νmk+1 ,νnk+1 )

) ≤ ϑ(νmk ,νnk )ψ
(
d(Sνmk ,Sνnk )

)

≤ φ
(
max

{
d(νmk ,νnk ), dmk , dnk , d(νmk ,νnk )α · dβ

mk
· d1–α–β

nk

})
.

On taking the limit k → +∞ in the above equation, this implies that

lim inf
a→ε+

ψ(a) ≤ lim inf
k→+∞

ψ
(
d(νmk+1 ,νnk+1 )

)

≤ lim sup
k→+∞

φ
(
max

{
d(νmk ,νnk ), dmk , dnk , d(νmk ,νnk )α · dβ

mk
· d1–α–β

nk

})

≤ lim sup
a→ε+

φ(a).

This results in a contradiction with (C6), thus establishing that the {νn} is an R-preserving
Cauchy sequence is in Y . Given that (Y , d,R) is an R-complete metric space, there exists
γ ∈ Y such that limn→+∞ νn = γ . If the self-mapping S is R-continuous, we can derive the
desired conclusion, as demonstrated in the previous theorem.

Alternatively, let R|Y be d-self-closed then by utilizing the fact that {νn} is R-preserving
and {νn} → γ , which implies the existence of a subsequence {νnk } of {νn} with [νnk ,γ ] ∈R,
for all k ∈N0. We claim that d(γ ,Sγ ) = 0. Let us assume that d(γ ,Sγ ) > 0, if (νnk ,γ ) ∈R,

then since S is a unified interpolative Reich–Rus–Ćirić contraction, we have

ψ
(
d(νnk +1,Sγ )

)

≤ ϑ(νnk ,γ )ψ
(
d(Sνnk ,Sγ )

)

≤ φ
(



(
d(νnk ,γ ), d(νnk ,Sνnk ), d(γ ,Sγ )

))
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≤ φ
(
max

{
d(νnk ,γ ), dnk , d(γ ,Sγ ), d(νnk ,γ )α · dβ

nk
· d(γ ,Sγ )1–α–β

})

< ψ
(
max

{
d(νnk ,γ ), dnk , d(γ ,Sγ ), d(νnk ,γ )α · dβ

nk
· d(γ ,Sγ )1–α–β

})

and by using (C3) and taking the limit as k → +∞, we deduce

d(γ ,Sγ ) < d(γ ,Sγ ), (3.14)

which leads to a contradiction. Furthermore, if (γ ,νnk ) ∈R, then by utilizing the symmetry
of d, we encounter again a contradiction. Hence, d(γ ,Sγ ) = 0, implying γ ∈ F(S). �

Theorem 3.5 Consider the relational metric space (X, d,R), where R is locally S-
transitive and S-closed. Suppose conditions Dj, (j = 1, 2, 3, 4) hold and there exist functions
ψ ,φ : [0, +∞) → [0, +∞) satisfying conditions Ci, (i = 1, 2, 3, 4) or (i = 3, 4, 5, 6), such that,

ψ
(
d(Sν,Sμ)

) ≤ φ
(



(
d(ν,Sν), d(μ,Sμ)

))
, for all ν,μ ∈ XR. (3.15)

Then, there exists at least one γ ∈ X such that γ ∈ F(S).

Example 3.6 Let (X, d) be a metric space with X = [0, +∞) and d is the usual metric, define
the self-map S on X by

Sν =

⎧
⎨

⎩

5ν2

6 , if ν ≤ 1,
1
2 , if ν > 1.

Then, it is important to note that S is not a Ćirić–Reich–Rus-type contraction [7–9]. It
is evident that when considering ν = 1 and μ = 1

2 , there does not exist any constant λ ∈
(0, 1

3 ] for which condition (1.2) holds. Additionally, for the same values of ν = 1 and μ = 1
2 ,

there is no pair of λ ∈ [0, 1) and α,β ∈ [0, 1) satisfying α + β < 1 for which (3.2) holds.
Consequently, S is not an interpolative Reich–Rus–Ćirić-type contraction [10]. Now, let
us define the binary relation R on X as

R =
{

(ν,μ) ∈ X2 : max{ν,μ} ≤ 1
2

}
.

