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Abstract
This article presents the HDG approximation as a solution to the unilateral contact
problem, leveraging the regularization method and an iterative procedure for
resolution. In our study, u represents the potential (displacement of the elastic body)
and q represents the flux (the force exerted on the body). Our analysis establishes that
the utilization of polynomials of degree k(k ≥ 1) leads to achieving an optimal
convergence rate of order k + 1 in L2-norm for both u and q. Importantly, this optimal
convergence is maintained irrespective of whether the domain is discretized through
a structured or unstructured grid. The numerical results consistently align with the
theoretical findings, underscoring the effectiveness and reliability of the proposed
HDG approximation method for unilateral contact problems.
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1 Introduction
In this paper, we undertake an a priori error analysis of the hybridizable discontinuous
Galerkin (HDG) method applied to the unilateral contact problem. To provide a specific
application context, we consider a simplified model of a scalar two-dimensional unilateral
contact problem with friction. This model adheres to the static Coulomb law and can be
viewed as a simplified representation of the displacement field of an elastic body situated
in a two-dimensional bounded domain with a smooth boundary. This elastic body is in
unilateral frictional contact with a rigid foundation [1].

Let � ⊂ R
2 be a bounded domain with a smooth boundary ∂� = �D ∪ �N , where

meas(�N ) > 0. Define V = H1
D(�) = {v ∈ H1(�) : v|�D = 0}, and consider an elliptic vari-

ational inequality of the second type:

a(u, v – u) + j(v) – j(u) ≥ (f , v – u), ∀v ∈ V ,

a(u, v) =
∫

�

(∇u · ∇v + uv)dx,

j(v) =
∫

�N

g|v|ds,

(1)
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where g > 0 is a constant representing the friction coefficient on the boundary. If j(v) ≡ 0,
then problem (1) reduces to the classical second-order elliptic problem. The correspond-
ing optimal functional problem is defined as

u = arg min
v∈V

E(v), E(v) =
1
2

a(v, v) + j(v) – (f , v). (2)

Problem (1) can be also be described by the following equation [2]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

– �u + u = f , x ∈ �,

u = 0, x ∈ �D,
∣∣∣∣∂u
∂n

∣∣∣∣ ≤ g x ∈ �N .

(3)

To overcome the challenges posed by the nondifferentiable functional term j(·), various
numerical methods, such as finite and boundary element methods, have been employed to
solve problem (1) [2–5]. In the past 30 years, the discontinuous Galerkin (DG) method has
been widely used to solve various initial boundary value problems [6–10]. The discontin-
uous Galerkin (DG) method, extensively used in solving initial boundary value problems,
has gained popularity in the last three decades. Wang et al. utilized DG methods to address
problem (1) [11].

To address the challenges associated with the nondifferentiable functional term j(·),
a regularization procedure has been proposed. Zhang [12] introduced a regularization
technique, obtaining a nonlinear second-order elliptic problem with mixed boundary val-
ues. This problem is solved using the DG method and an iterative linearization proce-
dure. If the solution u is sufficiently smooth, i.e., u ∈ H1+s(�) ∩ H1+α(�N ), 1/2 ≤ s ≤ k,
s – 1/2 ≤ α ≤ s, [12] established the approximate convergence order with hs‖u‖H1+s(�) +
1
γ

h1/2+α‖u‖H1+α (�N ) in the energy norm. If u ∈ H1+s(�), s ≥ 1/2, then the approximate con-

vergence order is
(

1 + 1
γ

)
h1+s, 1/2 ≤ s ≤ k in L2 norm.

In this work, we introduce the application of the hybridizable discontinuous Galerkin
(HDG) method to a problem formulated with a gradient-potential approach, which is par-
ticularly suited for the unilateral contact problem under consideration. The approximate
potential and flux, using polynomial spaces of degree k, were proven to converge with the
optimal order of k + 1 in L2 norm for any k ≥ 0. After applying an element-by-element
postprocessing scheme, the new potential approximation converges with order k + 2 for
k ≥ 1 and with order 1 for k = 0 [13–21]. This paper aims to present the approximation
of problem (1) using the HDG method and the regularization method, providing an error
analysis with supporting numerical experiments.

