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Abstract
We consider the logarithmic Sobolev inequality on the Heisenberg group. One can
derive the logarithmic Sobolev inequality from the Sobolev inequality, and we
consider an application to the uncertainty inequality on the Heisenberg group.
Moreover, one can also obtain a dissipative estimate of a solution of the heat
equation on the Heisenberg group from the logarithmic Sobolev inequality.
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1 Introduction
We consider Sobolev’s and a related inequality on the Heisenberg group H

n. Sobolev’s
inequality is an inequality that holds in the Sobolev space W 1,p(Rn) on n-dimensional
Euclidean space R

n, and is an essential tool in the study of nonlinear partial differential
equations. The logarithmic Sobolev inequality is one of a variety of Sobolev’s inequality, an
inequality that implies that the functional appearance in the Boltzmann–Gibbs–Shannon
entropy is bounded by a Sobolev norm. In this paper, we derive the logarithmic Sobolev
inequality on the Heisenberg group.

We first consider the n-dimensional Euclidean space case. The sharp form of Sobolev’s
inequality is given in the following form: for any f ∈ H1(Rn),

‖f ‖2
L2∗ (Rn)

≤ Sn‖∇f ‖2
L2(Rn), (1.1)

where n ≥ 3, 2∗ = 2n/(n – 2),

∇ = t
(

∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

)
,

and H1(Rn) ≡ {f ∈ L2(Rn); |∇f | ∈ L2(Rn)}. The constant

Sn =
1

n(n – 2)
22(1– 1

n )π–( 1
n +1)�

(
n + 1

2

) 2
n
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is the best possible, and this constant is attained by the Aubin–Talenti function:

f (x) = (1 + |x|2)– n–2
2 (1.2)

up to conformal automorphism (see Aubin [1] and Talenti [18]). To be precise, Tal-
enti [18] identified the sharp constant of Sobolev’s inequality in general cases W 1,p(Rn) ⊂
Lnp/(n–p)(Rn) by finding that (1.2) attains the best possible constant. Lieb [13] proved the
sharp version of the Hardy–Littlewood–Sobolev inequality and showed the sharp con-
stant with the extremal function of Sobolev’s inequality (1.1) (see also [14]).

On the other hand, the following logarithmic Sobolev inequality was obtained by
Stam [17] and Gross [10]: For any f ∈ H1(Rn) \ {0},

∫
Rn

|f (x)|2 log
|f (x)|2

‖f ‖2
L2(Rn)

dx ≤ n
2
‖f ‖2

L2(Rn) log

(
2

nπe‖f ‖2
L2(Rn)

∫
Rn

|∇f (x)|2 dx

)
, (1.3)

where the constant appearing on the right-hand side is the best possible. Moreover, this
constant is attained by the Gaussian function

f (x) = e–|x|2

up to conformal automorphism. The optimal constant and extremal function of the
inequality (1.3) were given by Weissler [22] and Carlen [3], respectively. In Lieb and
Loss [14], we realize that the inequality (1.3) is equivalent to the Lp-Lq dissipative esti-
mate of a solution of the heat equation

⎧⎨
⎩

∂tu = �u, t > 0, x ∈R
n,

u(0, x) = u0(x), x ∈ R
n,

where ∂t = ∂/∂t and �u = ∇ · ∇u (see also Davies [5], Carlen and Loss [4]). In fact, the
extremal function of the inequality (1.3), that is, the Gaussian function coincides with the
heat kernel by a conformal automorphism.

Concerning Sobolev’s inequality on the other manifold, we introduce the Heisenberg
group:

Definition (Heisenberg group) The Heisenberg group H
n = C

n ×R is defined by

(z, s) · (z′, s′) = (z + z′, t + t′ + 2Im(z · z̄′))

for (z, s), (z′, s′) ∈C
n ×R, where

z · z̄′ =
n∑

j=1

zjz̄′
j

when z = (z1, z2, . . . , zn), z′ = (z′
1, z′

2, . . . , z′
n).



Suguro Journal of Inequalities and Applications         (2024) 2024:99 Page 3 of 12

For (z, s) ∈H
n and λ > 0, the dilation is defined by λ(z, s) = (λz,λ2s), and we denote |(z, s)|

by

|(z, s)| ≡ (|z|4 + s2)
1
4 .