This relation R exhibits the property of being locally S-transitive, and S is R-continuous.
It can also be observed that R is S-closed. Moreover, the set X(S ,R) is nonempty, and
there exists a subset Y = [0, 1] of X such that S(X) ⊆ Y and (Y , d), is R-complete.

Observing the definition of R, it is clear that R is not an orthogonal relation, as there
does not exist any ν0 ∈ X that satisfies condition (1.4). As a consequence, the function S
is not a (ψ ,φ)-orthogonal interpolative Reich–Rus–Ćirić-type contraction [17]. However,
we will now demonstrate that S is indeed a unified interpolative Reich–Rus–Ćirić-type
contraction. Consider ϑ : X × X → [0, +∞) defined by

ϑ(ν,μ) =

⎧
⎨

⎩
1, if ν,μ ∈ [0, 1],

0, otherwise.
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Figure 1 Graphs of the function ψ and φ in Example 3.6

Observing that ϑ(ν,μ) ≥ 1 for all ν,μ ∈ X with (ν,μ) ∈ R, and that (ν,μ) ∈ R implies
(Sν,Sμ) ∈ R, it follows that S is R-admissible. Suppose there exist functions ψ ,φ :
[0, +∞) → [0, +∞) defined by φ(t) = t

7 ,

and, ψ(t) =

⎧
⎨

⎩

2t
11 , if t ≤ 1,
t2

5 , if t > 1.

In Fig. 1, the red (dashed) line represents φ(t), while the blue line denotes ψ(t). It is evident
that φ is upper semicontinuous, φ(0) = 0, and ψ is lower semicontinuous, such that ψ(t) >
φ(t), and both ψ , φ are nondecreasing.

We now aim to show that S satisfies (3.1). Consider the function 
 : X × X → [0, +∞)

defined as 
(u, v, w) = 4
5 max{u, v, w, uαvβw1–α–β}. Then, for every ν,μ ∈ XR, we can ob-

serve that

ϑ(ν,μ)ψ
(
d(Sν,Sμ)

)
=

5|ν2 – μ2|
33

(3.16)

and

φ
(



(
d(ν,μ), d(ν, Tν), d(μ, Tμ)

))

=
4

35

(
max

{
|ν – μ|, |6ν – 5ν2|

6
,

|6μ – 5μ2|
6

, |ν – μ|α ·
( |6ν – 5ν2|

6

)β

·
( |6μ – 5μ2|

6

)1–α–β})
. (3.17)

In Fig. 2, for each point ν,μ ∈ X such that (ν,μ) ∈R, corresponds to a three-dimensional
representation of equation (3.16) (illustrated by the red plane) and equation (3.17) (de-
picted by the blue plane), with the given parameters α = 0.1 and β = 0.2. It is evident from
the observation that the red plane remains consistently below or coincident with the blue
plane. Consequently, we can deduce that equation (3.16), representing the left-hand side
of (3.1), consistently maintains a value that is less than or equal to equation (3.17), repre-
senting the right-hand side of (3.1). Hence, it follows that Equation (3.1) holds true for all
ν,μ ∈ X with (ν,μ) ∈R.

Consequently, we deduce that S is a unified interpolative Reich–Rus–Ćirić contraction.
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Figure 2 3D representation of equations (3.16) and (3.17) for values α = 0.1 and β = 0.2

4 An application
In this section, we have applied our research findings to derive a result concerning the
existence of solutions for a nonlinear matrix equation. In this context, let the set denoted
as M(n) encompass all square matrices with dimensions of n × n, while H(n), P(n), and
K(n), respectively, represent the sets of Hermitian matrices, positive-definite matrices,
and positive semidefinite matrices. When we have a matrix C from H(n), we use the no-
tation ‖C‖tr to refer to its trace norm, which is the sum of all its singular values. If we have
matrices P and Q from H(n), the notation P � Q signifies that the matrix P – Q is an
element of the set K(n), while P � Q indicates that P – Q belongs to the set P(n). The
upcoming discussion relies on the significance of the following lemmas.