The organization of this paper is as follows: In Sect. 2, we collect some results on the reg-
ularization procedure. Section 3 describes the HDG scheme and proves the existence and
uniqueness of the numerical solutions. In Sect. 4, we provide the error estimate. Section 5
offers numerical results to assess the convergence rates and accuracy. Section 6 concludes
the paper and discusses potential future projects.

2 Regularization procedure
The key to regularizing problem (1) is to replace j(·) with a differentiable functional jγ (·)
that satisfies lim

γ→0
jγ (v) = j(v). Using the regularization method introduced by Zhang [12],
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we define the regularization functional as follows:

jγ (v) =
∫

�N

ψ(v)ds,

where the function ψ(·) is defined by

ψ(v) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

gv –
γ

2
g2, v ≥ γ g,

1
2γ

v2, |v| ≤ γ g,

– gv –
γ

2
g2, v ≤ –γ g.

Here, γ > 0 is a small parameter. It can be verified that the regularization functional satis-
fies the relationship

∣∣jγ (v) – j (v)
∣∣ ≤ 1

2
γ g2 meas(�N ).

Next, we consider the variational inequality problem

a (u, v – u) + jγ (v) – jγ (u) ≥ (
f , v – u

)
, ∀v ∈ V . (4)

The properties of problem (4) are presented in the following theorem.

Theorem 1 [12] Let uγ be the solution of problem (4) and u be the solution of problem (1),
then

(1) uγ and u have the following relationship:

‖u – uγ ‖H1(�) ≤ √
γ g (meas(�N ))1/2 . (5)

(2) uγ satisfies the following variational equation:

a(u, v) +
∫

�N

ϕ(u)vds = (f , v), ∀v ∈ H1
D(�), (6)

where ϕ(t) ∈ H1(–∞, +∞) is defined as

ϕ (v) = ψ ′ (v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g, v ≥ γ g,
v
γ

, |v| ≤ γ g,

– g, v ≤ –γ g,

and the function ϕ(·) has the following properties:

|ϕ(u) – ϕ(v)| ≤ 1
γ

|u – v|, ∀u, v ∈ V , (7)

(ϕ(u) – ϕ(v)) (u – v) ≥ 0, ∀u, v ∈ V . (8)
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(3) If uγ ∈ H1
D(�)∩H1+s(�)(s ≥ 1/2), then uγ is the solution of the following second-order

elliptic problems in the sense of variation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

– �uγ + uγ = f , x ∈ �,

uγ = 0, x ∈ �D,

∂uγ

∂n
+ ϕ(uγ ) = 0, x ∈ �N .

(9)

The analysis above suggests that, to solve problem (1), we can address problem (9).

Remark 1 Theorem 1 indicates that the solution of problem (9) converges to the solution
of problem (1), as shown by results (5). Therefore, we focus on the approximation solution
of (9) to obtain an approximation of (4). In the subsequent sections, our emphasis is on
the HDG approximation of problem (9).

3 HDG scheme
Consider the following nonlinear second-order elliptic problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

– �u + u = f , x ∈ �,

u = 0, x ∈ �D,

∂u
∂n

+ ϕ(u) = 0, x ∈ �N .

(10)

By introducing the auxiliary variable q = –∇u, problem (10) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q + ∇u = 0, x ∈ �,

∇ · q + u = f , x ∈ �,

u = 0, x ∈ �D,

– q · n + ϕ(u) = 0, x ∈ �N .

(11)

In this section, we extend the hybridizable discontinuous Galerkin (HDG) method to
the unilateral contact problem, closely following the approach and notation established
in [13].

To convey our approach, we define a mesh of the domain � consisting of triangles, where
each triangle is a shape-regular element. We denote the set of all triangle edges as �h and
distinguish between the interior edges �i

h and the boundary edges �∂
h . For clarity, an edge

e is considered part of the interior if it is shared by two triangles in the mesh, whereas it is
a boundary edge if it lies on the perimeter of the domain. We denote by Th the collection
of all triangular elements.