We denote the homogeneous dimension of Hn by Q = 2n + 2. For 1 ≤ p < ∞, we define Lp

space on H
n by

Lp(Hn) ≡
{

f : Hn →R; ‖f ‖p =
(∫

Hn
|f (z, s)|p dz ds

) 1
p

< ∞
}

.

For j = 1, 2, . . . , n, the vector field

S =
∂

∂s
, Xj =

∂

∂xj
+ 2yj

∂

∂s
, and Yj =

∂

∂yj
– 2xj

∂

∂s

satisfies the Hörmander condition. Then, the operator

�H =
n∑

j=1

(X2
j + Y 2

j )

is a hypoelliptic operator. When we set ∇H = t(X1, X2, . . . , Xn, Y1, Y2, . . . , Yn), we define
Sobolev’s space H1(Hn) by

H1(Hn) ≡
{

f ∈ L2(Hn);
∫
Hn

|∇Hf (z, s)|2 dz ds < ∞
}

,

where

|∇Hf (z, s)| =

⎡
⎣ n∑

j=1

(|Xjf (z, s)|2 + |Yjf (z, s)|2)
⎤
⎦

1
2

.

Sobolev’s inequality on Lie groups was studied by Folland [7] and Fischer and Ruzhan-
sky [6]. For the Heisenberg group, Jerison and Lee [12] identified the sharp constant in
Sobolev’s inequality, and Frank and Lieb [8] gave different proofs and derived the sharp
Hardy–Littlewood–Sobolev inequality on the Heisenberg group.

Proposition 1.1 (Sobolev’s inequality on the Heisenberg group [8, 12]) For any f ∈
H1(Hn),

‖f ‖2
2Q

Q–2
≤ SH‖∇Hf ‖2

2, (1.4)

where the constant

SH = 2– 2
n+1 π–1n–2(n!)

1
n+1 = 22(1– 2

Q )
π–1(Q – 2)–2�

(
Q
2

) 2
Q
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is the best possible. Moreover, this constant is attained by

f (z, s) = cH(δ(a · (z, s))),

where

H(z, s) =
(
(1 + |z|2)2 + s2)– Q–2

4

for c ∈C, δ > 0, and a ∈ H
n.

We derive the logarithmic Sobolev inequality on the Heisenberg group by using
Sobolev’s inequality (1.4).

Theorem 1.2 (The logarithmic Sobolev inequality on the Heisenberg group) For any f ∈
H1(Hn) \ {0},

∫
Hn

|f (z, s)|2 log
|f (z, s)|2

‖f ‖2
2

dz ds ≤ Q
2

‖f ‖2
2 log

(
SH

‖f ‖2
2

∫
Hn

|∇Hf (z, s)|2 dz ds
)

, (1.5)

where the constant SH is the same as the above.

For the Heisenberg group, Inglis and Papageorgiou [11] and Papageorgiou [15] showed
the Lq-type logarithmic Sobolev inequality (1 < q ≤ 2). They considered the logarithmic
Sobolev inequality for Gibbs measures on the infinite product of Heisenberg groups. Bon-
nefont, Chafaï, and Herry [2] showed a variant of the logarithmic Sobolev inequality on the
Heisenberg group, and Gordina and Luo [9] derived the logarithmic Sobolev inequality on
nonisotropic Heisenberg groups.

One of the applications of the logarithmic Sobolev inequality (1.5) is to derive the
Heisenberg uncertainty inequality on the Heisenberg group. The Heisenberg uncertainty
implies that

n
2
‖f ‖2

L2(Rn) ≤
(∫

Rn
|x|2|f (x)|2 dx

) 1
2
(∫

Rn
|∇f (x)|2 dx

) 1
2

. (1.6)

For the Heisenberg group H
n, Thangavelu [19], Sitaram, Sundari, and Thangavelu [16],

and Xiao and He [24] considered the Heisenberg uncertainty inequality (see also [20, 21]).
In order to prove the Heisenberg uncertainty inequality on the Heisenberg group, we de-
rive Shannon’s inequality. Define the weighted Lebesgue space L2

1(Hn) by

L2
1(Hn) ≡ {f ∈ L2(Hn); |(·, ·)|f ∈ L2(Hn)}.