Lemma 4.1 [38] If X ∈H(n) satisfies X ≺ In, then ‖X‖ < 1.

Lemma 4.2 [38] For n × n matrices X � O and Y � O, the following inequalities hold:

0 ≤ tr(XY ) ≤ ‖X‖ tr(Y ).

We shall now examine the following nonlinear matrix equation:

X = A +
u∑

j=1

v∑

k=1

C∗
j Υk(X)Cj. (4.1)

In the above equation, A is defined as a Hermitian and positive-definite matrix. Addition-
ally, the notation C∗

j refers to the conjugate transpose of a square matrix Cj of size n × n.
Furthermore, Υk represents continuous functions that preserve order, mapping fromH(n)

to P(n). It is noteworthy that Υ (O) = O, where O represents a zero matrix.

Theorem 4.3 Consider the nonlinear matrix equation expressed in (4.1) and assume the
following:

(H1) there exists A ∈P(n) with
∑u

j=1
∑v

k=1 C∗
j Υk(A)Cj � 0;
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(H2) for every X, Y ∈P(n), X � Y implies

u∑

j=1

v∑

k=1

C∗
j Υk(X)Cj �

u∑

j=1

v∑

k=1

C∗
j Υk(Y )Cj;

(H3)
∑u

j=1 CjC∗
j ≺ NIn, for some positive number N , and for all X, Y ∈ P(n) with X � Y ,

the following inequality holds

max
k

(tr(Υk(Y ) – Υk(X)))

≤ 2
3Nv

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tr(Y – X), tr
(

X – A –
∑u

j=1
∑v

k=1 C∗
j Υk (X)Cj

)
, tr

(
Y – A –

∑u
j=1

∑v
k=1 C∗

j ,Υk (Y )Cj

)
,

(
tr

(
X – A –

∑u
j=1

∑v
k=1 C∗

j Υk (X)Cj

)) 1
2 ·

(
tr

(
Y – A –

∑u
j=1

∑v
k=1 C∗

j ,Υk (Y )Cj

)) 1
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Then, there exists at least one solution of the nonlinear matrix equation (4.1). Moreover,
the iteration

Xr = A +
u∑

j=1

v∑

k=1

C∗
j Υk(Xr–1)Cj, (4.2)

where X0 ∈ P(n) satisfies X0 � A +
∑u

j=1
∑v

k=1 C∗
j Υk(X0)Cjand converges towards the solu-

tion of the matrix equation, in the context of trace norm ‖ · ‖tr.

Proof Let T : P(n) →P(n) be a mapping defined by

T(X) = A +
u∑

j=1

v∑

k=1

C∗
j Υk(X)Cj, for all X ∈P(n).

Consider R = {(X, Y ) ∈ P(n) × P(n) : X � Y }. Consequently, the fixed point of T serves
as a solution to the nonlinear matrix equation (4.1). It is pertinent to mention that R
is T-closed and T is well defined as well as R-continuous. Form condition (H1) we
have

∑u
j=1

∑v
k=1 C∗

j Υk(X)Cj � 0 for some X ∈ P(n), thus (X,T(X)) ∈ R and consequently
P(n)(T,R) is nonempty.

Define d : P(n) ×P(n) →R
+ by

d(X, Y ) = ‖X – Y‖tr, for all X, Y ∈P(n).

Then, (P(n), d,R) is an R-complete relational metric space. Then,

∥
∥T(Y ) – T(X)

∥
∥

tr = tr
(
T(Y ) – T(X)

)

= tr

( u∑

j=1

v∑

k=1

C∗
j
(
Υk(Y ) – Υk(X)

)
Cj

)

=
u∑

j=1

v∑

k=1

tr
(
CjC∗

j
(
Υk(Y ) – Υk(X)

))

= tr

(( u∑

j=1

CjC∗
j

) v∑

k=1

(
Υk(Y ) – Υk(X)