The numerical solution (qh, uh, û) is approximated within the finite-dimensional spaces
Vh × Wh × Mh, where these spaces consist of polynomial functions that are defined on
each triangle for Vh and Wh, and on the edges of the mesh for Mh. It is important to note
that while these functions are globally in L2(�), they are locally conforming to H1 and
H(div) spaces, respectively. Specifically, for each triangular element K , functions in Vh

and Wh belong to H1(K) in addition to L2(K), and functions in Mh are at least in H(div, e)
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for each edge e. This local conformity is achieved through the polynomial spaces Pk(K)

and Pk(e) defined on each element and edge, allowing for an appropriate approximation
of the functions and their derivatives locally. Following the approach in [13], we ensure
that these discrete spaces capture the local regularity characteristics of the problem.

Vh =
{

v ∈ [L2(�)]2 : v|K ∈ [Pk(K)]2,∀K ∈ Th
}

,

Wh =
{

w ∈ L2(�) : w|K ∈ Pk(K),∀K ∈ Th
}

,

Mh =
{
μ ∈ L2(�h) : μ|K ∈ Pk(e),∀e ∈ �h

}
,

where Pk(K) is the space of polynomials of total degree at most k.
In this paper, we use the following numerical flux, as in [22]:

q̂h = qh + τ (uh – ûh)n, (12)

and if e ∈ �D, then the value of ûh is set to be 0. Here, τ is a constant defined on each edge
of the mesh to ensure the stability of the numerical scheme.

In the HDG method, the numerical flux of q̂h on the boundaries satisfies the property
of conservation, i.e.,

〈
q̂h · n,μ

〉
∂Th

=
〈
ϕ

(
ûh

)
,μ

〉
�N

, ∀μ ∈ Mh, (13)

and the expression on each element K is

〈
q̂h · n,μ

〉
∂K =

〈
ϕ

(
ûh

)
,μ

〉
∂K∩�N

.

In light of the aforementioned notations and definitions, the HDG scheme correspond-
ing to (11) is formulated as follows: Find a solution

(
qh, uh, ûh

) ∈ Vh × Wh × Mh that sat-
isfies the following system of equations:

(qh, v)Th – (uh,∇ · v)Th +
〈
ûh, v · n

〉
∂Th

= 0, (14)

(uh, w)Th – (qh,∇w)Th +
〈
q̂h · n, w

〉
∂Th

= (f , w)Th , (15)
〈
q̂h · n,μ

〉
∂Th

=
〈
ϕ(ûh),μ

〉
�N

, (16)
〈
ûh,μ

〉
�D

= 0, (17)

where (v, w,μ) ∈ Vh × Wh × Mh.
For the sake of simplicity, we assume that the value of τ on each edge e ∈ �h remains

constant. This assumption streamlines the formulation while maintaining computational
manageability.

Theorem 2 There is a unique solution of HDG formulation (14)–(17).

Proof To establish the existence of a solution, we employ the iterative method. The goal is
to derive the existence by introducing the following iterative system, where ûn

h represents
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a known prior value of û on �N :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(qn+1
h , v)Th – (un+1

h ,∇ · v)Th +
〈
ûn+1

h , v · n
〉
∂Th

= 0,

(un+1
h , w)Th – (qn+1

h ,∇w)Th +
〈
q̂n+1

h · n, w
〉
∂Th

= (f , w)Th ,
〈
q̂n+1

h · n,μ
〉
∂Th

=
〈
ϕ(ûn

h),μ
〉
�N

,

〈
ûn+1

h ,μ
〉
�D

= 0,

(18)

for all (v, w,μ) ∈ Vh × Wh × Mh. Notably, (18) is the HDG formulation corresponding to
the problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q + ∇u = 0, x ∈ �,

∇ · q + u = f , x ∈ �,

u = 0, x ∈ �D,

q · n = ϕ(ûn
h), x ∈ �N .

Referring to [13] Theorem 3.5, under the assumption that the solution is sufficiently
smooth and the mesh is sufficiently refined, it is established that problem (18) possesses a
unique solution (qn+1

h , un+1
h , ûn+1

h ) with the following estimate:

‖un+1
h ‖L2(Th) + ‖qn+1

h ‖L2(Th) + ‖ûn+1
h ‖L2(∂Th) ≤ C(‖f ‖L2(�) + ‖ϕ(ûn

h)‖L2(�N ))

≤ C(‖f ‖L2(�) + g meas(�N )),

which implies that (qn+1
h , un+1

h , ûn+1
h ) is uniformly bounded in Vh × Wh × Mh. Moreover,

there exists a subsequence of {(qn
h, un

h, ûn
h)} such that (qn

h, un
h, ûn

h) converges to (qh, uh, ûh).
Leveraging the uniformly continuous property of the function ϕ(·), it is concluded that
(qh, uh, ûh) is a solution to (14)–(17). Next, we prove the uniqueness.