Then, the following inequality holds:

Theorem 1.3 (The Shannon inequality) For any f ∈ L2
1(Hn) \ {0},

–
∫
Hn

|f (z, s)|2 log
|f (z, s)|2

‖f ‖2
2

dz ds ≤ Q
2

‖f ‖2
2 log

(
Cn

‖f ‖2
2

∫
Hn

|(z, s)|2|f (z, s)|2 dz ds
)

, (1.7)
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where the constant

Cn =
πe

n + 1
n

1
n+1 π– 1

2n+2

(
�

( n
2
)

�
( n+1

2
)
) 1

n+1

is the best possible. Moreover, this constant is attained by

f (x) = e–|(z,s)|2

up to conformal automorphism.

Combining the inequalities (1.3) and (1.7), we obtain the Heisenberg uncertainty in-
equality on the Heisenberg group and the explicit constant:

Corollary 1.4 For any f ∈ L2
1(Hn) ∩ H1(Hn),

Dn‖f ‖2
2 ≤

(∫
Hn

|(z, s)|2|f (z, s)|2 dz ds
) 1

2
(∫

Hn
|∇Hf (z, s)|2 dz ds

) 1
2

, (1.8)

where the constant Dn is given by

Dn = S– 1
2

H
C– 1

2
n .

This paper is constructed in the following sections. In Sect. 2, we give the proofs of
Theorems 1.2 and 1.3, and Corollary 1.4. We also consider the behavior of the constant
appearing in the inequalities as n → ∞. For other applications, we show the estimate of
solutions to the heat equation on the Heisenberg group in Sect. 3. In the Appendix, we
add some calculations.

In what follows, ‖ · ‖p denotes the Lp(Hn)-norm for 1 ≤ p < ∞. We denote the gamma
function by � (·).

2 Proof of the results and remarks on the constant
Proof of Theorem 1.2 If we set

dμ =
|f (z, s)|2

‖f ‖2
2

dz ds,

then we obtain
∫
Hn dμ = 1. Furthermore, since the logarithmic function log x is concave,

by Jensen’s inequality, we have

∫
Hn

|f (z, s)|2 log
|f (z, s)|2

‖f ‖2
2

dz ds =
Q – 2

2
‖f ‖2

2

∫
Hn

log
|f (z, s)| 4

Q–2

‖f ‖
4

Q–2
2

dμ

≤ Q – 2
2

‖f ‖2
2 log

∫
Hn

|f (z, s)| 4
Q–2

‖f ‖
4

Q–2
2

dμ

=
Q – 2

2
‖f ‖2

2 log
∫
Hn

|f (z, s)| 2Q
Q–2

‖f ‖
2Q

Q–2
2

dz ds.
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By Sobolev’s inequality on the Heisenberg group (1.4)

∫
Hn

|f (z, s)| 2Q
Q–2 dz ds ≤ S

Q
Q–2
H

‖∇Hf ‖
2Q

Q–2
2 ,

we obtain

∫
Hn

|f (z, s)|2 log
|f (z, s)|2

‖f ‖2
2

dzds ≤ Q – 2
2

‖f ‖2
2 log

S
Q

Q–2
H

‖∇Hf ‖
2Q

Q–2
2

‖f ‖
2Q

Q–2
2

≤ Q
2

‖f ‖2
2 log

SH‖∇Hf ‖2
2

‖f ‖2
2

,

which implies the desired inequality (1.5). �

Remark In Euclidean space R
n, by the Stirling approximation for the Gamma function

� (z) ≈ (2π)
1
2 e–zzz– 1

2 for z � 1,

the sharp constant Sn in (1.1) is, for n large enough:

nπe
2

Sn =
1

n – 2
21– 2

n π– 1
n e�

(
n + 1

2

) 2
n

≈ 1
n – 2

21– 2
n π– 1

n e
(

4π

n + 1

) 1
n
(

n + 1
2e

)1+ 1
n

for n � 1

=
n + 1
n – 2

(2e)– 1
n ≈ 1 for n � 1,

which implies that the sharp constant Sn in (1.1) is approximated by the one in the loga-
rithmic Sobolev inequality 2/(nπe) for n large enough.