)
)
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≤
∥∥
∥∥
∥

u∑

j=1

CjC∗
j

∥∥
∥∥
∥

× v × max
∥∥(

Υk(Y ) – Υk(X)
)∥∥

tr

≤ 2
3

× max
{‖X – Y‖tr,‖X – TX‖tr,‖Y – TY‖tr,

‖X – TX‖ 1
2
tr · ‖Y – TY‖ 1

2
tr
}

=
2
3
(



(‖X – Y‖tr,‖X – TX‖tr,‖Y – TY‖tr
))

. (4.3)

Now, we consider ψ(t) = t, φ(t) = 2t
3 , α = 0, and β = 1

2 , then equation (4.3) becomes

ψ
(
d(TX,TY )

) ≤ φ
(



(
d(X, Y ), d

(
X,T(X)

)
, d

(
Y ,T(Y )

)))
.

Consequently, upon fulfilling all the hypotheses stated in Theorem 3.3, it can be deduced
that there exists an element X∗ ∈ P(n) for which T(X∗) = X∗ holds good. As a result, the
matrix equation (4.1) is guaranteed to possess a solution within the set P(n). �

Example 4.4 Consider the nonlinear matrix equation (4.1) for u = v = 2, and n = 3, with
Υ1(X) = X 1

4 , Υ2(X) = X
1
5 , i.e.,

X = A + C∗
1 X

1
4 C1 + C∗

1 X
1
5 C1 + C∗

2 X
1
4 C2 + C∗

2 X
1
5 C2, (4.4)

where

A =

⎡

⎢
⎣

0.177855454222667 0.001123654123643 0.144563214565439
0.001123532012243 0.177856213654500 0.133214521452362
0.144562121365390 0.133214526352116 0.266521364125960

⎤

⎥
⎦

C1 =

⎡

⎢
⎣

0.213588080307819 0.166601444550695 0.127622658649550
0.116601444550695 0.113891601170827 0.022954463850304
0.127622658649550 0.122954463850304 0.307677316314136

⎤

⎥
⎦

C2 =

⎡

⎢
⎣

1.835353913428885 0.533419165306540 0.639329778947828
0.533419165306540 0.334906218729761 0.379215073620121
0.639329778947828 0.379215073620121 1.705203352336594

⎤

⎥
⎦ .

By taking N = 7, the conditions specified in Theorem 4.3 can be validated numerically
by evaluating various specific values for the matrices involved. For example, they can be
tested (and verified to be true) for

X =

⎡

⎢
⎣

0.601344857294582 0.012123214144452 0.112254124523620
0.123121452122110 0.488267073906088 0.213214212362145
0.332112514256214 0.112451236214521 0.424257724862306

⎤

⎥
⎦

Y =

⎡

⎢
⎣

1.000171251644134 0.123565455662234 0.231452114522455
0.234512141422554 1.213180056807297 0.365455111122332
0.551221455112244 0.231452334558489 1.113265841608538

⎤

⎥
⎦ .
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To ascertain the convergence of {Xn} defined in (4.2), we commence with three distinct
initial values:

U0 =

⎡

⎢
⎣

1
20 0 0
0 1

15 0
0 0 1

15

⎤

⎥
⎦

V0 =

⎡

⎢
⎣

1.380006158840432 0.729620753048356 0.597565069778261
0.729620753048356 0.547945757472219 0.551317326877231
0.597565069778261 0.551317326877231 1.3012791227936167

⎤

⎥
⎦

W0 =

⎡

⎢
⎣

2.592408887372435 1.027321364808460 0.873755458971548
1.027321364808460 0.593069924137297 0.762603684965625
0.873755458971548 0.762603684965625 1.252077566327681

⎤

⎥
⎦ .