Moving on to the proof of uniqueness. Taking f = 0, let v = qh in equation (14), w = uh

in equation (15), and μ = ûh in equations (16)–(17), we obtain

(
qh, qh

)
Th

–
(
uh,∇ · qh

)
Th

+
〈
ûh, qh · n

〉
∂Th

= 0, (19)

(uh, uh)Th –
(

qh,∇uh
)

Th
+

〈
q̂h · n, uh

〉
∂Th

= 0, (20)
〈
q̂h · n, ûh

〉
∂Th

=
〈
ϕ

(
ûh

)
, ûh

〉
�N

, (21)
〈
ûh, ûh

〉
�D

= 0. (22)

Utilizing the property of ϕ given in equation (8), we know that

0 =
〈
ϕ

(
ûh

)
, ûh

〉
�N

≥ 0,

which implies ûh|�N = 0, and therefore ûh|∂� = 0.
Adding equation (19) to equation (20), we get

0 =
∥∥qh

∥∥2
Th

+ ‖uh‖2
Th

–
(
uh,∇ · qh

)
Th

+
〈
ûh, qh · n

〉
∂Th

–
(

qh,∇uh
)

Th
+

〈
q̂h · n, uh

〉
∂Th

.



Zhao and Zhou Journal of Inequalities and Applications         (2024) 2024:97 Page 7 of 14

By integration by parts, we can express this as

0 =
∥∥qh

∥∥2
Th

+ ‖uh‖2
Th

–
〈
uh, qh · n

〉
∂Th

+
〈
ûh, qh · n

〉
∂Th

+
〈
q̂h · n, uh

〉
∂Th

=
∥∥qh

∥∥2
Th

+ ‖uh‖2
Th

+
〈
ûh, qh · n

〉
∂Th

+
〈(

q̂h – qh
) · n, uh

〉
∂Th

.

Given the uniformity of ûh, q̂h · n on the element boundaries, we have

〈
ûh, q̂h · n

〉
∂Th

= 〈ϕ(ûh), ûh〉�N ,

which leads to

0 =
∥∥qh

∥∥2
Th

+ ‖uh‖2
Th

+
〈
ûh, qh · n

〉
∂Th

+
〈(

q̂h – qh
) · n, uh

〉
∂Th

–
〈
ûh, q̂h · n

〉
∂Th

+ 〈ϕ(ûh), ûh〉�N

=
∥∥qh

∥∥2
Th

+ ‖uh‖2
Th

+
〈
ûh,

(
qh – q̂h

) · n
〉
∂Th

+
〈(

q̂h – qh
) · n, uh

〉
∂Th

+ 〈ϕ(ûh), ûh〉�N

=
∥∥qh

∥∥2
Th

+ ‖uh‖2
Th

+
〈(

q̂h – qh
) · n, uh – ûh

〉
∂Th

+ 〈ϕ(ûh), ûh〉�N .

Substituting the definition of q̂h, from equation (12) we get

∥∥qh
∥∥2
Th

+ ‖uh‖2
Th

+ τ
∥∥uh – ûh

∥∥2
∂T h

+ 〈ϕ(ûh), ûh〉�N = 0,

which implies

qh = 0, uh = 0, ûh|∂Th = uh|∂Th = 0. �

4 Error estimate
Before presenting the estimates for ‖u – uh‖L2(�) and ‖q – qh‖L2(�), we begin by revisiting
the HDG projection (�V ,�W ) [22] defined as follows:

(�V q, v)K = (q, v)K , ∀v ∈ [Pk–1(K)]2, (23)

(�W u, w)K = (u, w)K , ∀w ∈ Pk–1(K), (24)

〈�V q · n + τ�W u,μ〉e = 〈q · n + τu,μ〉e, ∀μ ∈ Pk(e). (25)