On the other hand, in the Heisenberg group H
n, the constant SH in (1.4) is approximated

by 2/(Qπe) as the following:

Qπe
2

SH =
Q

(Q – 2)2 21– 4
Q e�

(
Q
2

) 2
Q

≈ Q
(Q – 2)2 21– 4

Q e
(

4π

Q

) 1
Q Q

2e
for Q � 1

=
Q2

(Q – 2)2

(
π

4Q

) 1
Q ≈ 1 for Q � 1

when n is large enough. By the above observation, we conjugate that the sharp constant in
(1.5) coincides with 2/(Qπe) or approximates it for n large enough.

As a corollary, one can obtain the parametric logarithmic Sobolev inequality on the
Heisenberg group. The following inequality is useful for estimating solutions to the heat
equation on the Heisenberg group:



Suguro Journal of Inequalities and Applications         (2024) 2024:99 Page 7 of 12

Corollary 2.1 (The parametric logarithmic Sobolev inequality on the Heisenberg group)
For any f ∈ H1(Hn) \ {0} and a > 0,

∫
Hn

|f (z, s)|2 log
|f (z, s)|2

‖f ‖2
2

dz ds ≤ a‖∇Hf ‖2
2 +

n
2
‖f ‖2

2 log
nSH

2ae
. (2.1)

Proof of Corollary 2.1 For any a > 0,

∫
Hn

|f (z, s)|2 log
|f (z, s)|2

‖f ‖2
2

dz ds ≤ Q
2

‖f ‖2
2 log

SH‖∇Hf ‖2
2

‖f ‖2
2

=
Q
2

‖f ‖2
2 log

SH

a
+

n
2
‖f ‖2

2 log
a‖∇Hf ‖2

2
‖f ‖2

2
.

Here, we use the essential inequality:

αβ ≤ eα + β(logβ – 1)

for α,β > 0. By this inequality, we have

log
a‖∇Hf ‖2

2
‖f ‖2

2
≤ a

‖∇Hf ‖2
2

‖f ‖2
2

– 1.

Thus, we obtain
∫
Hn

|f (z, s)|2 log
|f (z, s)|2

‖f ‖2
2

dz ds ≤ Q
2

‖f ‖2
2 log

SH

a
+

n
2

a‖∇Hf ‖2
2 – 1.

Replacing na/2 → a, we conclude that the inequality (2.1) holds. �

Proof of Theorem 1.3 Let φ be given by

φ(z, s) = kn,be–|(z,s)|2 ,

where the constant kn,b is defined below. By the polar transformation:

∫
Hn

e–2|(z,s)|2 dz ds =
∣∣�n–1∣∣ ∫ ∞

0
e–2r2

r2n+1 dr,

where

∣∣�n–1∣∣ =
2πn+ 1

2 �
( n

2
)

� (n)�
( n+1

2
) .

Changing variables with 2r2 = s, since r =
√

s/2, dr = 2–3/2s–1/2 ds:

∫ ∞

0
e–2r2

r2n+1 dr = 2–n–2
∫ ∞

0
e–ssn ds = 2–n–2� (n + 1) .

Thus, we have

∫
Hn

e–2|(z,s)|2 dz ds = 2–n–1nπn+ 1
2

�
( n

2
)

�
( n+1

2
) ,
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that is,

kn = 2
n+1

2 n– 1
2 π– 2n+1

4

(
�

( n+1
2

)
�

( n
2
)

) 1
2

.

For any f ∈ L2
1(Hn) with ‖f ‖2 = 1, we consider the relative entropy of f and φ. By the Jensen

inequality, we have

∫
Hn

|f (z, s)|2 log
|φ(z, s)|2
|f (z, s)|2 dz ds ≤ log

∫
Hn

|φ(z, s)|2 dz ds = 0.

Thus, we obtain

–
∫
Hn

|f (z, s)|2 log |f (z, s)|2 dz ds ≤ 2
∫
Hn

|(z, s)|2|f (z, s)|2 dz ds – 2 log kn. (2.2)

For λ > 0, set fλ to be the scaling of f by

fλ(z, s) ≡ λn+1f (λz,λ2s),

which preserves L2-norm. Substituting fλ into inequality (2.2), the left-hand side of (2.2)
is written by

–
∫
Hn

|fλ(z, s)|2 log |fλ(z, s)|2 dz ds = –
∫
Hn

|f (z, s)|2 log |f (z, s)|2 dz ds – (2n + 2) logλ,

and the right-hand side is expressed by

2
∫
Hn

|(z, s)|2|fλ(z, s)|2 dz ds – 2 log kn = 2λ–2
∫
Hn

|(z, s)|2|f (z, s)|2 dz ds – 2 log kn.