After conducting 15 iterations, the subsequent approximation of the positive-definite
solution for the system presented in (4.1) is as follows:

Û ≈ U15 =

⎡

⎢
⎣

17.163329497461348 6.253639655399002 12.195915736525205
6.253639507101289 2.692272944078430 5.374711308897728

12.195914405376412 5.374711264964739 14.480006392095785

⎤

⎥
⎦

with error 1.24906 × 10–7,

V̂ ≈ V15 =

⎡

⎢
⎣

17.163329508247507 6.253639659448254 12.195915744696777
6.253639511150539 2.692272945689973 5.374711312279821

12.195914413547982 5.374711268346832 14.480006400501384

⎤

⎥
⎦

with error 5.28502 × 10–8,

Ŵ ≈ W15 =

⎡

⎢
⎣

17.16332950926931 6.253639659834532 12.195915745492652
6.253639511536818 2.692272945842136 5.374711312591148
12.19591441434386 5.374711268658160 14.480006401183488

⎤

⎥
⎦

with error 4.64279 × 10–8.
In Fig. 3, we present a graphical depiction illustrating the convergence phenomenon.

5 Conclusion
In our current study, we introduce a broader idea called a unified interpolative Reich–
Rus–Ćirić-type contraction. This concept encompasses many existing findings, including
those presented by [7–11, 17, 27]. We demonstrate several fixed-point results for such
contractions within relational metric spaces.

It is important to note that in relational metric spaces, we often deal with weaker prop-
erties like R-continuity (not necessarily implying continuity), R-completeness (not nec-
essarily implying completeness), and so on. In this context, we have more flexibility since
the contraction condition is not required for every element but only for related ones. Im-
portantly, these contraction conditions return to their usual forms when considering the
universal relation.
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Figure 3 Convergence behavior
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14. Taş, N.: Interpolative contractions and discontinuity at fixed point. Appl. Gen. Topol. 24(1), 145–156 (2023)
15. Muhammad, R., Shagari, M.S., Azam, A.: On interpolative fuzzy contractions with applications. Filomat 37(1), 207–219

(2023)
16. Gordji, M.E., Ramezani, M., De La Sen, M., Cho, Y.J.: On orthogonal sets and Banach fixed point theorem. Fixed Point

Theory 18(2), 569–578 (2017)
17. Nazam, M., Javed, K., Arshad, M.: The (ψ , φ)-orthogonal interpolative contractions and an application to fractional

differential equations. Filomat 37(4), 1167–1185 (2023)
18. Samet, B., Turinici, M.: Fixed point theorems on a metric space endowed with an arbitrary binary relation and

applications. Commun. Math. Anal. 13(2), 82–97 (2012)
19. Ran, A.C.M., Reurings, M.C.B.: A fixed point theorem in partially ordered sets and some applications to matrix

equations. Proc. Am. Math. Soc. 132(5), 1435–1443 (2004)
20. Nieto, J.J., Rodríguez-López, R.: Contractive mapping theorems in partially ordered sets and applications to ordinary

differential equations. Order 22(3), 223–239 (2005)
21. Roldán, A., Karapinar, E.: Some multidimensional fixed point theorems on partially preordered G∗-metric spaces

under (ψ ,ϕ)-contractivity conditions. Fixed Point Theory Appl. 2013, 158 (2013)
22. Roldán-López-de-Hierro, A.F., Shahzad, N.: Some fixed/coincidence point theorems under (ψ ,ϕ)-contractivity

conditions without an underlying metric structure. Fixed Point Theory Appl. 2014, 218 (2014)
23. Ben-El-Mechaiekh, H.: The ran-reurings fixed point theorem without partial order: a simple proof. J. Fixed Point

Theory Appl. 16, 373–383 (2014)
24. Berzig, M., Karapinar, E.: Fixed point results for (αψ ,βϕ)-contractive mappings for a generalized altering distance.

Fixed Point Theory Appl. 2013, 205 (2013)
25. Berzig, M.: Coincidence and common fixed point results on metric spaces endowed with an arbitrary binary relation

and applications. J. Fixed Point Theory Appl. 12(1–2), 221–238 (2012)
26. Ghods, S., Gordji, M.E., Ghods, M., Hadian, M.: Comment on “Coupled fixed point theorems for nonlinear contractions

in partially ordered metric spaces” [Lakshmikantham and Cirić, Nonlinear Anal. TMA 70 (2009) 4341-4349]. J. Comput.
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