For k ≥ 1, τ |∂K ≥, and τmax
K > 0, projection is defined by (23)–(25). Additionally, there

exists a constant C independent of K and τ such that the following estimates hold:

‖�V q – q‖K ≤ Ch�q+1
K |q|H�q+1(K) + Ch�u+1

K τ ∗
K |u|H�u+1(K), (26)

‖�W u – u‖K ≤ Ch�u+1
K |u|H�u+1(K) + C

h�q+1
K

τmax
K

|∇ · q|H�q (K). (27)

Here, 0 ≤ �q, �u ≤ k, τ ∗
K = max τ |∂K\e∗ , τ |e∗ = τmax

K . Also, | · |Hk (K) denotes the semi-norm,

which is defined as |v|Hk (K) =
(∑

|α|=k ‖Dαv‖2
L2(K)

)1/2
.
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Proposition 3 [22] Let w ∈ Wh, (,�) ∈ V × W , then we have

(w,∇ · )K = (w,∇ · �V )K + 〈w, τ (�W � – �)〉∂K (28)

or

(w,∇ · )K = –(∇w,�V )K + 〈w,�V  · n〉∂K + 〈w, τ (�W � – �)〉∂K . (29)

Given that τ is a constant on each edge, the L2-projection PM : W → Mh possesses the
following property:

〈τ (PMu – u),μ〉e = 0, ∀μ ∈ Mh. (30)

This property highlights that the L2-projection of u onto Mh with respect to τ is orthog-
onal to u in the inner product defined on each element.

In the subsequent analysis, the derivation of error estimates relies on the error equations
and the approximation characteristics of the HDG projection. To facilitate this discussion,
let us first introduce the error equations.

Proposition 4 Let εu
h = �W u – uh, εq

h = �V q – qh, εû
h = PMu – ûh. The error equations are

expressed as follows:

(
ε

q
h, v

)
Th

–
(
εu

h ,∇ · v
)
Th

+
〈
εû

h , v · n
〉
∂Th

= (�V q – q, v)Th , (31)

(
εu

h , w
)
Th

–
(
ε

q
h,∇w

)
Th

+
〈
ε

q
h · n, w

〉
∂Th

+
〈
τ

(
εu

h – εû
h

)
, w

〉
∂Th

= (�W u – u, w)Th ,
(32)

〈
ε

q
h · n + τ

(
εu

h – εû
h

)
,μ

〉
∂Th

=
〈
ϕ (u) – ϕ

(
ûh

)
,μ

〉
�N

(33)

for all (v, w) ∈ Vh × Wh.

These equations characterize the errors in the approximations of u, q, and û by their
respective HDG projections.

Proof The exact solution q and u satisfy the following coupled equations:

(q, v)Th – (u,∇ · v)Th + 〈u, v · n〉∂Th = 0, (34)

(u, w)Th – (q,∇w)Th + 〈q · n, w〉∂Th =
(
f , w

)
Th

. (35)

Analyzing equation (34), we obtain

(q, v)Th – (u,∇ · v)Th + 〈u, v · n〉∂Th

= (�V q, v)Th – (�V q – q, v)Th – (�W u,∇ · v)Th + 〈PMu, v · n〉∂Th ,
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utilizing the properties of the HDG projection. Similarly, for equation (35), we have

(u, w)Th – (q,∇w)Th + 〈q · n, w〉∂Th =(�W u, w)Th – (�W u – u, w)Th – (�V q,∇w)Th

+ 〈�V q · n + τ�W u, w〉∂Th – 〈τu, w〉∂Th .

By collecting the above calculations, we deduce

(�V q, v)Th – (�W u,∇ · v)Th + 〈PMu, v · n〉∂Th = (�V q – q, v)Th , (36)

(�W u, w)Th – (�V q,∇w)Th + 〈�V q · n + τ�W u, w〉∂Th – 〈τPMu, w〉∂Th

=
(
f , w

)
Th

+ (�W u – u, w)Th .
(37)

By subtracting (14) from (36), we obtain (31). By subtracting (15) from (37), we have

(�W u – u, w)Th =
(
εu

h , w
)
Th

–
(
ε

q
h,∇w

)
Th

+ 〈�V q · n + τ�W u, w〉∂Th

– 〈τPMu, w〉∂Th –
〈
q̂h · n, w

〉
∂Th

=
(
εu

h , w
)
Th

–
(
ε

q
h,∇w

)
Th

+ 〈�V q · n + τ�W u – τPMu, w〉∂Th

–
〈
qh · n + τ

(
uh – ûh

)
, w

〉
∂Th

=
(
εu

h , w
)
Th

–
(
ε

q
h,∇w

)
Th

+
〈
ε

q
h · n, w

〉
∂Th

+
〈
τ

(
εu

h – εû
h

)
, w

〉
∂Th

.