Combining both sides, we have

–
∫
Hn

|f (z, s)|2 log |f (z, s)|2 dz ds ≤ 2λ–2
∫
Hn

|(z, s)|2|f (z, s)|2 dz ds + (2n + 2) log
λ

k
1

n+1
n

for any λ > 0. Optimizing the right-hand side in this inequality with

λ0 =
(

2
n + 1

) 1
2
(∫

Hn
|(z, s)|2|f (z, s)|2 dz ds

) 1
2

,

we obtain the desired inequality (1.7). �

Remark We remark that the constant Cn in the inequality (1.7) is approximated by
(2πe)/Q as the following:

Q
2πe

Cn = n
1

n+1 π– 1
2n+2

(
�

( n
2
)

�
( n+1

2
)
) 1

n+1
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≈
⎛
⎝ e– n

2
( n

2
) n

2 – 1
2

e– n+1
2

( n+1
2

) n
2

⎞
⎠

1
n+1

for Q � 1

=
(

e
1
2
(n

2

)– 1
2
( n

n + 1

) n
2
) 1

n+1

≈ 1 for Q � 1

when n is large enough. The constant (2πe)/Q corresponds to the optimal constant of the
Shannon inequality on the n-dimensional Euclidean space.

Proof of Corollary 1.4 Combining inequalities (1.3) and (1.7), we have

–
Q
2

‖f ‖2
2 log

(
Cn

‖f ‖2
2

∫
Hn

|(z, s)|2|f (z, s)|2 dz ds
)

≤
∫
Hn

|f (z, s)|2 log
|f (z, s)|2

‖f ‖2
2

dz ds

≤ Q
2

‖f ‖2
2 log

(
SH

‖f ‖2
2

∫
H2

|∇Hf (z, s)|2 dz ds
)

,

and thus, we obtain

Q
2

‖f ‖2
2 log

(
SHCn

‖f ‖4
2

∫
H2

|∇Hf (z, s)|2 dz ds
∫
Hn

|(z, s)|2|f (z, s)|2 dz ds
)

≥ 0.

Thus, we obtain the desired inequality (1.8). �

Remark By the above computations of the constants appearing in inequalities (1.5) and
(1.7), we see that

lim
n→∞

2
Q

Dn = 1.

We note that the constant Q/2 corresponds to the optimal constant of the Heisenberg
uncertainty inequality (1.6) on the n-dimensional Euclidean space.

3 Application to the heat equation on the Heisenberg group
For other applications, one can derive the dissipative estimate of solutions to the heat
equation on the Heisenberg group. We consider the Cauchy problem of the heat equation
on the Heisenberg group:

⎧⎨
⎩

∂tu = �Hu, t > 0, (z, s) ∈H
n,

u(0, z, s) = u0(z, s), (z, s) ∈H
n,

(3.1)

where u = u(t, z, s) is the unknown function, and u0 ∈ Lq(Hn) (q ≥ 1) is the given initial
data. One can derive a Lp-Lq dissipative estimate for a solution of (3.1) via the parametric
logarithmic Sobolev inequality (2.1) on the Heisenberg group.
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Theorem 3.1 Let u be a solution of (3.1) with u0 ∈ Lq(Hn), 1 ≤ q < ∞. Then, for t > 0 and
q < p ≤ ∞,

‖u(t)‖p ≤ Dt– Q
2

(
1
q – 1

p

)
‖u0‖q, (3.2)

where

D = D(n, p, q) =
(

Cq

Cp

) n
2
(

2nSH

e3( 1
q – 1

p )

)– n
2

(
1
q – 1

p

)

, Cp = p
1
p

(
1 –

1
p

)1– 1
p

and the constant SH is the same as the above.

Proof of Theorem 3.1 The proof of Theorem 3.1 is based on the argument in Lieb and
Loss [14]. We take a function r : [0, t) →R such that

r(0) = q, r(t) = p, r′(τ ) > 0 for 0 ≤ τ < t. (3.3)

This function has been given later. For a moment, suppose that u(τ ) ∈ Lr(τ )(Hn), then we
have formally,

d
dτ

‖u(τ )‖r(τ ) =
r′(τ )

r(τ )2

∫
Hn

|u(τ )|r(τ ) log
|u(τ )|r(τ )

‖u(τ )‖r(τ )
r(τ )

dz ds

+
∫
Hn

|u(τ )|r(τ )–2u(τ )∂τ u(τ ) dz ds.