Finally, we prove equation (33). Using definitions (23)–(25) of (�V ,�W ) and the prop-
erty (30) of PM , we get

〈
ε

q
h · n + τ

(
εu

h – εû
h

)
,μ

〉
∂Th

=
〈(
�V q – qh

) · n + τ
(
�W u – uh – PMu + ûh

)
,μ

〉
∂Th

=
〈(

q – qh
) · n + τ

(
u – uh – PMu + ûh

)
,μ

〉
∂Th

=
〈(

q – qh
) · n + τ

(
u – uh – u + ûh

)
,μ

〉
∂Th

,

so we have

〈
ε

q
h · n + τ

(
εu

h – εû
h

)
,μ

〉
∂Th

= 〈q · n,μ〉∂Th –
〈
qh · n + τ

(
uh – ûh

)
,μ

〉
∂Th

= 〈q · n,μ〉∂Th –
〈
q̂h · n,μ

〉
∂Th

=
〈
ϕ (u) – ϕ

(
ûh

)
,μ

〉
�N

. �

Proposition 5 Let (q, u) and (qh, uh, ûh) be the solutions of (11) and (14)–(17) respectively,
then we have

(
ε

q
h, εq

h
)
Th

+
(
εu

h , εu
h
)
Th

+
〈
τ

(
εu

h – εû
h

)
, εu

h – εû
h

〉
∂Th

=
(
�V q – q, εq

h
)
Th

+
(
�W u – u, εu

h
)
Th

–
〈
ϕ (u) – ϕ

(
ûh

)
, εû

h

〉
�N

.
(38)
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Proof By taking v = ε
q
h in (31), w = εu

h in (32), and μ = εû
h in (33), we obtain the following

expressions:

(
ε

q
h, εq

h
)
Th

–
(
εu

h ,∇ · εq
h
)
Th

+
〈
εû

h , εq
h · n

〉
∂Th

=
(
�V q – q, εq

h
)
Th

,

(
εu

h , εu
h
)
Th

–
(
ε

q
h,∇εu

h
)
Th

+
〈
ε

q
h · n, εu

h
〉
∂Th

+
〈
τ

(
εu

h – εû
h

)
, εu

h

〉
∂Th

=
(
�W u – u, εu

h
)
Th

,
〈
ε

q
h · n + τ

(
εu

h – εû
h

)
, εû

h

〉
∂Th

=
〈
ϕ (u) – ϕ

(
ûh

)
, εû

h

〉
�N

.

By summing the first two equations and subtracting the third equation, we obtain

(
�V q – q, εq

h
)
Th

+
(
�V u – u, εu

h
)
Th

–
〈
ϕ (u) – ϕ

(
ûh

)
, εû

h

〉
�N

=
(
ε

q
h, εq

h
)
Th

–
(
εu

h ,∇ · εq
h
)
Th

+
〈
εû

h , εq
h · n

〉
∂Th

+
(
εu

h , εu
h
)
Th

–
(
ε

q
h,∇εu

h
)
Th

+
〈
ε

q
h · n, εu

h
〉
∂Th

+
〈
τ

(
εu

h – εû
h

)
, εu

h

〉
∂Th

–
〈
ε

q
h · n + τ

(
εu

h – εû
h

)
, εû

h

〉
∂Th

.

Further simplifying through integration by parts, we have

(
�V q – q, εq

h
)
Th

+
(
�V u – u, εu

h
)
Th

–
〈
ϕ (u) – ϕ

(
ûh

)
, εû

h

〉
�N

=
(
ε

q
h, εq

h
)
Th

–
〈
εu

h , εq
h · n

〉
∂Th

+
〈
εû

h , εq
h · n

〉
∂Th

+
(
εu

h , εu
h
)
Th

+
〈
ε

q
h · n, εu

h
〉
∂Th

+
〈
τ

(
εu

h – εû
h

)
, εu

h

〉
∂Th

–
〈
ε

q
h · n + τ

(
εu

h – εû
h

)
, εû

h

〉
∂Th

.

Rearranging and combining the five terms in the boundary integration, we get

(
�V q – q, εq

h
)
Th

+
(
�V u – u, εu

h
)
Th

–
〈
ϕ (u) – ϕ

(
ûh

)
, εû

h

〉
�N

=
(
ε

q
h, εq

h
)
Th

+
〈
εû

h , εq
h · n

〉
∂Th

+
(
εu

h , εu
h
)
Th

+
〈
τ

(
εu

h – εû
h

)
, εu

h

〉
∂Th

–
〈
ε

q
h · n + τ

(
εu

h – εû
h

)
, εû

h

〉
∂Th

=
(
ε

q
h, εq

h
)
Th

+
(
εu

h , εu
h
)
Th

+
〈
τ

(
εu

h – εû
h

)
, εu

h – εû
h

〉
∂Th

by using (33). This concludes the proof. �

Concerning the term
〈
ϕ (u) – ϕ

(
ûh

)
, εû

h
〉
�N

, we can express it as follows:

〈
ϕ(u) – ϕ(û), PMu – û

〉
�N

=
〈
ϕ(u) – ϕ(û), PMu – u

〉
�N

+
〈
ϕ(u) – ϕ(û), u – û

〉
�N

≥ 〈
ϕ(u) – ϕ(û), PMu – u

〉
�N
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as derived from (8). By utilizing the definition of the function ϕ(·), we arrive at the inequal-
ity

∣∣∣〈ϕ(u) – ϕ(û), PMu – u
〉
�N

∣∣∣ ≤ 2g‖PMu – u‖�h .

This leads us to the following estimate:

(εq
h, εq

h)Th + (εu
h , εu

h )Th ≤ (�V q – q, εq
h)Th + (�W u – u, εu

h )Th

+ 2g‖PMu – u‖�h .
(39)

By utilizing (39), the approximation properties of �V , �W , PM , ϕ(·), and applying
Cauchy’s inequality, we can derive the following estimate.

Theorem 6 Let (q, u) and (qh, uh, ûh) denote the solutions of (11) and (14)–(17), respec-
tively. We can establish the following estimates:

‖�V q – qh‖Th + ‖�W u – uh‖Th

≤ C
(‖�V q – q‖Th + ‖�W u – uh‖Th + ‖PMu – u‖�N

)
.

(40)

It is evident from (40) that when the solution is sufficiently smooth both in the region �

and on the boundary �N , the convergence order of the approximation is optimal.

5 Numerical examples
The HDG scheme for addressing unilateral contact problems is introduced using the reg-
ularization method, along with the provision of an a priori error estimate. Subsequently, to
validate the theoretical findings, a numerical example is presented. This specific example
is available in [12], Chap. 3, pages 91–92.

Example Consider the problem defined by equation (10) on the domain � = (0, 1)2 with
g = 1, �N = {(x, y) ∈ ∂� : x = 1}. The source term is represented as

f (x, y) =
(

(2 + π2) sin x – (1 + π2)
γ cos 1 + sin 1

1 + γ
x
)

sin(πy),

where the γ is the regularization parameter from Sect. 2. The corresponding exact solu-
tion is given by

u(x, y) =
(

sin x –
γ cos 1 + sin 1

1 + γ
x
)

sin(πy).

In our numerical experiment, we employ piecewise linear polynomials and utilize an
iterative method to solve the nonlinear equations. The iterative algorithm proceeds as
follows: we start with an value û0

h of u on the boundary �N , and we iteratively solve problem
(18) until the condition ‖ûn+1

h – ûn
h‖L2(�N ) < ε is satisfied, with ε > 0 being sufficiently small.