From the second term on the right-hand side, using (3.1) and integrating by parts, we
obtain

∫
Hn

|u(τ )|r(τ )–2u(τ )∂τ u(τ ) dz ds =
∫
Hn

|u(τ )|r(τ )–2u(τ )�Hu(τ ) dz ds

= –
4(r(τ ) – 1)

r(τ )2

∫
Hn

∣∣∣∇Hu(τ )
r(τ )

2
∣∣∣2

dz ds.

Thus, we have

d
dτ

‖u(τ )‖r(τ )

=
r′(τ )

r(τ )2

(∫
Hn

|u(τ )|r(τ ) log
|u(τ )|r(τ )

‖u(τ )‖r(τ )
r(τ )

dz ds –
4(r(τ ) – 1)

r′(τ )

∫
Hn

∣∣∣∇Hu(τ )
r(τ )

2
∣∣∣2

dz ds

)
.

By (2.1) with

a =
4(r(τ ) – 1)

r′(τ )
,

we have

d
dτ

‖u(τ )‖r(τ ) ≤ –
nr′(τ )

2r(τ )2 ‖u(τ )‖r(τ ) log

(
2nSH

e
r(τ ) – 1

r′(τ )

)
. (3.4)
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Here, we set

r(τ ) =
pqt

pt – (p – q)τ
,

then r satisfies the condition (3.3). Putting r to (3.4), we obtain

d
dτ

‖u(τ )‖r(τ )

‖u(τ )‖r(τ )
≤ –

n
2t

(
1
q

–
1
p

)
log

[
2nSH

e
{pt – (p – q)τ }{pqt – pt + (p – q)τ }

pq(p – q)t

]
.

Integrating both sides from 0 to t, we obtain

log
‖u(t)‖p

‖u0‖q
≤ –

n
2

(
1
q

–
1
p

)
log

2nSHt
e3( 1

q – 1
p )

–
n
2

log
Cp

Cq
,

which implies the desired inequality (3.2):

‖u(t)‖p ≤ Dt– n
2

(
1
q – 1

p

)
‖u0‖q.

�

Remark The explicit form of the heat kernel of the heat equation (3.1) is known (see [21]),
and Xiao and He [23] proved the Hardy–Littlewood–Sobolev inequality on the Heisen-
berg group by using the estimate of the heat kernel. One can also derive a Lp-Lq dissipa-
tive estimate for a solution of the heat equation (3.1) by using this estimate and Young’s
inequality. Furthermore, we conjugate that the heat kernel of the heat equation (3.1) is the
extremal function of (1.5).

Appendix
For a measurable function f (z, s), by the polar transformation, we have

∫
Hn

f (z, s) dz ds =
∫
R

∫
S2n–1

∫ ∞

0
f (ρσ , s)ρ2n–1 dρ dσ ds

=
∫
S2n–1

∫ π
2

– π
2

∫ ∞

0
f (rσ cos

1
2 θ , r2 sin θ )r2n+1 cosn–1 θ dr dθ dσ .

In particular, we see that

∣∣�n–1∣∣ ≡
∫
S2n–1

∫ π
2

– π
2

cosn–1 θ dθ dσ = |S2n–1|
∫ π

2

– π
2

cosn–1 θ dθ .

Here, since cos θ is even, we have

∫ π
2

– π
2

cosn–1 θ dθ = 2
∫ π

2

0
cos θ (1 – sin2 θ )

n–2
2 dθ = 2

∫ 1

0
(1 – t2)

n
2 –1 dt

= B
(

1
2

,
n
2

)
=

π
1
2 �

( n
2
)

�
( n+1

2
) .
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Thus, it holds that

∣∣�n–1∣∣ =
2πn+ 1

2 �
( n

2
)

� (n)�
( n+1

2
) .

Moreover, for a radial function f (x) = f (r) (r = |(z, s)|),∫
Hn

f (z, s) dz ds =
∣∣�n–1∣∣ ∫ ∞

0
f (r)r2n+1 dr.
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