Here, we choose ε = 10–2. The maximum number of iterations is set to 10, which was
determined based on extensive experimentation. We found that this number of iterations
is sufficient for the solution to converge to the desired accuracy in all our test cases. For
our experiments, we also set û0

h = 0, τ = 1.
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Figure 1 Structured grid (h = 0.25)

Table 1 L2 error norm and convergence rates (structured grid)

h = 1
2 h = 1

4 h = 1
8 h = 1

16 h = 1
32

‖u – uh‖L2(�) 9.5131e-3 2.6936e-3 7.0421e-4 1.7914e-4 4.5117e-5
Convergence rate 1.8204 1.9355 1.9749 1.9893
‖q – qh‖L2(�) 1.6841e-2 4.4903e-3 1.1464e-3 2.8890e-4 7.2466e-5
Convergence rate 1.9071 1.9697 1.9885 1.9952

Note: γ = 0.01

Table 2 L2 error norm and convergence rates (structured grid)

h = 1
2 h = 1

4 h = 1
8 h = 1

16 h = 1
32

‖u – uh‖L2(�) 9.3833e-3 2.6589e-3 6.9533e-4 1.7689e-4 4.4554e-5
Convergence rate 1.8193 1.9351 1.9748 1.9892
‖q – qh‖L2(�) 1.6829e-2 4.4908e-3 1.1472e-3 2.8925e-4 7.2577e-5
Convergence rate 1.9059 1.9689 1.9877 1.9947

Note: γ = 0.001

The results of the numerical experiment on a structured grid are presented in Fig. 1, with
corresponding numerical values detailed in Table 1 and Table 2. Here, we select γ to be
0.01 and 0.001. Our observations reveal that the numerical convergence rates of ‖u – uh‖
and ‖q – qh‖ align with the theoretical predictions.

Next, we explore another scenario. Figure 2 illustrates the domain � divided by an un-
structured grid, with corresponding numerical results detailed in Table 3 and Table 4.
Similar to the structured grid case, γ is chosen to be 0.01 and 0.001. Once again, we ob-
serve that the numerical convergence rates of ‖u – uh‖ and ‖q – qh‖ are consistent with
the theoretical predictions.

6 Conclusion
In summary, we have introduced the hybridizable discontinuous Galerkin (HDG) method
as an effective solution to the unilateral contact problem. The inherent challenge of this
problem lies in the presence of a nondifferentiable term in the bilinear form, introducing



Zhao and Zhou Journal of Inequalities and Applications         (2024) 2024:97 Page 13 of 14

Figure 2 Unstructured grid (h = 0.25)

Table 3 L2 error norm and convergence rates (unstructured grid)

h = 1
2 h = 1

4 h = 1
8 h = 1

16 h = 1
32

‖u – uh‖L2(�) 9.5330e-3 2.5996e-3 6.2569e-4 1.5356e-4 3.9237e-5
Convergence rate 1.8746 2.0548 2.0266 1.9685
‖q – qh‖L2(�) 1.5506e-2 4.1182e-3 1.0384e-3 2.3494e-4 6.1449e-5
Convergence rate 1.9127 1.9877 2.1440 1.9348

Note: γ = 0.01

Table 4 L2 error norm and convergence rates (unstructured grid)

h = 1
2 h = 1

4 h = 1
8 h = 1

16 h = 1
32

‖u – uh‖L2(�) 9.3967e-3 2.5673e-3 6.1823e-4 1.5155e-4 3.8735e-5
Convergence rate 1.8719 2.0540 2.0283 1.9681
‖q – qh‖L2(�) 1.5477e-2 4.1163e-3 1.0359e-3 2.3479e-4 6.1397e-5
Convergence rate 1.9107 1.9905 2.1414 1.9351

Note: γ = 0.001

complexities that require a specialized approach. To address this, we employ the regular-
ization method, successfully overcoming the associated difficulties.

Our HDG scheme for the nonlinear problem is presented, accompanied by a priori er-
ror estimates. Theoretical results are substantiated through numerical examples, demon-
strating the validity of our approach. Notably, whether the domain is discretized using a
structured grid or an unstructured grid, the numerical outcomes consistently align with
our theoretical expectations, underscoring the practical efficacy of the HDG method.

An additional noteworthy feature of the HDG method is its capability for adaptive mesh
calculation. This adaptive process, rooted in a posteriori error estimates, stands as a cru-
cial advantage and warrants further exploration in future studies.
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